Malaysian Journal of Analytical Sciences, Vol 27 No 2 (2023): 422 - 439

 

NOVEL ALGINATE-CHITOSAN AMINE-FUNCTIONALIZED SILICA COATED MAGNETIC COMPOSITE FOR HEAVY METALS REMOVAL

IN WATER

 

(Komposit Baharu Alginat Kitosan Difungsikan dengan Amina Bersalut Silika Bermagnet untuk Penyingkiran Logam Berat dalam Air)

 

Gimba Joshua Dagil1,2, Ng Nyuk-Ting1, Aemi Syazwani Abdul Keyon1,3*

Wan Aini Wan Ibrahim1,3*, and Sheela Chandren1,3

 

1 Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia

2 Department of Science, Plateau State Polytechnic, Barkin Ladi, P.M.B 02023, Bukuru, Jos Nigeria

3Centre for Sustainable Nanomaterials, Ibnu Sina Institute for Scientific and Industrial Research, Universiti Teknologi Malaysia,

81310 UTM Johor Bahru, Johor, Malaysia

 

*Corresponding author e-mail: aemi@utm.my; waini@utm.my

 

 

Received: 15 August 2022; Accepted: 17 January 2023; Published:  19 April 2023

 

 

Abstract

A new effective biopolymer alginate chitosan amine-functionalized silica coated magnetic composite (alg/Cs-NH2-SiO2/Fe3O4) adsorbent was synthesized and applied for the first time to remove Pb(II), Cu(II) and Cd(II) from aqueous solution by utilizing inductive coupled plasma-optical emission spectroscopy (ICP-OES). The properties of the composite were characterized using Fourier-transform infrared spectroscopy (FTIR), Field emission scanning electron microscopy/energy-dispersive X-ray spectroscopy (FESEM/EDX), and vibrating sample magnetometry (VSM). Evaluation of alg/Cs-NH2-SiO2/Fe3O4 adsorption performance at optimum conditions revealed that the adsorbent had a maximum adsorption capacity of 41.79, 39.21, and 39.56 mg/g for Pb(II), Cu(II) and Cd(II), respectively. The adsorbent behavior was studied using Langmuir, Freundlich, Temkin, and Dubinin-Rudushkevich’s isotherm models. The Langmuir isotherm and the pseudo-second-order were better fitted with the coefficient of determination (R2) value of 0.99, indicating homogeneous surface and chemisorption processes. The thermodynamic factors indicated endothermic and spontaneous processes at 60 ℃. Even after the 5th cycle adsorption-desorption experiments, the adsorbent still retained its adsorption ability above 70% metal ions removal, indicating that the adsorbent was reasonable for metal ions removal in water. Pb(II) was detected in a river near an industrial area (Taman Mewah, Kulai, Johor), which was eventually removed by the adsorbent at 86% efficiency.

 

Keywords: biopolymer, magnetic adsorbent, heavy metals

 

Abstrak

Penjerap biopolimer alginat kitosan amina bersalut silika bersalut (alg/Cs-NH2-SiO2/Fe3O4) yang berkesan telah disintesis dan digunakan buat kali pertama untuk menyingkirkan ion Pb(II), Cu(II) danCd(II) daripada air dengan menggunakan spektroskopi pelepasan atomik-plasma gandingan aruhan (ICP-OES). Ciri-ciri komposit dicirikan menggunakan spektroskopi inframerah-transformasi Fourier (FTIR), mikroskop elektron pengimbasan pancaran medan (FESEM), spektroskopi sinar-X penyebaran tenaga (EDX), dan magnetometri getaran sample (VSM). Penilaian prestasi penjerapan alg/Cs-NH2-SiO2/Fe3O4 pada keadaan optimum menunjukkan bahawa penjerap mempunyai kapasiti penjerapan maksimum 41.79, 39.21, dan 39.56 mg/g masing-masing untuk Pb(II), Cu(II) dan Cd(II). Prestasi penjerap dikaji menggunakan model isoterma Langmuir, Freundlich, Temkin, dan Dubinin-Rudushkevichs. Isoterma Langmuir dan  pseudo-tertib kedua adalah lebih bertepatan dengan nilai   pekali penentuan (R2) 0.99, menunjukkan permukaan homogen dan proses penjerapan secara kimia. Faktor termodinamik  menunjukkan proses endotermik dan spontan pada 60 ℃. Walaupun selepas lima kali eksperimen penjerapan-penyahjerapan , penjerap masih mengekalkan keupayaan penjerapannya dengan % penyingkiran ion logam melebihi 70% menunjukkan penjerap berupaya mengeluarkan ion logam daripada air. Pb(II) telah dikesan di sungai berhampiran kawasan perindustrian (Taman Mewah, Kulai, Johor), akhirnya disingkirkan pada kecekapan 86%.

 

Kata kunci: biopolimer, penjerap magnet, logam berat


 

References

1.     Rajapaksha, P. P., Power, A., Chandra, S. and Chapman, J. (2018). Graphene, electrospun membranes, and granular activated carbon for eliminating heavy metals, pesticides, and bacteria in water and wastewater treatment processes. Analyst Journal, 143(23): 5629-5645.

2.     Sherlala, A. I. A., Raman, A. A. A., Bello, M. M. and Asghar, A. (2018). A review of the applications of organo-functionalized magnetic graphene oxide nanocomposites for heavy metal adsorption. Chemosphere, 193:1004–1017.

3.     Kumar, R., Kumar, S., Guglani, S., Roy, S., Kaushik, B. K., Sharma, R., et al. (2020) Temperature-aware compact modeling for resistivity in ultra-scaled cu-graphene hybrid interconnects. SPI 2020 - 24th IEEE Work Signal Power Integrity, Proceeding (January 2021): pp. 1-8.

5.     Mishra, S., Bharagava, R. N., More, N., Yadav, A., Zainith, S., Mani, S., et al. (2019) Heavy metal contamination: An alarming threat to environment and human health. Journal of Environmental and  Biotechnology Sustainable Future, 2019: 103-125.

6.     Samadi, N., Hasanzadeh, R. and Rasad, M. (2015). Adsorption isotherms, kinetic, and desorption studies on removal of toxic metal ions from aqueous solutions by the polymeric adsorbent. Journal of  Applied  Polymer Science, 132(11):1-13.

7.     Sadati, B. N., Rostamizadeh, K., Yaftian, M. R., Zamani, A. and Ahmadi, H. (2014). Covalently modified magnetite nanoparticles with PEG: Preparation and characterization as nano-adsorbent for removal of lead from wastewater. Journal of Environmetal Health Sciences Engineering, 12(1): 103.

8.     Ahmad, N., Sereshti, H., Mousazadeh, M., Rashidi, N. H., Kamboh, M. A. and Mohamad, S. (2018). New magnetic silica-based hybrid organic-inorganic nanocomposite for the removal of lead(II) and nickel(II) ions from aqueous solutions. Journal of Material Chemistry and Physics, 226:73-81.

9.     Kariuki, Z., Kiptoo, J. and Onyancha, D. (2017). Biosorption studies of lead and copper using rogers mushroom biomass ‘Lepiota hystrix.’ South African Journal of Chemcal Engineering, 23:62-70.

10. Zulfiqar, A. S., Athar, M., Salman, M. and Imran, D. M. (2017) Simultaneous removal of Pb(II), Cd(II), and Cu(II) from aqueous solutions by adsorption on Triticum aestivum - a green approach. Journal Hydrology Current Research, 2(4): 4-11.

11. Prasath, R. R., Muthirulan, P. and Kannan, N. (2014). Agricultural wastes as a low cost adsorbent for the removal of Acid Blue 92 dye: A comparative study with commercial activated carbon. IOSR Journal of  Agriculture and Veternary Science, 7(2):19-32.


12. Sutirman, Z. A., Sanagi, M. M., Abd Karim, K. J., Wan, I. W. A. and Jume, B. H. (2018) Equilibrium, kinetic and mechanism studies of Cu(II) and Cd(II) ions adsorption by modified chitosan beads. International Journal Biological Macromolecules, 116: 255-263.

13. Noor, N. M., Othman, R., Mubarak, N. M. and Abdullah, E. C. (2017). Agricultural biomass-derived magnetic adsorbents: Preparation and application for heavy metals removal. Journal of the Taiwan Institute of Chemical Engineers, 78: 168-177.

14. Ng, N. T., Kamaruddin, A. F., Wan, I. W. A., Sanagi, M. M. and Abdul Keyon, A. S. (2018) Advances in organic-inorganic hybrid sorbents for the extraction of organic and inorganic pollutants in different types of food and environmental samples. Journal of Separation Science, 41: 195-208.

15. Wang, J., Zheng, S., Shao, Y., Liu, J., Xu, Z. and Zhu, D. (2010). Amino-functionalized Fe3O4@SiO2 core-shell magnetic nanomaterial as a novel adsorbent for aqueous heavy metals removal. Journal of Colloid Interface Science, 349(1):293-299.

16. Jahanbakhsh, Z., Hosseinzadeh, H., Masoumi, B. (2021). Synthesis of carboxymethyl β-cyclodextrin bonded Fe3O4@SiO2–NH2 core-shell magnetic nanocomposite adsorbent for effective removal of Pb(II) from wastewater. Journal of Sol-Gel Science and Technology, 99(1): 230-242.

17. Lim, J. W., Kim, T. Y. and Woo, M. A. (2021) Trends in sensor development toward next-generation point-of-care testing for mercury. Journal of Biosensors and  Bioelectronics, 183:113228.

18. Ahmad, S. Z. N., Wan, S. W. N., Ismail, A. F., Yusof, N., Mohd, Y. M. Z. and Aziz, F. (2020). Adsorptive removal of heavy metal ions using graphene-based nanomaterials: Toxicity, roles of functional groups and mechanisms. Chemosphere Journal, 248: 126008.

19. Yang, L., Tian, J., Meng, J., Zhao, R., Li, C., Ma, J., et al. (2018). Modification and characterization of Fe3O4 nanoparticles for use in adsorption of alkaloids. Journal of Molecules, 23(2): 562.

20. Abbaszadeh, S., Nodeh, H. R. and Alwi, S. R. W. (2018). Bio-adsorbent derived from papaya peel waste and magnetic nanoparticles fabricated for lead determination. Journal of Pure and Applied Chemistry. 90(1):79-92.

21. Rahimdad, N., Khalaj, A., Azarian, G. and Nematollahi, D. (2019). Electrochemical device for the synthesis of Fe3O4 magnetic nanoparticles. Journal of the Electrochemical Society, 166(2): 1-6.

22. Markus, A., Gbadamosi, A. O., Yusuff, A. S., Agi, A. and Oseh, J. (2018). Magnetite-sporopollenin/graphene oxide as new pre-concentration adsorbent for removal of polar organophosphorus pesticides in vegetables. Journal of Environmetal Science Pollution and Research. 25(35): 35130-35142.

23. Alizadeh. A., Khodaei, M. M., Beygzadeh, M., Kordestani, D. and Feyzi, M. (2012). Biguanide-functionalized Fe3O7/SiO2 magnetic nanoparticles: An efficient heterogeneous organosuperbase catalyst for various organic transformations in aqueous media. Bulletin of the Korean Chemical Society, 33(8):2546-2552.

24. Li, Y., Tsend, N., Li, T. K., Liu, H., Yang, R., Gai, X., et al. (2019). Microwave-assisted hydrothermal preparation of rice straw hydrochars for adsorption of organics and heavy metals. Journal of Bioresource and Technology, 273(8): 136-143.

25. Haseen, U., Ali, S. G., Umar K., Ali, A., Ahmad, H. and Khan, H. M. (2021). Dimercaptosuccinic acid functionalized polystyrene column for trace concentration determination of heavy metal ions: Experimental and theoretical calculation studies. Water (Switzerland),13(21).

26. Hassan, A. M., Wan, I. W. A., Bakar, M. B., Sanagi, M. M., Sutirman, Z. A., Nodeh, H. R., et al. (2020) New effective 3-aminopropyltrimethoxysilane functionalized magnetic sporopollenin-based silica coated graphene oxide adsorbent for removal of Pb(II) from aqueous environment. Journal of Environmental  Management, 253(10): 109658.

27.  Ahmad, N. F., Kamboh, M. A., Nodeh, H. R., Halim, S. N. B. A. and Mohamad, S. (2017). Synthesis of piperazine functionalized magnetic sporopollenin: a new organic-inorganic hybrid material for the removal of lead(II) and arsenic(III) from aqueous solution. Journal of Environmental Science and Pollution Research, 24(27): 21846-21858.

28. Nasirimoghaddam, S., Zeinali, S. and Sabbaghi, S. (2015). Chitosan coated magnetic nanoparticles as nano-adsorbent for efficient removal of mercury contents from industrial aqueous and oily samples. Journal of  Industrial and Engineering Chemistry, 27: 79-87.

29. Upadhyay, U., Sreedhar, I., Singh, S. A., Patel, C. M. and Anitha, K. L. (2021). Recent advances in heavy metal removal by chitosan-based adsorbents. Journal of Carbohydrate Polymer, 251(8): 117000.

30. Kloster, G. A., Mosiewicki, M. A and Marcovich, N. E. (2019). Chitosan/iron oxide nanocomposite films: Effect of the composition and preparation methods on the adsorption of congo red. Journal of Carbohydrate Polymer, 221(3):186-194.

31. Wang, J., Zheng, C., Ding, S., Ma, H. and Ji, Y. (2011). Behaviors and mechanisms of tannic acid adsorption on an amino-functionalized magnetic nano adsorbent. Journal of Desalination, 273(2–3): 285-291.

32. Li, X., Wu, X., Chen, J., Li, Y. and Yang, Y. (2019) Alginate-enfolded copper hexacyanoferrate graphene oxide granules for adsorption of low-concentration cesium ions from the aquatic environment. Journal of  Radioanalytical and Nuclear Chemistry, 320(3): 655-63.

33. Fýl, B. A., Boncukcuoglu, R., Yilmaz, A. E. and Bayar, S. (2012) Adsorption kinetics and isotherms for the removal of zinc ions from aqueous solutions by an ion-exchange resin. Journal of Chemical Society of  Pakistan, 34(4): 841-848.

34. Nasir, A. M., Md, N. N. A. H., Goh, P. S. and Ismail, A. F. (2018) Application of two-dimensional leaf-shaped zeolitic imidazolate framework (2D ZIF-L) as arsenite adsorbent: Kinetic, isotherm, and mechanism. Journal of Molecular Liquids, 250: 269-277.

35. Gubbuk, I. H. (2011). Isotherms and thermodynamics for the sorption of heavy metal ions onto functionalized sporopollenin. Journal of Hazardous Materials, 186(1):416-22.

36. Sutirman, Z. A., Sanagi, M. M. and Wan, A.W. I. (2021). Alginate-based adsorbents for removal of metal ions and radionuclides from aqueous solutions: A review. International Journal Biological Macromolecules, 174: 216-228.

37. Elwakeel, K. Z., El-Bindary, A. A., Kouta, E. Y. and Guibal, E. (2018). Functionalization of polyacrylonitrile/Na-Y-zeolite composite with amidoxime groups for the sorption of Cu(II), Cd(II) and Pb(II) metal ions. Chemical Engineering Journal, 332(7): 727-236.

38. Hu, C., Zhu, P., Cai, M., Hu, H. and Fu, Q. (2017). Comparative adsorption of Pb(II), Cu(II), and Cd(II) on chitosan saturated montmorillonite: Kinetic, thermodynamic and equilibrium studies. Applied Clay Science Journal, 143(4): 320-326.

39. Li, X., Wang, S., Liu, Y., Jiang, L., Song, B., Li, M., et al. (2017). Adsorption of Cu(II), Pb(II), and Cd(II) ions from acidic aqueous solutions by diethylenetriaminepentaacetic acid-modified magnetic graphene oxide. Journal of Chemical Engineering Data, 62(1): 407-416.

40. Behbahani, E. S., Dashtian, K. and Ghaedi, M. (2021). Promise magnetite LDH-based adsorbent for simultaneous removal of Pb(II), Cd(II), and Cu(II) heavy metal ions. Journal of Hazardous Materials, 410(11): 124560.