Malaysian Journal of Analytical
Sciences, Vol 27
No 2 (2023): 407 - 421
RECOVERED
PALLADIUM COMPLEXES AS A POTENTIAL HOMOGENEOUS CATALYST FOR C-H
FUNCTIONALIZATION AND ANTIBACTERIAL AGENT
(Kompleks Palladium Dipulihkan sebagai Pemangkin Homogen untuk Fungsi
C-H dan Ejen Antibakteria)
Nur
Anis Nabilah Mohd Fuzi1, Siti Khadijah
Rahmat1, Muhammad Hazim Abdul Aziz1,
Mohammad Noor Jalil1, Shamsul Bahrin Gulam Ali2*, and Khairil
Anuar Jantan1*
1School of Chemistry and
Environment,
Faculty of Applied Sciences
Universiti Teknologi
MARA,
40450 Shah Alam,
Selangor, Malaysia
2Faculty of Health Sciences, Bertam Campus
Universiti Teknologi MARA,
13200 Kepala Batas, Penang, Malaysia
*Corresponding author: sbahrin@uitm.edu.my & khairil0323@uitm.edu.my
Received:
24 August 2022; Accepted: 9 December 2022; Published: 19 April 2023
Abstract
The
present study describes the utilization of simple and commercially available
iodine and tetraphenylphosphonium salt as leaching agents to recover palladium
(Pd) from waste. This study employed a model reaction assay that utilized Pd(0) metal powder to stimulate palladium leaching from
spent automotive three-way catalyst (TWC). The palladium complexes, (Ph4P)2[Pd2I6],
obtained were characterized with Fourier-transform infrared (FT-IR),
ultraviolet-visible (UV-Vis) spectroscopy, nuclear magnetic resonances (NMR),
thermogravimetric analysis (TGA), and elemental analysis. The recovered Pd
complexes demonstrated excellent catalytic activity towards the methoxylation of benzo[h]quinoline.
Furthermore, a lower to moderate product yield was recorded for the ethoxy- and
isopropoxylation of benzo[h]quinoline. The C-H functionalization of 8-methylquinoline
catalyzed by the obtained palladium complexes also documented a moderate
product yield (< 65%) after 6 hours of reaction. The antibacterial
activities of the (Ph4P)2[Pd2I6]
were evaluated through a disk diffusion test, minimum inhibitory concentration
(MIC), and minimum bactericidal concentration (MBC) assays. Among the
gram-positive and -negative bacteria evaluated, Klebsiella pneumoniae exhibited the highest sensitivity to the
synthesized (Ph4P)2[Pd2I6] at all
concentrations. The MIC concentrations for all assessed bacteria ranged from
0.156 to 1.25 mg/mL. Moreover, bacterial growth was
detected in all MBC plates, thus indicating that the (Ph4P)2[Pd2I6]
possessed a bacteriostatic effect and not a killing attribute.
Keywords: recovered palladium,
palladium catalyst, antibacterial activity
Abstrak
Kajian ini menghuraikan mengenai penggunaan iodin dan garam tetrafenilphosphonium
yang mudah dan boleh didapati secara komersial sebagai agen larut lesap
dalam proses pemulihan paladium (Pd) daripada sisa terbuang. Kajian ini melaksanakan ujian berdasarkan model tindak balas yang menggunakan serbuk logam Pd(0) untuk
merangsang proses larut lesap Pd dari pemangkin
tiga hala automotif (TWC) terpakai. Spesies molekul kompleks Pd dipulihkan, (Ph4P)2[Pd2I6],
yang diperoleh dicirikan melalui Fourier-transform inframerah
(FT-IR), spektroskopi ultra ungu-nampak
(UV-Vis), resonans magnet nuklear (NMR), analisis
termogravimetrik (TGA) dan analisis
unsur. Kompleks Pd dipulihkan yang diperoleh tersebut menunjukkan aktiviti pemangkin yang sangat baik bagi
ke arah metoksilasi
benzo[h]kuinolin.
Selain itu, hasil produk yang sederhana telah direkodkan bagi etoksi dan isopropoksilasi benzo[h]kuinolin. Kefungsian C-H sebagai pemangkinan 8-metilquinolin oleh kompleks
Pd dipulihkan juga merekodkan
hasil produk yang sederhana (< 65%) selepas tindak balas selama
6 jam. Aktiviti antibakteria
(Ph4P)2[Pd2I6] tersebut
dinilai melalui ujian resapan cakera,
kepekatan perencatan
minimum (MIC), dan ujian kepekatan
bakteria minimum (MBC). Antara kesemua
bakteria gram-positif dan -negatif yang diuji, Klebsiella pneumoniae menunjukkan sensitiviti tertinggi kepada (Ph4P)2[Pd2I6]
pada semua kepekatan. Kepekatan MIC untuk semua bakteria yang diuji direkod dalam
julat 0.156 hingga 1.25
mg/ml. Tambahan pula, pertumbuhan
bakteria yang dikesan dalam semua plat MBC menunjukkan bahawa (Ph4P)2[Pd2I6]
mempunyai kesan bakteriostatik dan tidak membunuh.
Kata kunci:
paladium dipulihkan, mangkin
paladium, aktiviti antibakteria
References
1.
Wilburn, D. R., and Bleiwas, D. I. (2004). Platinum-group metals—world supply
and demand. US geological survey
open-file report, 1224:2004-1224.
2.
McCarthy, S., Braddock, D. C.,
and Wilton-Ely, J. D. (2021). Strategies for sustainable palladium
catalysis. Coordination Chemistry
Reviews, 442: 213925.
3.
Hagelüken, C.
(2006). Markets for the catalyst
metals platinum, palladium and rhodium. Metall-Berlin, 60(1): 31-42.
4.
Hagelüken, C.,
and Umicore, A. G. (2012). Recycling the Platinum Group Metals: A European
Perspective, Effective recycling systems for pgm-containing
materials will ensure sustainable supply. Platinum Metals Reviews, 56(1): 29-35.
5.
Sing Singh,
P. K., Singh, R. S., and Singh, S. (2016). Environmental and social impacts of
mining and their mitigation. In Kolkata
(India): National Seminar ESIMM-2016.
6.
Stocks, J., Blunden, J. R.,
and Down, C. G. (1974). Metal Mining and the Environment. American Geological Institute: Alexandria,
VA, USA.
7.
Glaister, B.
J., and Mudd, G. M. (2010). The environmental costs of platinum–PGM mining and
sustainability: Is the glass half-full or half-empty?. Minerals Engineering, 23(5):438-450.
8.
Yousif, A. M. (2019). Recovery
and then individual separation of platinum, palladium, and rhodium from spent
car catalytic converters using hydrometallurgical technique followed by
successive precipitation methods. Journal
of Chemistry, 2019: 7.
9.
Chen, M., Avarmaa,
K., Klemettinen, L., O’Brien, H., Sukhomlinov,
D., Shi, J., and Jokilaakso, A. (2020). Recovery of
precious metals (Au, Ag, Pt, and Pd) from urban mining through copper
smelting. Metallurgical and
Materials Transactions B, 51(4): 1495-1508.
10. Benson,
M., Bennett, C. R., Harry, J. E., Patel, M. K., and Cross, M. (2000). The
recovery mechanism of platinum group metals from catalytic converters in spent
automotive exhaust systems. Resources,
Conservation and Recycling, 31(1): 1-7.
11. Hunt,
A. J. (Ed.). (2013). Element
recovery and sustainability (No. 22). Royal Society of Chemistry.
12. Serpe, A.,
Bigoli, F., Cabras, M. C., Fornasiero,
P., Graziani, M., Mercuri, M. L., and Deplano, P. (2005). Pd-dissolution through a mild and
effective one-step reaction and its application for Pd-recovery from spent catalytic
converters. Chemical Communications,
8: 1040-1042.
13. Jantan, K.
A., Kwok, C. Y., Chan, K. W., Marchiò, L., White, A.
J., Deplano, P., and Wilton-Ely, J. D. (2017). From
recovered metal waste to high-performance palladium catalysts. Green Chemistry, 19(24): 5846-5853.
14.
15. Cuscusa, M., Rigoldi, A., Artizzu, F., Cammi, R., Fornasiero, P., Deplano, P., and Serpe, A.
(2017). Ionic couple-driven palladium leaching by organic triiodide
solutions. ACS Sustainable Chemistry
& Engineering, 5(5): 4359-4370.
16. Arafath, M.
A., Adam, F., and Hassan, M. Z. (2021). Synthesis, characterization, X-ray
crystal structure and antibacterial activity of nickel, palladium and platinum
complexes with Schiff base derived from N-cyclohexylhydrazinecarbothioamide
and 5-(tert-butyl)-2-hydroxybenzaldehyde. Phosphorus, Sulfur, and Silicon and the Related Elements, 196(6):
530-537.
17. Mallikarjuna, K., Nasif, O., Ali Alharbi, S.,
Chinni, S. V., Reddy, L. V., Reddy, M. R. V., and Sreeramanan,
S. (2021). Phytogenic synthesis of Pd-Ag/rGO
nanostructures using stevia leaf extract for photocatalytic H2 production and
antibacterial studies. Biomolecules, 11(2):
190.
18. Anju,
A. R. Y. A., Gupta, K., and Chundawat, T. S. (2020).
In vitro antimicrobial and antioxidant activity of biogenically synthesized
palladium and platinum nanoparticles using Botryococcus
braunii. Turkish
Journal of Pharmaceutical Sciences, 17(3): 299.
19. Chlumsky, O., Purkrtova, S., Michova, H., Sykorova, H., Slepicka, P., Fajstavr, D., and Demnerova, K.
(2021). Antimicrobial properties of palladium and platinum nanoparticles: A new
tool for combating food-borne pathogens. International Journal of Molecular Sciences, 22(15): 7892.
20. Rîmbu, C., Danac, R., and Pui, A. (2014).
Antibacterial activity of Pd (II) complexes with salicylaldehyde-amino acids
Schiff bases ligands. Chemical and
Pharmaceutical Bulletin, 62(1): 12-15.
21. Bandyopadhyay,
N., Das, M., Samanta, A., Zhu, M., Lu, L., and Naskar, J. P. (2017). Promising antimicrobial activity of
an oxime based palladium (II) complex. ChemistrySelect, 2(1):
230-240.
22. Haddad,
B., Paolone, A., Villemin,
D., Taqiyeddine, M., Belarbi,
E. H., Bresson, S., and Kiefer, J. (2017). Synthesis, conductivity, and
vibrational spectroscopy of tetraphenylphosphonium bis (trifluoromethanesulfonyl)
imide. Journal of Molecular
Structure, 1146:203-212.
23. Kubota,
M., Ohba, S., and Saito, Y. (1991). Structure of
trans-diiodobis (triphenylphosphine) palladium (II)–trichloromethane (1/1). Acta Crystallographica Section C: Crystal
Structure Communications, 47(8): 1727-1729.
24. Dumas,
A., and Couvreur, P. (2015). Palladium: a future key
player in the nanomedical field?. Chemical Science, 6(4): 2153-2157.
25. Adams,
C. P., Walker, K. A., Obare, S. O., and Docherty, K.
M. (2014). Size-dependent antimicrobial effects of novel palladium
nanoparticles. PloS One, 9(1): e85981.
26. Silhavy, T.
J., Kahne, D., and Walker, S. (2010). The bacterial
cell envelope. Cold Spring Harbor
Perspectives in Biology, 2(5): a000414.
27. Sharma,
N. K., Ameta, R. K., and Singh, M. (2016). From
synthesis to biological impact of Pd(II) complexes: synthesis,
characterization, and antimicrobial and scavenging activity. Biochemistry Research International, 2016:
4359375.