Malaysian Journal of Analytical Sciences, Vol 27 No 2 (2023): 396 - 406

 

INFLUENCE OF MONOMERS ON THE PROPERTIES OF EPITOPE IMPRINTED SOL-GEL ON SILICA SURFACE FOR HEPARIN ADSORPTION

 

(Pengaruh Monomer terhadap Sifat-Sifat Sol-Gel Bercetak Epitop pada Permukaan Silika untuk Penyerapan Heparin)

 

Nur Farhanah Samrat1, Lee Jia Yee1, Azalina Mohamed Nasir1*, Noorhidayah Ishak1,2

 

1Fakulti Teknologi Kejuruteraan Kimia,

Kompleks Pusat Pengajian Jejawi 3, Kawasan Perindustrian Jejawi,

Universiti Malaysia Perlis, 02600 Arau Perlis, Malaysia

2 School of Chemical Engineering,  Engineering Campus,

Universiti Sains Malaysia, 14300 Nibong Tebal, Penang Malaysia

 

*Corresponding author: azalina@unimap.edu.my

 

 

Received: 18 September 2022; Accepted: 22 March 2023; Published:  19 April 2023

 

 

Abstract

Heparin is a well-known anticoagulant drug commonly utilized in medical practice. Nevertheless, foreign impurities may contaminate heparin extract; thus, molecular imprinting technology is introduced to purify and separate the anticoagulant. In this study, an epitope heparin imprinted polymer was prepared using low molecular weight heparin (LMWH) as a template model in three different functional monomers: (3-aminopropyl) trimethoxysilane (APTMS), (3-mercaptopropyl) trimethoxysilane (MCPTMS), and 3-(2-aminoethylamino) propyltrimethoxysilane (AEAPTES). Meanwhile, tetrarthoxysilane (TEOS) was used as a cross-linker for the sol-gel process. The prepared epitope heparin imprinted polymer was characterized using Fourier transform infrared spectroscopy (FTIR) and scanning electron microscope (SEM). The AEAPTES-MIP demonstrated the best imprinting effect towards heparin (IF = 3.10) due to the high stability and dual functional group created strong hydrogen bonding, in comparison to APTMS-MIP (IF = 2.18) and MCPTMS-MIP (IF = 0.13). Moreover, the epitope heparin imprinted polymer exhibited higher selectivity towards macromolecule heparin than LMWH, indicating the successful identification and selection of macromolecule fragments to determine the biological activities.

 

Keywords: epitope imprinted, heparin, molecular imprinted polymer, sol-gel process

 

Abstrak

Heparin adalah ubat anti-gumpalan yang terkenal dan biasa digunakan dalam amalan perubatan. Walau bagaimanapun, ekstrak heparin berisiko tinggi bercampur dengan bahan cemar asing. Oleh itu, teknologi pencetakan molekul diperkenalkan untuk penulenan dan pengasingan heparin. Di sini, polimer bercetak epitop heparin telah dihasilkan dengan menggunakan berat heparin molekul rendah (LMWH) sebagai model templat dalam tiga monomer berfungsi berbeza yang dikaji iaitu (3-aminopropil) trimetoksisilana (APTMS), (3-merkaptopropil) trimetoksisilana (MCPTMS) dan 3-(2-aminoetillamino) propiltrimetoksisilana (AEAPTES) manakala, Tetrartoksisilana (TEOS) digunakan sebagai penyambung silang di dalam proses sol-gel. Polimer tercetak epitop heparin yang disediakan telah dianalisis menggunakan spektroskopi inframerah transformasi Fourier (FTIR) dan mikroskop elektron pengimbasan (SEM). AEAPTES-MIP mempunyai kesan cetakan terbaik terhadap heparin dengan nilai faktor pencetakan tertinggi (IF=3.10) berbanding APTMS-MIP (IF=2.18) dan MCPTMS-MIP (IF=0.13) kerana kestabilannya yang tinggi dan kumpulan dwi berfungsi yang diwujudkan mengukuhkan ikatan hidrogen. Selain itu, polimer tercetak epitope heparin menunjukkan selektiviti tinggi terhadap makromolekul heparin berbanding LMWH. Ini membuktikan bahawa MIP berjaya digunakan sebagai pengenalpastian dan pemilihan serpihan makromolekul untuk menentukan peranan aktiviti biologinya.

 

Kata kunci: epitop tercetak, heparin, polimer molekul tercetak, proses sol-gel

 

References

1.     Haqqani, O. P., Iafrati, M. D. and Freedman, J. E. (2013). Pharmacology of antithrombotic drugs. In vascular medicine: A companion to Braunwald’s heart disease: Second Edition. Elsevier Inc, Netherlands: pp.106-107

2.     Bolten, S. N., Rinas, U. and Scheper, T. (2018). Heparin: role in protein purification and substitution with animal-component free material. Applied Microbiology Biotechnology, 102(20): 8647-8660.

3.     Zhu, Y., Zhang, F. and Linhardt. R. J. (2019). Heparin contamination and issues related to raw materials and controls. Springer International Publishing, New York: pp.191-206.

4.     Batra, S., Sahi, N., Mikulcik, K., Shockley, H., Turner, C., Laux, Z., Badwaik, V. D., Conte, E. and Rajalingam, D. (2011). Efficient and inexpensive method for purification of heparin binding proteins. Journal Chromatography B Analytical Technology Biomedicine Life Sciences, 879(24): 2437-2442.

5.     Volpi, N., Maccari, F., Suwan, J. and Linhardt, R. J. (2012). Electrophoresis for the analysis of heparin purity and quality. Electrophoresis, 33(11): 1531-1537.

6.     Ertürk, G. and Mattiasson, B. (2017). Molecular imprinting techniques used for the preparation of biosensors. Sensors (Switzerland), 17(2): 1-17.

7.     Vasapollo, G., Sole, R. Del, Mergola, L., Lazzoi, M. R., Scardino, A., Scorrano, S. and Mele, G. (2011). Molecularly imprinted polymers: Present and future prospective. International Journal of Molecular Sciences, 12(9): 5908-5945.

8.     Odabaşi, M., Say, R. and Denizli, A. (2007). Molecular imprinted particles for lysozyme purification. Materials Science and Engineering C, 27(1): 90-99.

9.     Shafqat, S. R., Bhawani, S. A., Bakhtiar, S. and Ibrahim, M. N. M. (2020). Synthesis of molecularly imprinted polymer for removal of Congo red. BMC Chemistry, 14(1): 1-15.

10.  Zhao, X., Pei, W., Guo, R. and Li, X. (2020). Selective adsorption and purification of the acteoside in cistanche tubulosa by molecularly imprinted polymers. Frontiers in Chemistry, 7(January): 1-13.

11.  Zhang, C., Wang, Y., Zhou, Y., Guo, J. and Liu, Y. (2014). Silica-based surface molecular imprinting for recognition and separation of lysozymes. Analytical Methods, 6(21): 8584-8591.

12.  Dong, Z., Tan, J., Pinelo, M., Zhang, H., Wan, Y. and Luo, J. (2022). Engineering mussel-inspired coating on membranes for green enzyme immobilization and hyperstable reuse. Industrial & Engineering Chemistry Research, 61(15): 5042-5053.

13.  Chen, L., Wang, X., Lu, W., Wu, X. and Li, J. (2016). Molecular imprinting: Perspectives and applications. Chemistry Society Review, 45(8): 2137-2211.

14.  Esposito, S. (2019). Traditional sol-gel chemistry as a powerful tool for the preparation of supported metal and metal oxide catalysts. Material (Basel), 12(4): 1-25.

15.  Yang, K., Li, S., Liu, L., Chen, Y., Zhou, W., Pei, J., Liang, Z., Zhang, L. and Zhang, Y. (2019). Epitope imprinting technology: Progress, applications, and perspectives toward artificial antibodies. Advanced Materials, 31(50): 1902048.

16.  Budiman, H., Sri H. K. F. and Setiawan, A. H. (2009). Preparation of silica modified with 2-mercaptoimidazole and its sorption properties of chromium(III). E-Journal of Chemistry, 6(1): 141-150.

17.  Shi, L., Liang, L., Wang, F., Ma, J. and Sun, J. (2014). Polycondensation of guanidine hydrochloride into a graphitic carbon nitride semiconductor with a large surface area as a visible light photocatalyst. Catalysis Science and Technology, 4(9): 3235-3243.

18.  Eskandarloo, H., Arshadi, M., Enayati, M. and Abbaspourrad, A. (2018). Highly efficient recovery of heparin using a green and low-cost quaternary ammonium functionalized halloysite nanotube. ACS Sustainable Chemistry and Engineering, 6(11): 15349-15360.

19.  Wang, L., Zhi, K., Zhang, Y., Liu, Y., Zhang, L., Yasin, A. and Lin, Q. (2019). Molecularly imprinted polymers for gossypol via sol-gel, bulk, and surface layer imprinting-A comparative study. Polymers (Basel), 11(4):1-18.

20.  Zhi, K., Wang, L., Zhang, Y., Jiang, Y., Zhang, L. and Yasin, A. (2018). Influence of size and shape of silica supports on the sol-gel surface molecularly imprinted polymers for selective adsorption of gossypol. Materials, 11(5): 1-16.

21.  Gupta, N., Singh, R. S., Shah, K., Prasad, R. and Singh, M. (2018). Epitope imprinting of iron binding protein of Neisseria meningitidis bacteria through multiple monomers imprinting approach. Journal of Molecular Recognition, 31(7): 1-9.

22.  Yoshimi, Y., Oino, D., Ohira, H., Muguruma, H., Moczko, E. and Piletsky, S. A. (2019). Size of heparin-imprinted nanoparticles reflects the matched interactions with the target molecule. Sensors (Switzerland), 19(10): 1-11.

23.  Zhu, M., Lerum, M. Z., & Chen, W. (2012). How to prepare reproducible, homogeneous, and hydrolytically stable aminosilane-derived layers on silica. Langmuir, 28(1): 416-423.

24.  Baydemir, G., & Denizli, A. (2015). Heparin removal from human plasma using molecular imprinted cryogels. Artificial Cells, Nanomedicine and Biotechnology, 43(6): 403-412.

25.  Öter, Ç. and Zorer, Ö. S. (2021). Molecularly imprinted polymer synthesis and selective solid phase extraction applications for the detection of ziram, a dithiocarbamate fungicide. Chemical Engineering Journal Advances, 7(4): 100118.

26.  Dai, C., Zhang, J., Zhang, Y., Zhou, X. and Liu, S. (2013). Application of molecularly imprinted polymers to selective removal of clofibric acid from water. PloS One, 8(10): 78167.