Malaysian Journal of Analytical
Sciences, Vol 27
No 2 (2023): 396 - 406
INFLUENCE OF MONOMERS ON THE PROPERTIES OF EPITOPE
IMPRINTED SOL-GEL ON SILICA SURFACE FOR HEPARIN ADSORPTION
(Pengaruh
Monomer terhadap Sifat-Sifat Sol-Gel Bercetak Epitop pada Permukaan Silika
untuk Penyerapan Heparin)
Nur
Farhanah Samrat1, Lee Jia Yee1, Azalina Mohamed Nasir1*,
Noorhidayah Ishak1,2
1Fakulti Teknologi Kejuruteraan Kimia,
Kompleks Pusat Pengajian Jejawi 3, Kawasan Perindustrian
Jejawi,
Universiti Malaysia Perlis, 02600 Arau Perlis, Malaysia
2 School of Chemical Engineering, Engineering Campus,
Universiti Sains Malaysia, 14300 Nibong Tebal, Penang
Malaysia
*Corresponding author: azalina@unimap.edu.my
Received:
18 September 2022; Accepted: 22 March 2023; Published: 19 April 2023
Abstract
Heparin is a well-known anticoagulant drug commonly
utilized in medical practice. Nevertheless, foreign impurities may contaminate
heparin extract; thus, molecular imprinting technology is introduced to purify
and separate the anticoagulant. In this study, an epitope heparin imprinted
polymer was prepared using low molecular weight heparin (LMWH) as a template
model in three different functional monomers: (3-aminopropyl) trimethoxysilane (APTMS), (3-mercaptopropyl) trimethoxysilane (MCPTMS), and 3-(2-aminoethylamino) propyltrimethoxysilane (AEAPTES). Meanwhile, tetrarthoxysilane (TEOS) was used as a cross-linker for the
sol-gel process. The prepared epitope heparin imprinted polymer was
characterized using Fourier transform infrared spectroscopy (FTIR) and scanning
electron microscope (SEM). The AEAPTES-MIP demonstrated the best imprinting
effect towards heparin (IF = 3.10) due to the high stability and dual
functional group created strong hydrogen bonding, in comparison to APTMS-MIP
(IF = 2.18) and MCPTMS-MIP (IF = 0.13). Moreover, the epitope heparin imprinted
polymer exhibited higher selectivity towards macromolecule heparin than LMWH,
indicating the successful identification and selection of macromolecule
fragments to determine the biological activities.
Keywords: epitope imprinted,
heparin, molecular imprinted polymer, sol-gel process
Abstrak
Heparin adalah ubat
anti-gumpalan yang terkenal dan biasa digunakan dalam amalan perubatan. Walau
bagaimanapun, ekstrak heparin berisiko tinggi bercampur dengan bahan cemar
asing. Oleh itu, teknologi pencetakan molekul diperkenalkan untuk penulenan dan
pengasingan heparin. Di sini, polimer bercetak epitop heparin telah dihasilkan
dengan menggunakan berat heparin molekul rendah (LMWH) sebagai model templat
dalam tiga monomer berfungsi berbeza yang dikaji iaitu (3-aminopropil)
trimetoksisilana (APTMS), (3-merkaptopropil) trimetoksisilana (MCPTMS) dan
3-(2-aminoetillamino) propiltrimetoksisilana (AEAPTES) manakala,
Tetrartoksisilana (TEOS) digunakan sebagai penyambung silang di dalam proses
sol-gel. Polimer tercetak epitop heparin yang disediakan telah dianalisis
menggunakan spektroskopi inframerah transformasi Fourier (FTIR) dan mikroskop
elektron pengimbasan (SEM). AEAPTES-MIP mempunyai kesan cetakan terbaik
terhadap heparin dengan nilai faktor pencetakan tertinggi (IF=3.10) berbanding
APTMS-MIP (IF=2.18) dan MCPTMS-MIP (IF=0.13) kerana kestabilannya yang tinggi
dan kumpulan dwi berfungsi yang diwujudkan mengukuhkan ikatan hidrogen. Selain
itu, polimer tercetak epitope heparin menunjukkan selektiviti tinggi terhadap
makromolekul heparin berbanding LMWH. Ini membuktikan bahawa MIP berjaya
digunakan sebagai pengenalpastian dan pemilihan serpihan makromolekul untuk
menentukan peranan aktiviti biologinya.
Kata kunci: epitop
tercetak, heparin, polimer molekul tercetak, proses sol-gel
References
1. Haqqani, O. P., Iafrati, M. D. and Freedman, J. E. (2013).
Pharmacology of antithrombotic drugs. In vascular medicine: A companion to
Braunwald’s heart disease: Second Edition. Elsevier Inc, Netherlands:
pp.106-107
2. Bolten, S. N., Rinas, U. and Scheper, T. (2018). Heparin: role
in protein purification and substitution with animal-component free material. Applied
Microbiology Biotechnology, 102(20): 8647-8660.
3. Zhu, Y., Zhang, F. and Linhardt. R. J. (2019). Heparin
contamination and issues related to raw materials and controls. Springer
International Publishing, New York: pp.191-206.
4. Batra, S., Sahi, N., Mikulcik, K., Shockley, H., Turner, C.,
Laux, Z., Badwaik, V. D., Conte, E. and Rajalingam, D. (2011). Efficient and
inexpensive method for purification of heparin binding proteins. Journal
Chromatography B Analytical Technology Biomedicine Life Sciences, 879(24):
2437-2442.
5. Volpi, N., Maccari, F., Suwan, J. and Linhardt, R. J. (2012).
Electrophoresis for the analysis of heparin purity and quality. Electrophoresis,
33(11): 1531-1537.
6. Ertürk, G. and Mattiasson, B. (2017). Molecular imprinting
techniques used for the preparation of biosensors. Sensors (Switzerland),
17(2): 1-17.
7. Vasapollo, G., Sole, R. Del, Mergola, L., Lazzoi, M. R.,
Scardino, A., Scorrano, S. and Mele, G. (2011). Molecularly imprinted polymers:
Present and future prospective. International Journal of Molecular Sciences,
12(9): 5908-5945.
8. Odabaşi, M., Say, R. and Denizli, A. (2007). Molecular
imprinted particles for lysozyme purification. Materials Science and
Engineering C, 27(1): 90-99.
9. Shafqat, S. R., Bhawani, S. A., Bakhtiar, S. and Ibrahim, M. N.
M. (2020). Synthesis of molecularly imprinted polymer for removal of Congo red.
BMC Chemistry, 14(1): 1-15.
10. Zhao, X., Pei, W., Guo, R. and Li, X. (2020). Selective adsorption
and purification of the acteoside in cistanche tubulosa by molecularly
imprinted polymers. Frontiers in Chemistry, 7(January): 1-13.
11. Zhang, C., Wang, Y., Zhou, Y., Guo, J. and Liu, Y. (2014).
Silica-based surface molecular imprinting for recognition and separation of
lysozymes. Analytical Methods, 6(21): 8584-8591.
12. Dong, Z., Tan, J., Pinelo, M., Zhang, H., Wan, Y. and Luo, J.
(2022). Engineering mussel-inspired coating on membranes for green enzyme
immobilization and hyperstable reuse. Industrial & Engineering Chemistry
Research, 61(15): 5042-5053.
13. Chen, L., Wang, X., Lu, W., Wu, X. and Li, J. (2016). Molecular
imprinting: Perspectives and applications. Chemistry Society Review, 45(8):
2137-2211.
14. Esposito, S. (2019). Traditional sol-gel chemistry as a powerful
tool for the preparation of supported metal and metal oxide catalysts. Material
(Basel), 12(4): 1-25.
15. Yang, K., Li, S., Liu, L., Chen, Y., Zhou, W.,
Pei, J., Liang, Z., Zhang, L. and Zhang, Y. (2019). Epitope imprinting technology:
Progress, applications, and perspectives toward artificial antibodies. Advanced
Materials, 31(50): 1902048.
16. Budiman, H., Sri H. K. F. and Setiawan, A. H. (2009). Preparation
of silica modified with 2-mercaptoimidazole and its sorption properties of
chromium(III). E-Journal of Chemistry, 6(1): 141-150.
17. Shi, L., Liang, L., Wang, F., Ma, J. and Sun, J. (2014). Polycondensation
of guanidine hydrochloride into a graphitic carbon nitride semiconductor with a
large surface area as a visible light photocatalyst. Catalysis Science and
Technology, 4(9): 3235-3243.
18. Eskandarloo, H., Arshadi, M., Enayati, M. and Abbaspourrad, A.
(2018). Highly efficient recovery of heparin using a green and low-cost
quaternary ammonium functionalized halloysite nanotube. ACS Sustainable
Chemistry and Engineering, 6(11): 15349-15360.
19. Wang, L., Zhi, K., Zhang, Y., Liu, Y., Zhang, L., Yasin, A. and
Lin, Q. (2019). Molecularly imprinted polymers for gossypol via sol-gel, bulk,
and surface layer imprinting-A comparative study. Polymers (Basel), 11(4):1-18.
20. Zhi, K., Wang, L., Zhang, Y., Jiang, Y., Zhang, L. and Yasin, A.
(2018). Influence of size and shape of silica supports on the sol-gel surface
molecularly imprinted polymers for selective adsorption of gossypol. Materials,
11(5): 1-16.
21. Gupta, N., Singh, R. S., Shah, K., Prasad, R. and Singh, M. (2018).
Epitope imprinting of iron binding protein of Neisseria meningitidis bacteria
through multiple monomers imprinting approach. Journal of Molecular
Recognition, 31(7): 1-9.
22. Yoshimi, Y., Oino, D., Ohira, H., Muguruma, H., Moczko, E. and
Piletsky, S. A. (2019). Size of heparin-imprinted nanoparticles reflects the
matched interactions with the target molecule. Sensors (Switzerland), 19(10):
1-11.
23. Zhu, M., Lerum, M. Z., & Chen, W. (2012). How to prepare
reproducible, homogeneous, and hydrolytically stable aminosilane-derived layers
on silica. Langmuir, 28(1): 416-423.
24. Baydemir, G., & Denizli, A. (2015). Heparin removal from human
plasma using molecular imprinted cryogels. Artificial Cells, Nanomedicine and
Biotechnology, 43(6): 403-412.
25. Öter, Ç. and Zorer, Ö. S. (2021). Molecularly imprinted polymer
synthesis and selective solid phase extraction applications for the detection
of ziram, a dithiocarbamate fungicide. Chemical Engineering Journal Advances,
7(4): 100118.
26. Dai, C., Zhang, J., Zhang, Y., Zhou, X. and Liu, S. (2013).
Application of molecularly imprinted polymers to selective removal of clofibric
acid from water. PloS One, 8(10): 78167.