Malaysian Journal of Analytical Sciences, Vol 27 No 2 (2023): 386 - 395

 

OPTIMISATION OF THE LIQUID CHROMATOGRAPHY MASS SPECTROMETRY TRIPLE-QUADRUPOLE AND LOW-COST MICROEXTRACTION ANALYSIS FOR CARBAMAZEPINE

 

(Pengoptimuman Kromatografi Cecair Spektrometer Jisim Tiga-Caturkutub dan Analisis Pengekstrakan Mikro Kos Rendah bagi Karbamazepin)

 

Siti Sabrina Kasri1,2, Hannis Fadzillah Mohsin3, Wan Nurhayati Wan Hanafi1, Wardah Tahir4, and Chia Chay Tay1,5*

 

1Faculty of Applied Sciences,

Universiti Teknologi MARA, Shah Alam, Selangor,40450, Malaysia

2Centre of Foundation Studies,

Universiti Teknologi MARA, Cawangan Selangor, Kampus Dengkil,

Dengkil 43800, Selangor, Malaysia

3Faculty of Pharmacy,

Universiti Teknologi MARA Cawangan Selangor,

Puncak Alam, 42300, Selangor, Malaysia

4School of Civil Engineering,

College of Engineering,

Universiti Teknologi MARA, Shah Alam, 40450, Selangor, Malaysia

5myBioREC, School of Civil Engineering,

College of Engineering,

Universiti Teknologi MARA, Shah Alam, 40450, Selangor, Malaysia

 

*Corresponding author: taychiay@uitm.edu.my

 

 

Received: 25 September 2022; Accepted: 18 December 2022; Published:  19 April 2023

 

 

Abstract

Sensitivity and reliability have become focal points in the analysis of contaminants in wastewater. The optimisation using liquid chromatography mass spectrometry triple-quadrupole (LCMS-QQQ) and carbamazepine microextraction parameters were investigated. The optimisation of gas flow, nebuliser, fragmentor voltage, and collision energy in LCMS-QQQ were examined. Carbamazepine microextraction parameters for extraction methods, extraction tools, various solvents, and solvent volume ratios were investigated. The optimised LCMS-QQQ conditions were 11 L/min gas flow, 25 psi nebuliser, 80 V fragmentor voltage, as well as 35 eV (179.1 m/z) and 15 eV (194.1 m/z) collision energy. For microextraction analysis, liquid-liquid extraction (LLE) yielded a higher carbamazepine average recovery percentage of 96±26%–100±10% than solid phase extraction (SPE) at 4 ±0%–8±1%. The sonicator and separatory funnel similarly showed a high average recovery percentage of carbamazepine at 96±26%–100±10%, but the sonicator saves time and human resources. The average recovery percentage for carbamazepine in solvents at 100±10% was higher compared to water at 26±4%. Statistically, there was no significant difference between the various solvents used in LLE. The optimised solvent volume-ratio LLE was 1.25. This study is vital for the analysis of carbamazepine in the environment and the development of an emerging pollutants monitoring database.

Keywords: carbamazepine, liquid chromatography mass spectrometry triple-quadrupole, optimisation, microextraction

 

Abstrak

Sensitiviti dan kebolehpercayaan telah menjadi tumpuan dalam analisis bahan cemar dalam air sisa. Oleh itu, pengoptimuman menggunakan kromatografi cecair spektrometri jisim tiga-caturkutub (LCMS-QQQ) dan parameter pengekstrakan mikro karbamazepin telah dikaji. Pengoptimuman aliran gas, nebuliser, voltan serpihan, dan tenaga perlanggaran untuk LCMS-QQQ telah diperiksa. Parameter pengekstrakan mikro karbamazepin untuk kaedah pengekstrakan, alat pengekstrakan, pelbagai pelarut, dan nisbah isipadu pelarut telah disiasat. Keadaan optimum LCMS-QQQ ialah aliran gas 11 l/min, nebuliser 25 psi, voltan serpihan 80 V, serta tenaga perlanggaran 35 eV (179.1 m/z), dan 15 eV (194.1 m/z). Untuk analisis pengekstrakan mikro, pengekstrakan cecair-cecair (LLE) menghasilkan purata peratusan pemulihan karbamazepin yang lebih tinggi pada 96 ± 26%–100 ± 10% daripada pengekstrakan fasa pepejal pada 4 ± 0%–8 ± 1%. Sonikator dan corong pemisah menunjukkan keputusan yang sama, purata peratusan pemulihan yang tinggi bagi karbamazepin pada 96 ± 26%–100 ± 10% tetapi sonikator menjimatkan masa dan sumber manusia. Purata peratusan pemulihan untuk karbamazepin dalam pelarut pada 100 ± 10% adalah lebih tinggi berbanding dengan air pada 26 ± 4%. Pelbagai pelarut yang digunakan dalam LLE tidak menunjukkan perbezaan yang signifikan secara statistik. Nisbah isipadu pelarut LLE yang optimum ialah 1.25. Kajian ini adalah penting untuk analisis karbamazepin dalam alam sekitar dan pembangunan pangkalan data pemantauan bahan pencemar yang muncul.

 

Kata kunci: karbamazepin, kromatografi cecair spektrometri jisim tiga-caturkutub, pengoptimuman, pengekstrakan mikro

 

References

1.       Zhang, Y., Geißen, S.-U. and Gal, C. (2008). Carbamazepine and diclofenac: Removal in wastewater treatment plants and occurrence in water bodies. Chemosphere, 73(8): 1151-1161.

2.       Paltiel, O., Fedorova, G., Tadmor, G., Kleinstern, G., Maor, Y. and Chefetz, B. (2016). Human exposure to wastewater-derived pharmaceuticals in fresh produce: A randomized controlled trial focusing on carbamazepine. Environmental Science & Technology, 50(8), 4476-4482.

3.       Rissardo, J. P. and Fornari Caprara, A. L. (2019) Carbamazepine associated urinary incontinence: a case report and literature review. International Journal of Medical and Health Development 24:114-117.

4.       Brezina, E., Prasse, C., Meyer, J., Mückter, H. and Ternes, T. A. (2017). Investigation and risk evaluation of the occurrence of carbamazepine, oxcarbazepine, their human metabolites and transformation products in the urban water cycle. Environmental Pollution, 225: 261-269.

5.       Street, M., Angelini, S., Bernasconi, S., Burgio, E., Cassio, A., Catellani, C.,Cirillo, F., Deodati, A., Fabbrizi, E., Fanos, V., Gargano, G., Grossi, E., Iughetti, L., Lazzeroni, P., Mantovani, A., Migliore, L., Palanza, P., Panzica, G., Papini, A.M., Parmigiani, S., Predieri, B., Sartori, C., Tridenti, G. and Amarri, S. (2018). Current knowledge on endocrine disrupting chemicals (edcs) from animal biology to humans, from pregnancy to adulthood: Highlights from a national Italian meeting. International Journal of Molecular Sciences, 19(6), 1647.

6.       Qiang, L., Cheng, J., Yi, J., Rotchell, J. M., Zhu, X. and Zhou, J. (2016). Environmental concentration of carbamazepine accelerates fish embryonic development and disturbs larvae behaviour. Ecotoxicology, 25(7): 1426-1437.

7.       Dordio, A. V., Belo, M., Martins Teixeira, D., Palace Carvalho, A. J., Dias, C. M. B., Picó, Y., and Pinto, A. P. (2011). Evaluation of carbamazepine uptake and metabolization by Typha spp., a plant with potential use in phytotreatment. Bioresource Technology, 102(17): 7827-7834.

8.       Kruglova, A., Ahlgren, P., Korhonen, N., Rantanen, P., Mikola, A. and Vahala, R. (2014). Biodegradation of ibuprofen, diclofenac and carbamazepine in nitrifying activated sludge under 12°C temperature conditions. Science of The Total Environment, 499, 394-401.

9.       He, Yonetani, T., Asada, Y., Echigo, S. and Itoh, S. (2019). Simultaneous determination of carbamazepine-n-glucuronide and carbamazepine phase I metabolites in the wastewater by liquid chromatography-tandem mass spectrometry. Microchemical Journal, 145: 1191-1198.

10.    Stolker, A. Linda, A. M., Niesing, W., Fuchs, R., Vreeken, R. J., Niessen, W. M. A. and Brinkman, U. A. T. (2004). Liquid chromatography with triple-quadrupole and quadrupole-time-of-flight mass spectrometry for the determination of micro-constituents - A comparison. Analytical and Bioanalytical Chemistry, 378(7): 1754-1761.

11.    Mohamad-Nasir, N., Abdul-Talib, S., Lokman, N. F., Hashim, S. N. and Tay, C. C. (2021). Efficient and low-cost extraction methods for pharmaceutical compounds of carbamazepine and caffeine. International Transaction Journal of Engineering, Management, & Applied Sciences & Technologies, 12(9):1-9.

12.    Dugheri, S., Marrubini, G., Mucci, N., Cappelli, G., Bonari, A., Pompilio, L.T. and Arcangeli, G. (2020). A review of micro-solid phase extraction techniques and devices applied in sample pretreatment coupled with chromatographic analysis. Acta Chromatographica, 33(2): 99-111.

13.    Daniele, G., Fieu, M., Joachim, S., Bado-Nilles, A., Beaudouin, R., Baudoin, P., James-Casas, A., Andres, S., Bonnard, M., Bonnard, I. and Vulliet, E. (2017). Determination of carbamazepine and 12 degradation products in various compartments of an outdoor aquatic mesocosm by reliable analytical methods based on liquid chromatography-tandem mass spectrometry. Environmental Science and Pollution Research, 24(20): 16893-16904.

14.    Tuli, L., Tsai, T.-H., Varghese, R. S., Cheema, A. and Ressom, H. W. (2010). Using a spike-in experiment to evaluate analysis of LC-MS data. 2010 IEEE International Conference on Bioinformatics and Biomedicine Workshops, 2010: 5703775.

15.    Lange, V., Picotti, P., Domon, B. and Aebersold, R. (2008). Selected reaction monitoring for quantitative proteomics: A tutorial. Molecular Systems Biology, 4: 61.

16.    Zenezini Chiozzi, R., Capriotti, A. L., Cavaliere, C., Ferraris, F., La Barbera, G., Piovesana, S. and Laganà, A. (2017). Evaluation of column length and particle size effect on the untargeted profiling of a phytochemical mixture by using UHPLC coupled to high-resolution mass spectrometry. Journal of Separation Science, 40(12): 2541-2557.

17.    Pitt, J. J. (2009). Principles and applications of liquid chromatography-mass spectrometry in clinical biochemistry. Clinical Biochemistry Reviews, 30(1): 19-34.

18.    Segura, P. A., MacLeod, S. L., Lemoine, P., Sauvé, S. and Gagnon, C. (2011). Quantification of carbamazepine and atrazine and screening of suspect organic contaminants in surface and drinking waters. Chemosphere, 84(8): 1085-1094.

19.    Karinen, R., Vindenes, V., Hasvold, I., Olsen, K. M., Christophersen, A. S. and Øiestad, E. (2014). Determination of a selection of anti-epileptic drugs and two active metabolites in whole blood by reversed phase UPLC-MS/MS and some examples of application of the method in forensic toxicology cases. Drug Testing and Analysis, 7(7): 634-644.

20.    Zhang, H., Zhu, Y., Qiao, N., Chen, Y. and Gao, L. (2017). Preparation and characterization of carbamazepine cocrystal in polymer solution. Pharmaceutics, 9(4): 54.

21.    Al-Qaim, F., Mussa, Z., Yuzir, A., Tahrim, N., Hashim, N. and Azman, S. (2018). Transportation of different therapeutic classes of pharmaceuticals to the surface water, sewage treatment plant, and hospital samples, Malaysia. Water, 10(7): 916.