Malaysian Journal of Analytical
Sciences, Vol 27
No 2 (2023): 386 - 395
OPTIMISATION OF THE LIQUID CHROMATOGRAPHY MASS
SPECTROMETRY TRIPLE-QUADRUPOLE AND LOW-COST MICROEXTRACTION ANALYSIS FOR
CARBAMAZEPINE
(Pengoptimuman
Kromatografi
Cecair Spektrometer Jisim Tiga-Caturkutub dan Analisis Pengekstrakan Mikro Kos
Rendah bagi Karbamazepin)
Siti Sabrina Kasri1,2, Hannis Fadzillah
Mohsin3, Wan Nurhayati Wan Hanafi1, Wardah Tahir4,
and Chia Chay Tay1,5*
1Faculty of Applied Sciences,
Universiti Teknologi MARA, Shah Alam, Selangor,40450,
Malaysia
2Centre of Foundation Studies,
Universiti Teknologi MARA, Cawangan Selangor, Kampus
Dengkil,
Dengkil 43800, Selangor, Malaysia
3Faculty of Pharmacy,
Universiti Teknologi MARA Cawangan Selangor,
Puncak Alam, 42300, Selangor, Malaysia
4School of Civil Engineering,
College of Engineering,
Universiti Teknologi MARA, Shah
Alam, 40450, Selangor, Malaysia
5myBioREC, School of Civil Engineering,
College of Engineering,
Universiti Teknologi MARA, Shah
Alam, 40450, Selangor, Malaysia
*Corresponding author: taychiay@uitm.edu.my
Received: 25 September 2022;
Accepted: 18 December 2022; Published:
19 April 2023
Abstract
Sensitivity and reliability have become focal points in the analysis of
contaminants in wastewater. The optimisation using liquid chromatography mass
spectrometry triple-quadrupole (LCMS-QQQ) and carbamazepine microextraction
parameters were investigated. The optimisation of gas flow, nebuliser, fragmentor voltage, and collision energy in LCMS-QQQ
were examined. Carbamazepine microextraction parameters for extraction methods,
extraction tools, various solvents, and solvent volume ratios were
investigated. The optimised LCMS-QQQ conditions were 11 L/min gas flow, 25 psi
nebuliser, 80 V fragmentor voltage, as well as 35 eV (179.1 m/z) and 15 eV
(194.1 m/z) collision energy. For microextraction analysis, liquid-liquid
extraction (LLE) yielded a higher carbamazepine average recovery percentage of
96±26%–100±10% than solid phase extraction (SPE) at 4 ±0%–8±1%. The sonicator
and separatory funnel similarly showed a high average recovery percentage of
carbamazepine at 96±26%–100±10%, but the sonicator saves time and human
resources. The average recovery percentage for
carbamazepine in solvents at 100±10% was higher compared to water at 26±4%. Statistically,
there was no significant difference between the various solvents used in LLE. The optimised solvent volume-ratio LLE was 1.25. This study
is vital for the analysis of carbamazepine in the environment and the
development of an emerging pollutants monitoring database.
Keywords: carbamazepine,
liquid chromatography mass spectrometry
triple-quadrupole, optimisation, microextraction
Abstrak
Sensitiviti dan kebolehpercayaan telah menjadi tumpuan dalam analisis bahan cemar dalam air sisa. Oleh itu,
pengoptimuman menggunakan kromatografi cecair spektrometri jisim
tiga-caturkutub (LCMS-QQQ) dan parameter pengekstrakan mikro karbamazepin telah
dikaji. Pengoptimuman aliran gas, nebuliser, voltan serpihan, dan tenaga
perlanggaran untuk LCMS-QQQ telah diperiksa. Parameter pengekstrakan mikro karbamazepin
untuk kaedah pengekstrakan, alat pengekstrakan, pelbagai pelarut, dan nisbah
isipadu pelarut telah disiasat. Keadaan optimum LCMS-QQQ ialah aliran gas 11
l/min, nebuliser 25 psi, voltan serpihan 80 V, serta tenaga perlanggaran 35 eV
(179.1 m/z), dan 15 eV (194.1 m/z). Untuk analisis pengekstrakan mikro,
pengekstrakan cecair-cecair (LLE) menghasilkan purata peratusan pemulihan
karbamazepin yang lebih tinggi pada 96 ± 26%–100 ± 10% daripada pengekstrakan
fasa pepejal pada 4 ± 0%–8 ± 1%. Sonikator dan corong pemisah menunjukkan
keputusan yang sama, purata peratusan pemulihan yang tinggi bagi karbamazepin
pada 96 ± 26%–100 ± 10% tetapi sonikator menjimatkan masa dan sumber manusia.
Purata peratusan pemulihan untuk karbamazepin dalam pelarut pada 100 ± 10%
adalah lebih tinggi berbanding dengan air pada 26 ± 4%. Pelbagai pelarut yang
digunakan dalam LLE tidak menunjukkan perbezaan yang signifikan secara
statistik. Nisbah isipadu pelarut LLE yang optimum ialah 1.25. Kajian ini
adalah penting untuk analisis karbamazepin dalam alam sekitar dan pembangunan
pangkalan data pemantauan bahan pencemar yang muncul.
Kata kunci:
karbamazepin, kromatografi cecair spektrometri jisim tiga-caturkutub,
pengoptimuman, pengekstrakan mikro
1. Zhang,
Y., Geißen, S.-U. and Gal, C. (2008). Carbamazepine and diclofenac: Removal in
wastewater treatment plants and occurrence in water bodies. Chemosphere,
73(8): 1151-1161.
2. Paltiel,
O., Fedorova, G., Tadmor, G., Kleinstern, G., Maor, Y. and Chefetz, B. (2016).
Human exposure to wastewater-derived pharmaceuticals in fresh produce: A
randomized controlled trial focusing on carbamazepine. Environmental Science
& Technology, 50(8), 4476-4482.
3. Rissardo,
J. P. and Fornari Caprara, A. L. (2019) Carbamazepine associated urinary
incontinence: a case report and literature review. International Journal of
Medical and Health Development 24:114-117.
4. Brezina,
E., Prasse, C., Meyer, J., Mückter, H. and Ternes, T. A. (2017). Investigation
and risk evaluation of the occurrence of carbamazepine, oxcarbazepine, their
human metabolites and transformation products in the urban water cycle. Environmental
Pollution, 225: 261-269.
5. Street,
M., Angelini, S., Bernasconi, S., Burgio, E., Cassio, A., Catellani,
C.,Cirillo, F., Deodati, A., Fabbrizi, E., Fanos, V., Gargano, G., Grossi, E.,
Iughetti, L., Lazzeroni, P., Mantovani, A., Migliore, L., Palanza, P., Panzica,
G., Papini, A.M., Parmigiani, S., Predieri, B., Sartori, C., Tridenti, G. and
Amarri, S. (2018). Current knowledge on endocrine disrupting chemicals (edcs)
from animal biology to humans, from pregnancy to adulthood: Highlights from a
national Italian meeting. International Journal of Molecular Sciences,
19(6), 1647.
6. Qiang,
L., Cheng, J., Yi, J., Rotchell, J. M., Zhu, X. and Zhou, J. (2016).
Environmental concentration of carbamazepine accelerates fish embryonic
development and disturbs larvae behaviour. Ecotoxicology, 25(7):
1426-1437.
7. Dordio,
A. V., Belo, M., Martins Teixeira, D., Palace Carvalho, A. J., Dias, C. M. B.,
Picó, Y., and Pinto, A. P. (2011). Evaluation of carbamazepine uptake and
metabolization by Typha spp., a plant with potential use in
phytotreatment. Bioresource Technology, 102(17): 7827-7834.
8. Kruglova,
A., Ahlgren, P., Korhonen, N., Rantanen, P., Mikola, A. and Vahala, R. (2014).
Biodegradation of ibuprofen, diclofenac and carbamazepine in nitrifying
activated sludge under 12°C temperature conditions. Science of The Total
Environment, 499, 394-401.
9. He,
Yonetani, T., Asada, Y., Echigo, S. and Itoh, S. (2019). Simultaneous
determination of carbamazepine-n-glucuronide and carbamazepine phase I
metabolites in the wastewater by liquid chromatography-tandem mass
spectrometry. Microchemical Journal, 145: 1191-1198.
10. Stolker,
A.
Linda, A. M., Niesing, W., Fuchs, R., Vreeken, R. J., Niessen, W. M. A. and
Brinkman, U. A. T. (2004). Liquid chromatography with triple-quadrupole and
quadrupole-time-of-flight mass spectrometry for the determination of micro-constituents
- A comparison. Analytical and Bioanalytical Chemistry, 378(7):
1754-1761.
11. Mohamad-Nasir,
N., Abdul-Talib, S., Lokman, N. F., Hashim, S. N. and Tay, C. C. (2021).
Efficient and low-cost extraction methods for pharmaceutical compounds of
carbamazepine and caffeine. International Transaction Journal of
Engineering, Management, & Applied Sciences & Technologies,
12(9):1-9.
12. Dugheri,
S., Marrubini, G., Mucci, N., Cappelli, G., Bonari, A., Pompilio, L.T. and
Arcangeli, G. (2020). A review of micro-solid phase extraction techniques and
devices applied in sample pretreatment coupled with chromatographic analysis. Acta
Chromatographica, 33(2): 99-111.
13. Daniele,
G., Fieu, M., Joachim, S., Bado-Nilles, A., Beaudouin, R., Baudoin, P.,
James-Casas, A., Andres, S., Bonnard, M., Bonnard, I. and Vulliet, E. (2017).
Determination of carbamazepine and 12 degradation products in various
compartments of an outdoor aquatic mesocosm by reliable analytical methods
based on liquid chromatography-tandem mass spectrometry. Environmental
Science and Pollution Research, 24(20): 16893-16904.
14. Tuli,
L., Tsai, T.-H., Varghese, R. S., Cheema, A. and Ressom, H. W. (2010). Using a
spike-in experiment to evaluate analysis of LC-MS data. 2010 IEEE
International Conference on Bioinformatics and Biomedicine Workshops, 2010:
5703775.
15. Lange,
V., Picotti, P., Domon, B. and Aebersold, R. (2008). Selected reaction
monitoring for quantitative proteomics: A tutorial. Molecular Systems
Biology, 4: 61.
16. Zenezini
Chiozzi, R., Capriotti, A. L., Cavaliere, C., Ferraris, F., La Barbera, G.,
Piovesana, S. and Laganà, A. (2017). Evaluation of column length and particle
size effect on the untargeted profiling of a phytochemical mixture by using
UHPLC coupled to high-resolution mass spectrometry. Journal of Separation
Science, 40(12): 2541-2557.
17. Pitt,
J. J. (2009). Principles and applications of liquid chromatography-mass
spectrometry in clinical biochemistry. Clinical Biochemistry Reviews,
30(1): 19-34.
18. Segura,
P. A., MacLeod, S. L., Lemoine, P., Sauvé, S. and Gagnon, C. (2011).
Quantification of carbamazepine and atrazine and screening of suspect organic
contaminants in surface and drinking waters. Chemosphere, 84(8):
1085-1094.
19. Karinen,
R., Vindenes, V., Hasvold, I., Olsen, K. M., Christophersen, A. S. and Øiestad,
E. (2014). Determination of a selection of anti-epileptic drugs and two active
metabolites in whole blood by reversed phase UPLC-MS/MS and some examples of
application of the method in forensic toxicology cases. Drug Testing and
Analysis, 7(7): 634-644.
20. Zhang,
H., Zhu, Y., Qiao, N., Chen, Y. and Gao, L. (2017). Preparation and
characterization of carbamazepine cocrystal in polymer solution. Pharmaceutics,
9(4): 54.
21. Al-Qaim,
F., Mussa, Z., Yuzir, A., Tahrim, N., Hashim, N. and Azman, S. (2018).
Transportation of different therapeutic classes of pharmaceuticals to the
surface water, sewage treatment plant, and hospital samples, Malaysia. Water,
10(7): 916.