Malaysian Journal of Analytical Sciences, Vol 27 No 2 (2023): 368 - 385

 

Recovery of Phosphate from Artificial Human Urine Using Magnesium-modified Biochar FOR IMMOBILIZATION OF

LEAD IN SOIL

 

(Pemulihan Fosfat daripada Urin Manusia Tiruan Menggunakan Biochar yang diubah suai Magnesium Untuk Imobilisasi Plumbum dalam Tanah)

 

Soon Kong Yong 1* Nurul Fariha Mohd Idrus1, Nur Qursyna Boll Kassim2,

Azwan Mat Lazim3, and Robert Thomas Bachmann4

 

1Soil Assessment and Remediation Research Group,

Faculty of Applied Sciences,

Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia

2Soil Conservation and Management Research Group,

Faculty of Plantation and Agrotechnology,

Universiti Teknologi MARA , 40450 Shah Alam, Selangor, Malaysia

3Faculty of Science and Technology,

Universiti Kebangsaan Malaysia , 43600 Bangi, Selangor, Malaysia

4Green Chemistry & Sustainable Engineering Technology Cluster,

Section of Environmental and Polymer Engineering Technology,

Malaysian Institute of Chemical and Bioengineering Technology,

Universiti Kuala Lumpur, 78000 Alor Gajah, Malacca, Malaysia

 

*Corresponding author: yongsk@uitm.edu.my

 

Received: 22 September 2022; Accepted: 27 February 2023; Published:  19 April 2023

 

 

Abstract

Magnesium-modified biochar (MB) is used to recover phosphate (PO43-) from urine by struvite precipitation. Pyrolysis of sawdust (SD) at 700°C and subsequent impregnation with MgO2 produced MB. Virgin and spent MB were characterized for proximate analysis, surface morphology, elemental composition, specific surface area, and functional groups using thermogravimetric analysis (TGA), scanning electron micrography (SEM), energy dispersive X-ray (EDX) analysis, surface area analysis, and Fourier transform infrared (FTIR) spectroscopy, respectively. The batch sorption experiments were conducted on MB using artificial human urine (AHU), where residual PO43- was quantified by colorimetry. Sorption data were analyzed using various isotherm (i.e., Langmuir and Freundlich) and kinetic models (i.e., pseudo-first and pseudo-second-order) for elucidation of sorptive potential and mechanism. Pyrolysis of SD produced porous sawdust biochar (SB) with a high surface area. However, modification with MgO2 decreased the surface area of MB, possibly due to the loss of micropores from oxidation and deposition of struvite as confirmed by SEM-EDX analysis. FTIR analysis showed that polar functional groups such as carboxylate (1641 cm-1), phenolate (1300 cm-1), and amide (1674 cm-1) were mainly involved in the Mg2+ and PO43- adsorption. The PO43-sorption capacity for MB was 8967 mg/g at a sorbent/solution ratio of 0.1 g/L after 120 min of contact time. Sorption of PO43- occurred on a heterogeneous MB surface with a possible multilayer adsorption mechanism. The kinetic study suggested that the sorption of PO43- by MB was a chemisorption process. The presence of Mg in MB aided the formation of struvite in MB and enhanced the recovery of PO43- from AHU. Spent MB exhibited higher ability in immobilizing soil Pb compared to ground magnesium limestone (GML) at a similar application rate (5% w/w). Spend MB can be recovered as fertilizer or immobilizing heavy metals such as lead in soil.

 

Keywords: oxidized biochar, magnesium peroxide, struvite, phosphate recovery, human urine

 

Abstrak

Biochar yang diubah suai dengan magnesium (MB) digunakan untuk memulihkan fosfat (PO43-) daripada air kencing melalui pemendakan struvite. Pirolisis habuk papan (SD) pada 700°C dan impregnasi seterusnya dengan MgO2 menghasilkan MB. Kedua-dua MB mentah dan terpakai dicirikan pada analisis proksimat, morfologi permukaan, komposisi unsur, luas permukaan spesifik dan kumpulan berfungsi telah dijalankan menggunakan penganalisis termogravimetrik (TGA), pengimbasan mikrografi elektron (SEM), analisis sinar-X penyebaran tenaga (EDX), penganalisis luas permukaan, dan spektroskopi Inframerah transformasi Fourier (FTIR), masing-masing. Eksperimen jerapan telah dijalankan pada MB menggunakan air kencing manusia tiruan (AHU), di mana sisa PO43- ditentukan dengan teknik kolorimetri. Data jerapan dianalisis menggunakan pelbagai model isoterma (iaitu, Langmuir and Freundlich) dan kinetik (iaitu, pseudo-tertib-pertama and pseudo-tertib-kedua) untuk penjelasan potensi dan mekanisme jerapan. Pirolisis SD menghasilkan biochar (SB) berliang dengan luas permukaan yang tinggi. Walau bagaimanapun, pengubahsuaian dengan MgO2 mengurangkan luas permukaan MB, mungkin disebabkan oleh kehilangan mikropori daripada pengoksidaan dan pemendapan struvite seperti yang disahkan oleh analisis SEM-EDX. Analisis FTIR menunjukkan kehadiran kumpulan berfungsi polar seperti karboksilat (1641 cm-1), fenolat (1300 cm-1), dan amida (1674 cm-1) terlibat terutamanya dalam penjerapan Mg2+ dan PO43-. Kapasiti penyerapan PO43- untuk MB ialah 8967 mg/g pada nisbah sorben/larutan 0.1g/L selepas 120 minit masa sentuhan. Penyerapan PO43- berkemungkinan berlaku pada permukaan MB heterogen dengan mekanisme penjerapan berbilang lapisan. Kajian kinetik menunjukan bahawa proses penjerapan PO43- oleh MB adalah melalui proses kimia. Kehadiran Mg dalam MB membantu pemendakan struvite dalam MB, dan meningkatkan prestasi pemulihan PO43- daripada AHU. MB terpakai lebih cekap dalam imobilisasi plumbum di dalam tanah berbanding dengan batu kapur magnesium terkisar (GML) pada kadar penggunaan yang sama (5 % w/w). MB terpakai boleh dikitar semula sebagai baja atau merawat tanah yang tercemar dengan logam berat seperti plumbum.

 

Kata kunci: biochar teroksida, magnesium peroksida, struvite, pengambilan semula fosfat, urin manusia

References

1.     Mackey, K. R. M. and Paytan, A. (2009). Phosphorus cycle. Encyclopedia of Microbiology, Academic Press, Cambridge, Massachusetts, USA: pp 322-334.

2.     Department of Environment Malaysia (2009). Environmental Quality (Industrial Effluent) Regulations, Ministry of Science, Technology and Environment, Kuala Lumpur.

3.     Sedlak, R. (2018). Phosphorus and nitrogen removal from municipal wastewater: principles and practice. Routledge, New York, USA: pp 1-256.

4.     Rittmann, B. E., Mayer, B., Westerhoff, P. and Edwards, M. (2011). Capturing the lost phosphorus. Chemosphere, 84(6): 846-853.

5.     Sakulpaisan, S., Vongsetskul, T., Reamouppaturm, S., Luangkachao, J., Tantirungrotechai, J. and Tangboriboonrat, P. (2016). Titania-functionalized graphene oxide for an efficient adsorptive removal of phosphate ions. Journal of Environmental Management, 167: 99-104.

6.     Yin, H., Kong, M. and Fan, C. (2013). Batch investigations on P immobilization from wastewaters and sediment using natural calcium rich sepiolite as a reactive material. Water Research, 47(13): 4247-4258.

7.     Sohi, S. P. (2012). Carbon storage with benefits. Science, 338(6110): 1034-1035.

8.     Ghorbani-Khosrowshahi, S. and Behnajady, M. (2016). Chromium(VI) adsorption from aqueous solution by prepared biochar from Onopordom heteracanthom. International Journal of Environmental Science and Technology, 13: 1803-1814.

9.     Tan, Z., Lin, C., Ji, X. and Rainey, T. (2017). Returning biochar to fields: A review. Applied Soil Ecology, 116: 1-11.

10.  He, Y., Zhou, X., Jiang, L., Li, M., Du, Z., Zhou, G., Shao, J., Wang, X., Xu, Z., Hosseini Bai, S., Wallace, H. and Xu, C. (2017). Effects of biochar application on soil greenhouse gas fluxes: a meta-analysis. GCB Bioenergy, 9(4): 743-755.

11.  Ab Malek, N. A., Ibrahim, M. L. and Yong, S. K. (2020). Composite biochar derived from palm kernel shells and blood cockle shells for immobilizing lead in shooting range soil. Malaysian Journal of Chemistry, 22(2): 89-97.

12.  Almanassra, I. W., McKay, G., Kochkodan, V., Ali Atieh, M. and Al-Ansari, T. (2021). A state of the art review on phosphate removal from water by biochars. Chemical Engineering Journal, 409: 128211.

13.  Alling, V., Hale, S. E., Martinsen, V., Mulder, J., Smebye, A., Breedveld, G. D. and Cornelissen, G. (2014). The role of biochar in retaining nutrients in amended tropical soils. Journal of Plant Nutrition and Soil Science, 177(5): 671-680.

14.  Qiu, M., Liu, L., Ling, Q., Cai, Y., Yu, S., Wang, S., Fu, D., Hu, B. and Wang, X. (2022). Biochar for the removal of contaminants from soil and water: a review. Biochar, 4(19): 1-25.

15.  Xu, K., Zhang, C., Dou, X., Ma, W. and Wang, C. (2019). Optimizing the modification of wood waste biochar via metal oxides to remove and recover phosphate from human urine. Environmental Geochemistry and Health, 41(4): 1767-1776.

16.  Shih, K. and Yan, H. (2016) Chapter 26 - The crystallization of struvite and its analog (K-Struvite) from waste streams for nutrient recycling. environmental materials and waste. Academic Press, Cambridge, Massachusetts, USA: pp. 665-686.

17.  Kloss, S., Zehetner, F., Dellantonio, A., Hamid, R., Ottner, F., Liedtke, V., Schwanninger, M., Gerzabek, M. H. and Soja, G. (2012). Characterization of slow pyrolysis biochars: Effects of feedstocks and pyrolysis temperature on biochar properties. Journal of Environmental Quality, 41(4): 990-1000.

18.  Bakshi, S., Banik, C. and Laird, D. A. (2020). Estimating the organic oxygen content of biochar. Scientific Reports, 10(1): 13082.

19.  Jung, K. W., Hwang, M. J., Ahn, K. H. and Ok, Y. S. (2015). Kinetic study on phosphate removal from aqueous solution by biochar derived from peanut shell as renewable adsorptive media. International Journal of Environmental Science and Technology, 12(10): 3363-3372.

20.  Fidel, R. B., Laird, D. A., Thompson, M. L. and Lawrinenko, M. (2017). Characterization and quantification of biochar alkalinity. Chemosphere, 167: 367-373.

21.  Tan, Z., Qiu, J., Zeng, H., Liu, H. and Xiang, J. (2011). Removal of elemental mercury by bamboo charcoal impregnated with H2O2. Fuel, 90(4): 1471-1475.

22.  Yong, S. K., Mohd Zin, S. N. and Mad Ariff, M. J. (2016). Effects of rain pH, soil organic matter, cation exchange capacity and total lead content in shooting range soil on the concentration of lead in leachate. Malaysian Journal of Analytical Sciences, 20(5): 1066-1072.

23.  Chutipongtanate, S. and Thongboonkerd, V. (2010). Systematic comparisons of artificial urine formulas for in vitro cellular study. Analytical Biochemistry, 402(1): 110-112.

24.  Iqbal, H., Garcia-Perez, M. and Flury, M. (2015). Effect of biochar on leaching of organic carbon, nitrogen, and phosphorus from compost in bioretention systems. Science of The Total Environment, 521-522: 37-45.

25.  Varikoden, H., Samah, A. A. and Babu, C. A. (2010). Spatial and temporal characteristics of rain intensity in the peninsular Malaysia using TRMM rain rate. Journal of Hydrology, 387(3-4): 312-319.

26.  Tessier, A., Campbell, P. G. C. and Bisson, M. (1979). Sequential extraction procedure for the speciation of particulate trace metals. Analytical Chemistry, 51(7): 844-851.

27.  Chun, Y., Sheng, G., Chiou, C. T. and Xing, B. (2004). Compositions and sorptive properties of crop residue-derived chars. Environmental Science & Technology, 38(17): 4649-4655.

28.  Chen, Y., Yang, H., Wang, X., Zhang, S. and Chen, H. (2012). Biomass-based pyrolytic polygeneration system on cotton stalk pyrolysis: influence of temperature. Bioresource Technology, 107: 411-418.

29.  Li, R., Wang, J. J., Zhou, B., Ali, M. K. A. A., Zhang, Z., Gaston, L. A., Lahori, A. H., Mahar, A. (2016). Enhancing phosphate adsorption by Mg/Al layered double hydroxide functionalized biochar with different Mg/Al ratios. Science of the Total Environment, 559: 121-129.

30.  Li, R., Wang, J. J., Zhou, B., Zhang, Z., Liu, S., Lei, S., Xiao, R. (2017). Simultaneous capture removal of phosphate, ammonium and organic substances by MgO impregnated biochar and its potential use in swine wastewater treatment. Journal of Cleaner Production, 147: 96-107.

31.  Thant Zin, M. M. and Kim, D.-J. (2021). Simultaneous recovery of phosphorus and nitrogen from sewage sludge ash and food wastewater as struvite by Mg-biochar. Journal of Hazardous Materials, 403: 123704.

32.  Xi, J., Li, H., Xi, J., Tan, S., Zheng, J. and Tan, Z. (2020). Preparation of high porosity biochar materials by template method: A review. Environmental Science and Pollution Research, 27(17): 20675-20684.

33.  Chen, Q., Qin, J., Cheng, Z., Huang, L., Sun, P., Chen, L. and Shen, G. (2018). Synthesis of a stable magnesium-impregnated biochar and its reduction of phosphorus leaching from soil. Chemosphere, 199: 402-408.

34.  Gong, Y. P., Ni, Z. Y., Xiong, Z. Z., Cheng, L. H. and Xu, X. H. (2017). Phosphate and ammonium adsorption of the modified biochar based on Phragmites australis after phytoremediation. Environmental Science and Pollution Research, 24(9): 8326-8335.

35.  Cui, L., Pan, G., Li, L., Bian, R., Liu, X., Yan, J., Quan, G., Ding, C., Chen, T., Liu, Y., Liu, Y., Yin, C., Wei, C., Yang, Y. and Hussain, Q. (2016). Continuous immobilization of cadmium and lead in biochar amended contaminated paddy soil: A five-year field experiment. Ecological Engineering, 93: 1-8.

36.  Tang, J., Zhu, W., Kookana, R. and Katayama, A. (2013). Characteristics of biochar and its application in remediation of contaminated soil. Journal of Bioscience and Bioengineering, 116(6): 653-659.

37.  Angın, D. (2013). Effect of pyrolysis temperature and heating rate on biochar obtained from pyrolysis of safflower seed press cake. Bioresource Technology, 128: 593-597 \

38.  Yong, S. K., Bachmann, R. T. and Amin, S. (2020). Oxidised biochar from palm kernel shell for eco-friendly pollution management. Scientific Research Journal, 17(2): 45-60.

39.  Fang, C., Zhang, T., Li, P., Feng, J., R., and Wang, C. (2014). Application of magnesium modified corn biochar for phosphorus removal and recovery from swine wastewater. International Journal of Environmental Research and Public Health, 11(9): 9217-9237.

40.  Huang, Q., Lu, G., Wang, J. and Yu, J. (2011). Thermal decomposition mechanisms of MgCl2·6H2O and MgCl2·H2O. Journal of Analytical and Applied Pyrolysis, 91(1): 159-164.

41.  Bourke, J., Manley-Harris, M., Fushimi, C., Dowaki, K., Nunoura, T., and Antal., M. J. (2007). Do all carbonized charcoals have the same chemical structure? 2. A model of the chemical structure of carbonized charcoal. American Chemical Society, 46(18): 5954-5967.

42.  Munajad, A., Subroto, C. and Suwarno (2018). Fourier transform infrared (FTIR) spectroscopy analysis of transformer paper in mineral oil-paper composite insulation under accelerated thermal aging. Energies, 11(2): 364.

43.  Novais, S. V., Zenero, M. D. O., Tronto, J., Conz, R. F. and Cerri, C. E. P. (2018). Poultry manure and sugarcane straw biochars modified with MgCl2 for phosphorus adsorption. Journal of Environment Management, 214: 36-44.

44.  Jing, H. P., Wang, X., Xia, P. and Zhao, J. (2019). Sustainable utilization of a recovered struvite/diatomite compound for lead immobilization in contaminated soil: Potential, mechanism, efficiency, and risk assessment. Environtal Science Pollution Research, 26(5): 4890-4900.

45.  Chauchan, C. K., Joseph, K. C., Parekh, B. B. and Joshi, M. J. (2008). Growth and characterization of Struvite crystals. Indian Journal of Pure and Applied Physics, 46: 507-512.

46.  Khan, S. A., Khan, S. B., Khan, L. U., Farooq, A., Akhtar, K. and Asiri, A. M. (2019). Fourier transform infrared spectroscopy: Fundamentals and application in functional groups and nanomaterials characterization. Handbook of Materials Characterization. Springer, Cham: pp. 317-344.

47.  Hu, M., Chen, Z., Wang, S., Guo, D., Ma, C., Zhou, Y., Chen, J., Laghari, M., Fazal, S., Xiao, B., Zhang, B. and Ma, S. (2016). Thermogravimetric kinetics of lignocellulosic biomass slow pyrolysis using distributed activation energy model, Fraser–Suzuki deconvolution, and iso-conversional method. Energy Conversion and Management, 118: 1-11.

48.  Zhou, C., Yang, W. and Blasiak, W. (2013). Characteristics of waste printing paper and cardboard in a reactor pyrolyzed by preheated agents. Fuel Processing Technology, 116: 63-71.

49.  Zhang, M., Gao, B., Yao, Y., Xue, Y. and Inyang, M. (2012). Synthesis of porous MgO-biochar nanocomposites for removal of phosphate and nitrate from aqueous solutions. Chemical Engineering Journal, 210: 26-32.

50.  Kim, J. A., Vijayaraghavan, K., Reddy, D. H. K. and Yun, Y.-S. (2018). A phosphorus-enriched biochar fertilizer from bio-fermentation waste: A potential alternative source for phosphorus fertilizers. Journal of Cleaner Production, 196: 163-171.

51.  Haddad, K., Jellali, S., Jeguirim, M., Ben Hassen Trabelsi, A. and Limousy, L. (2018). Investigations on phosphorus recovery from aqueous solutions by biochars derived from magnesium-pretreated cypress sawdust. Journal of Environmental Management, 216: 305-314.

52.  Vijayakumar, G., Tamilarasan, R. and Dharmendirakumar, M. (2012). Adsorption, kinetic, equilibrium and Thermodynamic studies on the removal of basic dye Rhodamine-B from aqueous solution by the use of natural adsorbent perlite. Journal of Material Environmental Science, 3(1): 157-170.

53.  Wang, Z., Shen D., Shen F. and Li, T. (2016). Phosphate adsorption on lanthanum loaded biochar. Chemosphere, 150: 1-7.

54.  Wang, B., Lehmann, J., Hanley, K., Hestrin, R. and Enders, A. (2016). Ammonium retention by oxidized biochars produced at different pyrolysis temperatures and residence times. RSC Advances, 6(48): 41907-41913.

55.  Ho, Y. S. and McKay, G. (2000). The kinetics of sorption of divalent metal ions onto sphagnum moss peat. Water Research, 34(3): 735-742.

56.  Shen, Z., Zhang, Y., Jin, F., McMillan, O. and Al-Tabbaa, A. (2017). Qualitative and quantitative characterisation of adsorption mechanisms of lead on four biochars. Science of The Total Environment, 609: 1401-1410.

57.  Xue, Y., Gao, B., Yao, Y., Inyang, M., Zhang, M., Zimmerman, A. R. and Ro, K. S. (2012). Hydrogen peroxide modification enhances the ability of biochar (hydrochar) produced from hydrothermal carbonization of peanut hull to remove aqueous heavy metals- Batch and column tests. Chemical Engineering Journal, 200-202: 673-680.

58.  Novak, J. M., Lima, I., Xing, B., Gaskin, J. W., Steiner, C., Das, K. C., Ahmedna, M., Rehrah, D., Watts, D. W., Busscher, W. J. and Schomberg, H. (2009). Characterization of designer biochar produced at different temperatures and their effects on a loamy sand. Annals of Environmental Science, 3: 195-206.

59.  Wang, H., Wang, X., Li, J., Jing, H., Xia, S., Liu, F. and Zhao, J. (2018). Comparison of palygorskite and struvite supported palygorskite derived from phosphate recovery in wastewater for in-situ immobilization of Cu, Pb and Cd in contaminated soil. Journal of Hazardous Material, 346: 273-284.

60.  Miretzky, P. and Fernandez-Cirelli, A. (2008). Phosphates for Pb immobilization in soils: a review. Environmental Chemistry Letters, 6(3): 121-133.

61.  Mohd Idrus, N. F. M., Jamion, N. A., Omar, Q., Sheikh Md Ghazali, S. A. I., Abdul Majid, Z. A. and Yong, S. K. (2018). Magnesium-impregnated biochar for the removal of total phosphorous from artificial human urine. International Journal of Engineering & Technology, 7(11): 218-222.