Malaysian Journal of Analytical
Sciences, Vol 27
No 2 (2023): 368 - 385
Recovery of Phosphate from Artificial Human Urine
Using Magnesium-modified Biochar FOR IMMOBILIZATION OF
LEAD IN SOIL
(Pemulihan Fosfat daripada Urin
Manusia Tiruan Menggunakan Biochar yang diubah suai Magnesium Untuk Imobilisasi
Plumbum dalam Tanah)
Soon Kong Yong 1* Nurul Fariha Mohd Idrus1,
Nur Qursyna Boll Kassim2,
Azwan Mat Lazim3, and Robert Thomas Bachmann4
1Soil Assessment and Remediation
Research Group,
Faculty of
Applied Sciences,
Universiti
Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia
2Soil Conservation and Management
Research Group,
Faculty of
Plantation and Agrotechnology,
Universiti
Teknologi MARA , 40450 Shah Alam, Selangor, Malaysia
3Faculty of Science and Technology,
Universiti
Kebangsaan Malaysia , 43600 Bangi, Selangor, Malaysia
4Green Chemistry & Sustainable
Engineering Technology Cluster,
Section of
Environmental and Polymer Engineering Technology,
Malaysian
Institute of Chemical and Bioengineering Technology,
Universiti
Kuala Lumpur, 78000 Alor Gajah, Malacca, Malaysia
*Corresponding author: yongsk@uitm.edu.my
Received:
22 September 2022; Accepted: 27 February 2023; Published: 19 April 2023
Abstract
Magnesium-modified biochar
(MB) is used to recover phosphate (PO43-) from urine by
struvite precipitation. Pyrolysis of sawdust (SD) at 700°C and subsequent impregnation with MgO2
produced MB. Virgin and spent MB were characterized for proximate analysis,
surface morphology, elemental composition, specific surface area, and
functional groups using thermogravimetric analysis (TGA), scanning electron
micrography (SEM), energy dispersive X-ray (EDX) analysis, surface area
analysis, and Fourier transform infrared (FTIR) spectroscopy, respectively. The
batch sorption experiments were conducted on MB using artificial human urine
(AHU), where residual PO43- was quantified by
colorimetry. Sorption data were analyzed using various isotherm (i.e., Langmuir
and Freundlich) and kinetic models (i.e., pseudo-first and pseudo-second-order)
for elucidation of sorptive potential and mechanism.
Pyrolysis of SD produced porous sawdust biochar (SB) with a high surface area.
However, modification with MgO2 decreased the surface area of MB,
possibly due to the loss of micropores from oxidation and deposition of
struvite as confirmed by SEM-EDX analysis. FTIR analysis showed that polar
functional groups such as carboxylate (1641 cm-1), phenolate (1300
cm-1), and amide (1674 cm-1) were mainly involved in the
Mg2+ and PO43- adsorption. The PO43-sorption
capacity for MB was 8967 mg/g at a sorbent/solution ratio of 0.1 g/L after 120
min of contact time. Sorption of PO43- occurred on a
heterogeneous MB surface with a possible multilayer adsorption mechanism. The
kinetic study suggested that the sorption of PO43- by MB
was a chemisorption process. The presence of Mg in MB aided the formation of
struvite in MB and enhanced the recovery of PO43- from
AHU. Spent MB exhibited higher ability in immobilizing soil Pb compared to ground
magnesium limestone (GML) at a similar application rate (5% w/w). Spend MB can
be recovered as fertilizer or immobilizing heavy metals such as lead in soil.
Keywords: oxidized biochar, magnesium peroxide, struvite,
phosphate recovery, human urine
Abstrak
Biochar yang diubah suai dengan magnesium (MB) digunakan
untuk memulihkan fosfat (PO43-) daripada air kencing
melalui pemendakan struvite. Pirolisis habuk papan (SD) pada 700°C dan
impregnasi seterusnya dengan MgO2 menghasilkan MB. Kedua-dua MB
mentah dan terpakai dicirikan pada analisis proksimat, morfologi permukaan,
komposisi unsur, luas permukaan spesifik dan kumpulan berfungsi telah
dijalankan menggunakan penganalisis termogravimetrik (TGA), pengimbasan
mikrografi elektron (SEM), analisis sinar-X penyebaran tenaga (EDX),
penganalisis luas permukaan, dan spektroskopi Inframerah transformasi Fourier
(FTIR), masing-masing. Eksperimen jerapan telah dijalankan pada MB menggunakan
air kencing manusia tiruan (AHU), di mana sisa PO43-
ditentukan dengan teknik kolorimetri. Data jerapan dianalisis menggunakan
pelbagai model isoterma (iaitu, Langmuir and Freundlich) dan kinetik (iaitu,
pseudo-tertib-pertama and pseudo-tertib-kedua) untuk penjelasan potensi dan
mekanisme jerapan. Pirolisis SD menghasilkan biochar (SB) berliang dengan luas
permukaan yang tinggi. Walau bagaimanapun, pengubahsuaian dengan MgO2
mengurangkan luas permukaan MB, mungkin disebabkan oleh kehilangan mikropori
daripada pengoksidaan dan pemendapan struvite seperti yang disahkan oleh
analisis SEM-EDX. Analisis FTIR menunjukkan kehadiran kumpulan berfungsi polar
seperti karboksilat (1641 cm-1), fenolat (1300 cm-1), dan
amida (1674 cm-1) terlibat terutamanya dalam penjerapan Mg2+
dan PO43-. Kapasiti penyerapan PO43-
untuk MB ialah 8967 mg/g pada nisbah sorben/larutan 0.1g/L selepas 120 minit
masa sentuhan. Penyerapan PO43- berkemungkinan berlaku
pada permukaan MB heterogen dengan mekanisme penjerapan berbilang lapisan.
Kajian kinetik menunjukan bahawa proses penjerapan PO43-
oleh MB adalah melalui proses kimia. Kehadiran Mg dalam MB membantu pemendakan
struvite dalam MB, dan meningkatkan prestasi pemulihan PO43-
daripada AHU. MB terpakai lebih cekap dalam imobilisasi plumbum di dalam tanah
berbanding dengan batu kapur magnesium terkisar (GML) pada kadar penggunaan
yang sama (5 % w/w). MB terpakai boleh dikitar semula sebagai baja atau merawat
tanah yang tercemar dengan logam berat seperti plumbum.
Kata kunci: biochar teroksida, magnesium peroksida, struvite, pengambilan
semula fosfat, urin manusia
References
1. Mackey,
K. R. M. and Paytan, A. (2009). Phosphorus
cycle. Encyclopedia of Microbiology, Academic Press, Cambridge,
Massachusetts, USA: pp 322-334.
2. Department
of Environment Malaysia (2009). Environmental Quality (Industrial Effluent)
Regulations, Ministry of Science, Technology and Environment, Kuala Lumpur.
3. Sedlak,
R. (2018). Phosphorus and nitrogen
removal from municipal wastewater: principles and practice. Routledge,
New York, USA: pp 1-256.
4. Rittmann,
B. E., Mayer, B., Westerhoff, P. and Edwards, M. (2011). Capturing the lost
phosphorus. Chemosphere, 84(6):
846-853.
5. Sakulpaisan,
S., Vongsetskul, T., Reamouppaturm, S., Luangkachao, J., Tantirungrotechai, J.
and Tangboriboonrat, P. (2016). Titania-functionalized graphene oxide for an
efficient adsorptive removal of phosphate ions. Journal of Environmental Management, 167: 99-104.
6. Yin,
H., Kong, M. and Fan, C. (2013). Batch investigations on P immobilization from
wastewaters and sediment using natural calcium rich sepiolite as a reactive
material. Water Research, 47(13):
4247-4258.
7. Sohi,
S. P. (2012). Carbon storage with benefits. Science,
338(6110): 1034-1035.
8. Ghorbani-Khosrowshahi,
S. and Behnajady, M. (2016). Chromium(VI) adsorption from aqueous solution by
prepared biochar from Onopordom heteracanthom. International Journal of Environmental Science and Technology, 13:
1803-1814.
9. Tan,
Z., Lin, C., Ji, X. and Rainey, T. (2017). Returning biochar to fields: A
review. Applied Soil Ecology, 116:
1-11.
10. He,
Y., Zhou, X., Jiang, L., Li, M., Du, Z., Zhou, G., Shao, J., Wang, X., Xu, Z.,
Hosseini Bai, S., Wallace, H. and Xu, C. (2017). Effects of biochar application
on soil greenhouse gas fluxes: a meta-analysis. GCB Bioenergy, 9(4): 743-755.
11. Ab
Malek, N. A., Ibrahim, M. L. and Yong, S. K. (2020). Composite biochar derived
from palm kernel shells and blood cockle shells for immobilizing lead in
shooting range soil. Malaysian Journal of Chemistry, 22(2): 89-97.
12. Almanassra,
I. W., McKay, G., Kochkodan, V., Ali Atieh, M. and Al-Ansari, T. (2021). A
state of the art review on phosphate removal from water by biochars. Chemical Engineering Journal, 409:
128211.
13. Alling,
V., Hale, S. E., Martinsen, V., Mulder, J., Smebye, A., Breedveld, G. D. and
Cornelissen, G. (2014). The role of biochar in retaining nutrients in amended
tropical soils. Journal of Plant
Nutrition and Soil Science, 177(5): 671-680.
14. Qiu,
M., Liu, L., Ling, Q., Cai, Y., Yu, S., Wang, S., Fu, D., Hu, B. and Wang, X.
(2022). Biochar for the removal of contaminants from soil and water: a review. Biochar, 4(19): 1-25.
15. Xu,
K., Zhang, C., Dou, X., Ma, W. and Wang, C. (2019). Optimizing the modification
of wood waste biochar via metal oxides to remove and recover phosphate from
human urine. Environmental Geochemistry
and Health, 41(4): 1767-1776.
16. Shih,
K. and Yan, H. (2016) Chapter 26 - The crystallization of struvite and its
analog (K-Struvite) from waste streams for nutrient recycling. environmental
materials and waste. Academic Press, Cambridge, Massachusetts, USA: pp.
665-686.
17. Kloss,
S., Zehetner, F., Dellantonio, A., Hamid, R., Ottner, F., Liedtke, V.,
Schwanninger, M., Gerzabek, M. H. and Soja, G. (2012). Characterization of slow
pyrolysis biochars: Effects of feedstocks and pyrolysis temperature on biochar
properties. Journal of Environmental
Quality, 41(4): 990-1000.
18. Bakshi,
S., Banik, C. and Laird, D. A. (2020). Estimating the organic oxygen content of
biochar. Scientific Reports, 10(1):
13082.
19. Jung,
K. W., Hwang, M. J., Ahn, K. H. and Ok, Y. S. (2015). Kinetic study on
phosphate removal from aqueous solution by biochar derived from peanut shell as
renewable adsorptive media. International
Journal of Environmental Science and Technology, 12(10): 3363-3372.
20. Fidel,
R. B., Laird, D. A., Thompson, M. L. and Lawrinenko, M. (2017).
Characterization and quantification of biochar alkalinity. Chemosphere, 167: 367-373.
21. Tan,
Z., Qiu, J., Zeng, H., Liu, H. and Xiang, J. (2011). Removal of elemental
mercury by bamboo charcoal impregnated with H2O2. Fuel, 90(4): 1471-1475.
22. Yong,
S. K., Mohd Zin, S. N. and Mad Ariff, M. J. (2016). Effects of rain pH, soil
organic matter, cation exchange capacity and total lead content in shooting
range soil on the concentration of lead in leachate. Malaysian Journal of
Analytical Sciences, 20(5): 1066-1072.
23. Chutipongtanate,
S. and Thongboonkerd, V. (2010). Systematic comparisons of artificial urine
formulas for in vitro cellular study. Analytical
Biochemistry, 402(1): 110-112.
24. Iqbal,
H., Garcia-Perez, M. and Flury, M. (2015). Effect of biochar on leaching of
organic carbon, nitrogen, and phosphorus from compost in bioretention systems. Science of The Total Environment,
521-522: 37-45.
25. Varikoden,
H., Samah, A. A. and Babu, C. A. (2010). Spatial and temporal characteristics
of rain intensity in the peninsular Malaysia using TRMM rain rate. Journal of Hydrology, 387(3-4): 312-319.
26. Tessier,
A., Campbell, P. G. C. and Bisson, M. (1979). Sequential extraction procedure
for the speciation of particulate trace metals. Analytical Chemistry, 51(7): 844-851.
27. Chun,
Y., Sheng, G., Chiou, C. T. and Xing, B. (2004). Compositions and sorptive
properties of crop residue-derived chars. Environmental
Science & Technology, 38(17): 4649-4655.
28. Chen,
Y., Yang, H., Wang, X., Zhang, S. and Chen, H. (2012). Biomass-based pyrolytic
polygeneration system on cotton stalk pyrolysis: influence of temperature. Bioresource Technology, 107: 411-418.
29. Li,
R., Wang, J. J., Zhou, B., Ali, M. K. A. A., Zhang, Z., Gaston, L. A., Lahori,
A. H., Mahar, A. (2016). Enhancing phosphate adsorption by Mg/Al layered double
hydroxide functionalized biochar with different Mg/Al ratios. Science of the Total Environment, 559:
121-129.
30. Li,
R., Wang, J. J., Zhou, B., Zhang, Z., Liu, S., Lei, S., Xiao, R. (2017).
Simultaneous capture removal of phosphate, ammonium and organic substances by
MgO impregnated biochar and its potential use in swine wastewater treatment. Journal of Cleaner Production, 147:
96-107.
31. Thant
Zin, M. M. and Kim, D.-J. (2021). Simultaneous recovery of phosphorus and
nitrogen from sewage sludge ash and food wastewater as struvite by Mg-biochar. Journal of Hazardous Materials, 403:
123704.
32. Xi,
J., Li, H., Xi, J., Tan, S., Zheng, J. and Tan, Z. (2020). Preparation of high
porosity biochar materials by template method: A review. Environmental Science and Pollution Research, 27(17): 20675-20684.
33. Chen,
Q., Qin, J., Cheng, Z., Huang, L., Sun, P., Chen, L. and Shen, G. (2018).
Synthesis of a stable magnesium-impregnated biochar and its reduction of
phosphorus leaching from soil. Chemosphere,
199: 402-408.
34. Gong,
Y. P., Ni, Z. Y., Xiong, Z. Z., Cheng, L. H. and Xu, X. H. (2017). Phosphate
and ammonium adsorption of the modified biochar based on Phragmites
australis after phytoremediation. Environmental
Science and Pollution Research, 24(9): 8326-8335.
35. Cui,
L., Pan, G., Li, L., Bian, R., Liu, X., Yan, J., Quan, G., Ding, C., Chen, T.,
Liu, Y., Liu, Y., Yin, C., Wei, C., Yang, Y. and Hussain, Q. (2016). Continuous
immobilization of cadmium and lead in biochar amended contaminated paddy soil:
A five-year field experiment. Ecological
Engineering, 93: 1-8.
36. Tang,
J., Zhu, W., Kookana, R. and Katayama, A. (2013). Characteristics of biochar
and its application in remediation of contaminated soil. Journal of Bioscience and Bioengineering, 116(6): 653-659.
37. Angın,
D. (2013). Effect of pyrolysis temperature and heating rate on biochar obtained
from pyrolysis of safflower seed press cake. Bioresource Technology, 128: 593-597 \
38. Yong,
S. K., Bachmann, R. T. and Amin, S. (2020). Oxidised biochar from palm kernel
shell for eco-friendly pollution management. Scientific Research Journal, 17(2): 45-60.
39. Fang,
C., Zhang, T., Li, P., Feng, J., R., and Wang, C. (2014). Application of
magnesium modified corn biochar for phosphorus removal and recovery from swine
wastewater. International Journal of
Environmental Research and Public Health, 11(9): 9217-9237.
40. Huang,
Q., Lu, G., Wang, J. and Yu, J. (2011). Thermal decomposition mechanisms of
MgCl2·6H2O and MgCl2·H2O. Journal of Analytical and Applied Pyrolysis,
91(1): 159-164.
41. Bourke,
J., Manley-Harris, M., Fushimi, C., Dowaki, K., Nunoura, T., and Antal., M. J.
(2007). Do all carbonized charcoals have the same chemical structure? 2. A
model of the chemical structure of carbonized charcoal. American Chemical Society, 46(18): 5954-5967.
42. Munajad,
A., Subroto, C. and Suwarno (2018). Fourier transform infrared (FTIR)
spectroscopy analysis of transformer paper in mineral oil-paper composite
insulation under accelerated thermal aging. Energies,
11(2): 364.
43. Novais,
S. V., Zenero, M. D. O., Tronto, J., Conz, R. F. and Cerri, C. E. P. (2018).
Poultry manure and sugarcane straw biochars modified with MgCl2 for
phosphorus adsorption. Journal of
Environment Management, 214: 36-44.
44. Jing,
H. P., Wang, X., Xia, P. and Zhao, J. (2019). Sustainable utilization of a
recovered struvite/diatomite compound for lead immobilization in contaminated
soil: Potential, mechanism, efficiency, and risk assessment. Environtal Science Pollution Research,
26(5): 4890-4900.
45. Chauchan,
C. K., Joseph, K. C., Parekh, B. B. and Joshi, M. J. (2008). Growth and
characterization of Struvite crystals. Indian
Journal of Pure and Applied Physics, 46: 507-512.
46. Khan,
S. A., Khan, S. B., Khan, L. U., Farooq, A., Akhtar, K. and Asiri, A. M. (2019).
Fourier transform infrared spectroscopy: Fundamentals and application in
functional groups and nanomaterials characterization. Handbook of Materials
Characterization. Springer, Cham: pp.
317-344.
47. Hu,
M., Chen, Z., Wang, S., Guo, D., Ma, C., Zhou, Y., Chen, J., Laghari, M.,
Fazal, S., Xiao, B., Zhang, B. and Ma, S. (2016). Thermogravimetric kinetics of
lignocellulosic biomass slow pyrolysis using distributed activation energy
model, Fraser–Suzuki deconvolution, and iso-conversional method. Energy Conversion and Management, 118:
1-11.
48. Zhou,
C., Yang, W. and Blasiak, W. (2013). Characteristics of waste printing paper
and cardboard in a reactor pyrolyzed by preheated agents. Fuel Processing Technology, 116: 63-71.
49. Zhang,
M., Gao, B., Yao, Y., Xue, Y. and Inyang, M. (2012). Synthesis of porous
MgO-biochar nanocomposites for removal of phosphate and nitrate from aqueous
solutions. Chemical Engineering Journal,
210: 26-32.
50. Kim,
J. A., Vijayaraghavan, K., Reddy, D. H. K. and Yun, Y.-S. (2018). A
phosphorus-enriched biochar fertilizer from bio-fermentation waste: A potential
alternative source for phosphorus fertilizers. Journal of Cleaner Production, 196: 163-171.
51. Haddad,
K., Jellali, S., Jeguirim, M., Ben Hassen Trabelsi, A. and Limousy, L. (2018).
Investigations on phosphorus recovery from aqueous solutions by biochars
derived from magnesium-pretreated cypress sawdust. Journal of Environmental Management, 216: 305-314.
52. Vijayakumar,
G., Tamilarasan, R. and Dharmendirakumar, M. (2012). Adsorption, kinetic,
equilibrium and Thermodynamic studies on the removal of basic dye Rhodamine-B
from aqueous solution by the use of natural adsorbent perlite. Journal of Material Environmental Science,
3(1): 157-170.
53. Wang,
Z., Shen D., Shen F. and Li, T. (2016). Phosphate adsorption on lanthanum
loaded biochar. Chemosphere, 150:
1-7.
54. Wang,
B., Lehmann, J., Hanley, K., Hestrin, R. and Enders, A. (2016). Ammonium
retention by oxidized biochars produced at different pyrolysis temperatures and
residence times. RSC Advances, 6(48):
41907-41913.
55. Ho,
Y. S. and McKay, G. (2000). The kinetics of sorption of divalent metal ions
onto sphagnum moss peat. Water Research,
34(3): 735-742.
56. Shen,
Z., Zhang, Y., Jin, F., McMillan, O. and Al-Tabbaa, A. (2017). Qualitative and
quantitative characterisation of adsorption mechanisms of lead on four
biochars. Science of The Total
Environment, 609: 1401-1410.
57. Xue,
Y., Gao, B., Yao, Y., Inyang, M., Zhang, M., Zimmerman, A. R. and Ro, K. S.
(2012). Hydrogen peroxide modification enhances the ability of biochar
(hydrochar) produced from hydrothermal carbonization of peanut hull to remove
aqueous heavy metals- Batch and column tests. Chemical Engineering Journal, 200-202: 673-680.
58. Novak,
J. M., Lima, I., Xing, B., Gaskin, J. W., Steiner, C., Das, K. C., Ahmedna, M.,
Rehrah, D., Watts, D. W., Busscher, W. J. and Schomberg, H. (2009).
Characterization of designer biochar produced at different temperatures and
their effects on a loamy sand. Annals of Environmental Science, 3: 195-206.
59. Wang,
H., Wang, X., Li, J., Jing, H., Xia, S., Liu, F. and Zhao, J. (2018).
Comparison of palygorskite and struvite supported palygorskite derived from
phosphate recovery in wastewater for in-situ immobilization of Cu, Pb
and Cd in contaminated soil. Journal of
Hazardous Material, 346: 273-284.
60. Miretzky,
P. and Fernandez-Cirelli, A. (2008). Phosphates for Pb immobilization in soils:
a review. Environmental Chemistry Letters,
6(3): 121-133.
61. Mohd
Idrus, N. F. M., Jamion, N. A., Omar, Q., Sheikh Md Ghazali, S. A. I., Abdul
Majid, Z. A. and Yong, S. K. (2018). Magnesium-impregnated biochar for the
removal of total phosphorous from artificial human urine. International Journal of Engineering & Technology, 7(11):
218-222.