Malaysian Journal of Analytical Sciences, Vol 27 No 2 (2023): 353 - 367

 

MOLECULARLY IMPRINTED POLYMERS FOR DOMOIC ACID DETECTION IN SELECTED SHELLFISH TISSUE

 

(Polimer Tercetak Molekul bagi Pengesanan Domoik Asid

di dalam Tisu Kerangan Terpilih)

 

Fatin Nabilah Muhamad, Hafiza Mohamed Zuki*, Marinah Ariffin, and Azrilawani Ahmad

 

Faculty of Science and Marine Environment,

Universiti Malaysia Terengganu, 21030 Kuala Terengganu, Malaysia

 

*Corresponding author: hafiza@umt.edu.my

 

Received: 22 September 2022; Accepted: 27 February 2023; Published:  19 April 2023

 

 

Abstract

Domoic acid (DA) molecular imprinted polymers (MIP) were successfully synthesized by a bulk polymerization method using 2-hydroxyethyl methacrylate (HEMA) as a functional monomer and ethylene-glycol dimethacrylate (EGDMA) as a cross-linker. Non-imprinted polymers (NIP) were also synthesized using similar procedures, but without the addition of template molecules (DA). The presence of DA templates in MIP and the absence of DA templates in NIP was proven by Fourier-Transform Infrared (FT-IR) Spectroscopy, Brunauer, Emmett, and Teller (BET) method, and Scanning Electron Microscopy (SEM) analysis. All MIP analyses were done using a UV-Vis spectrophotometer. Binding efficiencies of MIP with domoic acid were determined using batch rebinding experiments, where the optimum mass and time obtained were 5 mg and 15 minutes, respectively. The correlation coefficients (R2) of NIP and MIP were 0.8989 and 0.9933, respectively. The calculated limit of detection (LOD) was 1.418 ppm, and the limit of quantification (LOQ) was 4.2983 ppm. An adsorption isotherm experiment indicated that the Freundlich isotherm model yielded a better fit towards the equilibrium adsorption data. The MIP was successfully applied in the determination of DA in shellfish tissues of cockles and mussels, where the percentage recovery obtained for the spiked samples was 95.88% for cockles and 82.71% for mussels. 

 

Keywords: molecularly imprinted polymer, domoic acid, shellfish, binding efficiency, marine neurotoxin

 

Abstrak

Polimer tercetak molekul (MIP) domoik asid (DA) telah berjaya disintesis melalui kaedah pempolimeran pukal menggunakan 2-hidroksietil metakrilat (HEMA) sebagai monomer berfungsi dan etilena-glikol dimetakrilat (EGDMA) sebagai penghubung silang. Polimer tidak tercetak (NIP) juga disintesis melalui kaedah yang sama tetapi tanpa penambahan templat molekul (DA). Kehadiran templat DA didalam MIP dan ketidakhadiran templat DA didalam NIP dibuktikan melalui analisis Fourier-Transform Infrared (FT-IR) Spectroskopi, kaedah Bruneaur, Emmett and Teller (BET) dan mikroskopi pengimejan elektron (SEM). Semua MIP dianalisa menggunakan UV-Vis spektrofotometer. Kecekapan pengikatan MIP dengan domoik asid ditentukan melalui ujikaji pengikatan semula secara berkelompok dimana berat dan masa optima yang diperolehi adalah 5 mg dan 15 minit masing-masing. Pekali korelasi (R2) bagi NIP serta MIP adalah 0.8989 dan 0.9933 masing-masing. Pengiraan had pengesanan (LOD) adalah 1.4148 ppm dan had kuantiti (LOQ) adalah 4.2983 ppm. Ujikaji isoterma penjerapan menunjukkan bahawa model isoterma Freudlich menghasilkan data keseimbangan penjerapan yang lebih sesuai. MIP ini telah berjaya diaplikasikan dalam penentuan DA dalam tisu kerangan iaitu kerang dan kupang dimana nilai peratusan pemulihan yang diperolehi bagi sampel yang dipaku adalah 95.88% bagi kerang dan 82.71% bagi kupang.

 

Kata kunci: molekul polimer tercetak, domoik asid, kerangan, kecekapan pengikatan, neurotoksin marin

 

References

1.       Maeno, Y., Kotaki. Y., Terada. R., Cho. Y., Konoki. K. and Yamashita M.Y. (2018). Six domoic acid related compounds from the red alga, chondria armata, and domoic acid biosynthesis by the diatom, Pseudo-Nitzschia Multiseries. Scientific Reports, 8: 356.

2.       Costa, L. G., Giordano. G. and Faustman. E. M. (2010). Domoic acid as a developmental neurotoxin. Neurotoxicology, 31(5): 409-423.

3.       Pulido, O. M. (2008). Domoic acid toxicologic pathology: A review. Marine Drugs, 6(2): 180-219.

4.       Zaelinski, O., Busch, J. A., Cembella, A. D., Daly, K. I., Engelbrektsson, J., Hannides, A. K. and Schmidt, H. (2009). Detecting marine hazardous substances and organisms: sensors for pollutants, toxins and pathogens. Ocean Science. 5: 329-349.

5.       Costa, P. R., Rosa, R., Duarte-Silva, A., Brotas, V. and Sampayo, M. A. M. (2005). Accumulation, transformation and tissue distribution of domoic acid, the amnesic shellfish poisoning toxin, in the common cuttlefish, sepia officinalis. Aquatic Toxicology, 74: 82-91.

6.       Ayache, N., Fabienne. H., Veronique. M-J., Amzil. Z. and Amandine. M. N. C. (2019). Influence of sudden salinity variation on the physiology and domoic acid production by two strains of pseudo-nitschia australis. Journal of Phycology, 55(1): 186-195.

7.       Kreuzer, M. P., Pravda, M., O’Sullivan, C. K. and Guilbault, G. G. (2002). Novel electrochemical immunosensors for seafood toxin analysis. Toxicon, 40: 1267-1274.

8.       Hortigüela, M. J. and Wall, J. G. (2013). Improved detection of domoic acid using covalently immobilised antibody fragments. Marine Drugs, 11: 881-895.

9.       Mohd Syaifudin, A. R., Jayasundera, K. P. and Mukhopadhyay, S. C. (2009). A low-cost novel sensing system for detection of dangerous marine biotoxins in seafood. Sensors and Actuators B, 137: 67-65.

10.    Mohd Syaifudin, A. R., Jayasudera, K. P. and Mukhopadhyay, S.C. (2008). Initial investigation of using planar interdigital sensors for assessment of quality in seafood. Journal of Sensors, 2008: 1-9.

11.    Busse, L. B., Venrick, E. L.,  Antrobus , R., Miller, P. E., Vigilant, V., Silver, M. W., Mengelt, C. and Mydlarz, L. and Prezelin, B. B. (2006). Domoic acid in phytoplankton and fish in San Diego, CA, USA. Harmful Algae, 5 (2006): 91-101.

12.    Bates, S. S., Hubbard, K. A., Lundholm, N., Montresor, M. and Leaw, P. C. (2018). Pseudo-nitzschia, Nitzschia, and domoic acid: New research since 2011. Harmful Algae, 79:43.

13.    Tan, S. N., Teng, S. T., Lim, H. C., Kotakid, Y., Bates, S. S., Leaw, C. P. and Lima, P. T. (2016). Diatom Nitzschia Navis-Varingica (Bacillariophyceae) and its domoic acid production from the mangrove environments of Malaysia. Harmful Algae, 60: 139-149.

14.    Teng, S. T., Abdullah, N., Hanifah, A. H., Tan, S. N., Gao, C., Law, I. K., Leaw, C. P and Lim, P. T. (2021). Toxic bloom of Pseudo-nitzschia cuspidata (Bacillariophyceae) and domoic acid contamination of bivalve molluscs in Malaysia Borneo. Toxicon, 202: 132-141.

15.    Mitcheli, L., Radoi, A., Guarrina, R., Massaud, R., Bala, C., Moscone, D. and Palleschi, G. (2004). Disposable immunosensor for the determination of domoic acid in shellfish. Biosensors and Bioelectronics. 20: 190-196.

16.    Barbaro, E., Zangrando, R., Barbante, C and Gambaro, A. (2016). Fast and sensitive method for determination of domoic acid in mussel tissue. The Scientific World Journal, 2016: 1-6.

17.    Tom, L. A., Schneck, N. A. and Walter, C. (2012). Improving the imprinting effect by optimizing template:monomer:cross-linker ratios in a molecularly imprinted polymer for sulfadimethoxine. Journal of Chromatography B, 909(2012):61-64

18.    Haupt. K., Rangel. P. X. M. and Bui. B. T. S. (2020). Molecularly imprinted polymers: antibody mimics for bioimaging and therapy. Chemical Reviews, 120(17): 9554-9582.

19.    Lopes, F., Pacheco, J. G., Rebelo, P. and Cristina, D. M. (2017). Molecularly imprinted electrochemical sensor prepared on a screen-printed carbon electrode for naloxone detection. Sensors and Actuators B: Chemical, 243 (2017): 745-752.

20.    Ashley. J., Mohammad-Ali. S., Kant. K., Chidambara. V. A., Wolff. A., Bang. D. D, and Sun. Y. (2017). Molecularly imprinted polymers for sample preparation and biosensing in food analysis: progress and perspectives. Biosensors and Bioelectronics, 91(2017): 606-615.

21.    Beltran, A., Borrull, F., Marcé, R. M. and Cormack, P. A. G. (2010). Molecularly-imprinted polymers: useful sorbents for selective extractions. TrAC Trends in Analytical Chemistry, 29(11): 1363-1375.

22.     Zhou, W. H., Guo, X. C., Zhao, H. Q., Wua, S. X., Yang, H. H. and Wang, X. R. (2011). Molecularly imprinted polymer for selective extraction of domoic acid from seafood coupled with high-performance liquid chromatographic determination. Talanta, 84(3):777-782.

23.    Nemoto, K., Kubo, T., Nomachi, M., Sano, T., Matsumoto, T., Hosoya, K., Hattori, T. and Kaya, K. (2007). Simple and effective 3D recognition of domoic acid using a molecularly imprinted polymer. Journal American Chemical Society, 129(44): 13626-13632.

24.    Royani, I., Widayani., Abdullah, M. and Khairurrijal. (2014). Effect of heating time on atrazine-based MIP materials synthesized via the cooling-heating method. Advanced Materials Research, 896(2014): 89-94.

25.    Royani, I., Widayani., Abdullah, M. and Khairurrijal. (2014). An atrazine molecularly imprinted polymer synthesized using a cooling-heating method with repeated washing: its physico-chemical characteristics and enhanced cavities. International Journal Electrochemical Sciences, 9: 5651-5662.

26.    Kintopp, C. C. A., Furuse, A. Y., Costa, R. M., Lucena, F. S., Correr, G.M. and Gonzaga, C. C. (2020). Influence of acidic monomer concentration and application mode on the bond strength of experimental adhesives. Brazilian Oral Research, 2020(34):105.

27.    Ceolin, G., Navarro- Villoslada F., Moreno-Bondi, MC., Horvai, G. and Horvath., V. (2009). Accelerated development procedure for molecularly imprinted polymer using membrane filterplates. Journal of Combinatorial Chemistry, 11(4): 645-652.

28.    Hasanah, A. N., Safitri, N., Zulfa, A., Neli, N. and Rahayu. D. (2021). Factors affecting preparation of molecularly imprinted polymer and methods on finding template-monomer interaction as the key of selective properties of the materials. Molecules, 26: 5612.

29.    Cormack, P. A. G. and Elorza, AZ. (2004). Molecularly imprinted polymers: synthesis and characterization. Journal of Chromatography B, 804: 174-178.

30.    Zhao, G., Liu, J., Liu, M., Xiaobin Han, X., Peng, Y., Xiatian Tian, X., Liu., J. and Zhang., S. (2020). Synthesis of molecularly imprinted polymer via emulsion polymerization for application in solanesol separation. Applied Sciences, 2020(10): 2868.

31.    Mayes, A. G. and Whitcombe, M. J. (2005). Synthetic strategies for the generation of molecularly imprinted organic polymers. Advanced Drug Delivery Reviews, 57(12): 1742-1778.

32.    Yang, F., Wang, R., Na, G., Yan, Q., Lin, Z. and Zhang, Z. (2018). Preparation and application of a molecularly imprinted monolith for specific recognition of domoic acid. Analytical and Bioanalytical Chemistry 410: 1845-1854.

33.    Marinah, M. A., Yatim, N. I. and Tahir, N. M. (2015). Selective surface characteristics and extraction performance of a nitro-group explosive molecularly imprinted polymer. Malaysian Journal of Analytical Sciences, 19(3): 574-585.

34.    Zeng, Y., Fan, C., Do, D. D. and Nicholson, D. (2014). Evaporation from an ink-bottle pore: mechanisms of adsorption and desorption. Industrial Engineering Chemical Research, 2014(53): 15467-15474.

35.    Lorenzo, R. A. (2011). To remove or not to remove? the challenge of extracting the template to make the cavities available in molecularly imprinted polymers (MIPs). Journal Molecular Sciences, 12(7): 4327-4347.

36.    Hasanah, A. N., Safitri, N., Zulfa, A., Neli, N. and Rahayu. D. (2021). Factors affecting preparation of molecularly imprinted polymer and methods on finding template-monomer interaction as the key of selective properties of the materials. Molecules, 26: 5612.

37.    Anene, A., Kalfat, R., Chevalier, Y. and Hbaieb, S. (2020). Design of molecularly imprinted polymeric materials: The crucial choice of functional monomers. HAL Open Science, 2020(3): 769-781.

38.    Limousin, G., Gaudet, J. –P., Charlet, L., Szenknect, S., Barthes, V. and Krimissa, M. (2006). Sorption isotherms: a review on physical bases, modeling and measurement. Applied Geochemistry, 22(2): 249-275.

39.    Kundu, S. and Gupta, A. K. (2006). Arsenic adsorption onto iron oxide-coated cement (IOCC): Regression analysis of equilibrium data with several isotherm models and their optimization. Chemical Engineering Journal, 122(1-2): 93-106.

40.    Foo, K. Y. and Hameed, B. H. (2010). Insights into the modeling of adsorption isotherm systems Chemical Engineering Journal, 156: 2-10.

41.    Ayawei, N. (2017). Modelling and interpretation of adsorption isotherms. Hindawi Journal of Chemistry, 2017:1-17.

42.    Hande, P. E., Samui, A. B. and Kulkarni, P.S. (2015). A molecularly imprinted polymer with flash column chromatography for the selective and continuous extraction of diphenyl amine. RSC Advances, 5: 73434.

43.    Bartlett, J. W. and Frost, C. (2008). Reliability, repeatability and reproducibility: analysis of measurement errors in continuous variables. Ultrasound in Obstetrics and Gynecology, 31(4): 466-475.