Malaysian Journal of Analytical
Sciences, Vol 27
No 2 (2023): 353 - 367
MOLECULARLY IMPRINTED POLYMERS FOR DOMOIC ACID
DETECTION IN SELECTED SHELLFISH TISSUE
(Polimer
Tercetak Molekul bagi Pengesanan Domoik Asid
di dalam
Tisu Kerangan Terpilih)
Fatin Nabilah
Muhamad, Hafiza Mohamed Zuki*, Marinah Ariffin, and Azrilawani Ahmad
Faculty of Science and Marine Environment,
Universiti Malaysia Terengganu, 21030 Kuala Terengganu,
Malaysia
*Corresponding author: hafiza@umt.edu.my
Received:
22 September 2022; Accepted: 27 February 2023; Published: 19 April 2023
Abstract
Domoic acid (DA) molecular imprinted polymers (MIP) were
successfully synthesized by a bulk polymerization method using 2-hydroxyethyl
methacrylate (HEMA) as a functional monomer and ethylene-glycol dimethacrylate (EGDMA) as a cross-linker. Non-imprinted polymers
(NIP) were also synthesized using similar procedures, but without the addition
of template molecules (DA). The presence of DA templates in MIP and the absence
of DA templates in NIP was proven by Fourier-Transform Infrared (FT-IR)
Spectroscopy, Brunauer, Emmett, and Teller (BET)
method, and Scanning Electron Microscopy (SEM) analysis. All MIP analyses were
done using a UV-Vis spectrophotometer. Binding efficiencies of MIP with domoic
acid were determined using batch rebinding experiments, where the optimum mass
and time obtained were 5 mg and 15 minutes, respectively. The correlation
coefficients (R2) of NIP and MIP were 0.8989 and 0.9933,
respectively. The calculated limit of detection (LOD) was 1.418 ppm, and the
limit of quantification (LOQ) was 4.2983 ppm. An adsorption isotherm experiment
indicated that the Freundlich isotherm model yielded a better fit towards the
equilibrium adsorption data. The MIP was successfully applied in the
determination of DA in shellfish tissues of cockles and mussels, where the
percentage recovery obtained for the spiked samples was 95.88% for cockles and
82.71% for mussels.
Keywords: molecularly
imprinted polymer, domoic acid, shellfish, binding efficiency, marine
neurotoxin
Abstrak
Polimer tercetak
molekul (MIP) domoik asid (DA) telah berjaya disintesis melalui kaedah
pempolimeran pukal menggunakan 2-hidroksietil metakrilat (HEMA) sebagai monomer
berfungsi dan etilena-glikol dimetakrilat (EGDMA) sebagai penghubung silang.
Polimer tidak tercetak (NIP) juga disintesis melalui kaedah yang sama tetapi
tanpa penambahan templat molekul (DA). Kehadiran templat DA didalam MIP dan
ketidakhadiran templat DA didalam NIP dibuktikan melalui analisis Fourier-Transform Infrared (FT-IR) Spectroskopi, kaedah
Bruneaur, Emmett and Teller (BET) dan mikroskopi pengimejan elektron (SEM).
Semua MIP dianalisa menggunakan UV-Vis spektrofotometer. Kecekapan pengikatan
MIP dengan domoik asid ditentukan melalui ujikaji pengikatan semula secara
berkelompok dimana berat dan masa optima yang diperolehi adalah 5 mg dan 15
minit masing-masing. Pekali korelasi (R2) bagi NIP serta MIP adalah
0.8989 dan 0.9933 masing-masing. Pengiraan had pengesanan (LOD) adalah 1.4148
ppm dan had kuantiti (LOQ) adalah 4.2983 ppm. Ujikaji isoterma penjerapan
menunjukkan bahawa model isoterma Freudlich menghasilkan data keseimbangan
penjerapan yang lebih sesuai. MIP ini telah berjaya diaplikasikan dalam
penentuan DA dalam tisu kerangan iaitu kerang dan kupang dimana nilai peratusan
pemulihan yang diperolehi bagi sampel yang dipaku adalah 95.88% bagi kerang dan
82.71% bagi kupang.
Kata kunci: molekul polimer tercetak, domoik asid, kerangan, kecekapan
pengikatan, neurotoksin marin
References
1.
Maeno, Y., Kotaki. Y.,
Terada. R.,
Cho. Y., Konoki. K. and Yamashita M.Y. (2018). Six domoic acid related
compounds from the red alga, chondria armata, and domoic acid biosynthesis by the diatom, Pseudo-Nitzschia Multiseries. Scientific Reports, 8: 356.
2.
Costa, L.
G., Giordano. G. and Faustman. E. M. (2010). Domoic
acid as a developmental neurotoxin. Neurotoxicology,
31(5): 409-423.
3.
Pulido, O.
M. (2008). Domoic acid toxicologic pathology:
A review. Marine Drugs, 6(2):
180-219.
4.
Zaelinski, O.,
Busch, J. A., Cembella, A. D., Daly, K. I., Engelbrektsson, J., Hannides, A.
K. and Schmidt, H. (2009). Detecting marine hazardous substances and organisms:
sensors for pollutants, toxins and pathogens. Ocean Science. 5: 329-349.
5.
Costa, P.
R., Rosa, R., Duarte-Silva, A., Brotas, V. and Sampayo, M. A. M. (2005). Accumulation, transformation and
tissue distribution of domoic acid, the amnesic shellfish poisoning toxin, in
the common cuttlefish, sepia officinalis. Aquatic
Toxicology, 74: 82-91.
6.
Ayache, N., Fabienne. H., Veronique. M-J., Amzil. Z. and Amandine. M. N. C.
(2019). Influence of sudden salinity variation on the physiology and domoic
acid production by two strains of pseudo-nitschia australis. Journal of Phycology, 55(1): 186-195.
7.
Kreuzer, M.
P., Pravda, M., O’Sullivan, C. K. and Guilbault, G.
G. (2002). Novel electrochemical immunosensors for seafood toxin analysis. Toxicon, 40:
1267-1274.
8.
Hortigüela, M. J. and
Wall, J. G. (2013). Improved detection of domoic acid using covalently immobilised antibody fragments. Marine Drugs, 11: 881-895.
9.
Mohd Syaifudin, A. R., Jayasundera, K.
P. and Mukhopadhyay, S. C. (2009). A low-cost novel sensing system for
detection of dangerous marine biotoxins in seafood. Sensors and Actuators B, 137: 67-65.
10.
Mohd Syaifudin, A. R., Jayasudera, K.
P. and Mukhopadhyay, S.C. (2008). Initial investigation of using planar
interdigital sensors for assessment of quality in seafood. Journal of Sensors, 2008: 1-9.
11.
Busse, L. B., Venrick, E. L., Antrobus ,
R., Miller, P. E., Vigilant, V., Silver, M. W., Mengelt,
C. and Mydlarz, L. and Prezelin,
B. B. (2006). Domoic acid in phytoplankton and fish in San Diego, CA, USA. Harmful Algae, 5 (2006): 91-101.
12.
Bates, S.
S., Hubbard, K. A., Lundholm, N., Montresor, M. and Leaw, P. C. (2018). Pseudo-nitzschia, Nitzschia, and domoic acid: New
research since 2011. Harmful Algae,
79:43.
13.
Tan, S. N.,
Teng, S. T., Lim, H. C., Kotakid, Y., Bates, S. S., Leaw, C. P. and Lima, P. T. (2016). Diatom Nitzschia Navis-Varingica
(Bacillariophyceae) and its domoic acid production from the mangrove
environments of Malaysia. Harmful Algae,
60: 139-149.
14.
Teng, S.
T., Abdullah, N., Hanifah, A. H., Tan, S. N., Gao,
C., Law, I. K., Leaw, C. P and Lim, P. T. (2021).
Toxic bloom of Pseudo-nitzschia
cuspidata (Bacillariophyceae) and domoic acid contamination
of bivalve molluscs in Malaysia Borneo. Toxicon, 202:
132-141.
15.
Mitcheli, L., Radoi, A., Guarrina, R., Massaud, R., Bala, C., Moscone,
D. and Palleschi, G. (2004). Disposable immunosensor
for the determination of domoic acid in shellfish. Biosensors and Bioelectronics. 20: 190-196.
16.
Barbaro, E., Zangrando, R., Barbante, C and
Gambaro, A. (2016). Fast and sensitive method
for determination of domoic acid in mussel tissue. The Scientific World Journal, 2016: 1-6.
17.
Tom, L. A., Schneck, N. A. and Walter, C.
(2012). Improving the imprinting effect by optimizing template:monomer:cross-linker ratios in a molecularly
imprinted polymer for sulfadimethoxine. Journal of
Chromatography B, 909(2012):61-64
18.
Haupt. K.,
Rangel. P. X. M. and Bui. B. T. S. (2020). Molecularly imprinted polymers:
antibody mimics for bioimaging and therapy. Chemical
Reviews, 120(17): 9554-9582.
19.
Lopes, F., Pacheco, J. G., Rebelo, P. and
Cristina, D. M. (2017). Molecularly imprinted electrochemical sensor prepared
on a screen-printed carbon electrode for naloxone detection. Sensors and Actuators B: Chemical, 243
(2017): 745-752.
20.
Ashley. J., Mohammad-Ali. S., Kant. K., Chidambara.
V. A., Wolff. A., Bang. D. D, and Sun. Y. (2017). Molecularly imprinted polymers
for sample preparation and biosensing in food analysis: progress and
perspectives. Biosensors and
Bioelectronics, 91(2017): 606-615.
21.
Beltran, A., Borrull, F., Marcé, R. M. and
Cormack, P. A. G. (2010). Molecularly-imprinted polymers: useful sorbents for
selective extractions. TrAC Trends in
Analytical Chemistry, 29(11): 1363-1375.
22.
Zhou, W. H., Guo, X. C., Zhao,
H. Q., Wua, S. X., Yang, H. H. and Wang, X. R.
(2011). Molecularly imprinted polymer for selective extraction of domoic acid
from seafood coupled with high-performance liquid chromatographic
determination. Talanta, 84(3):777-782.
23.
Nemoto, K., Kubo,
T., Nomachi, M., Sano, T., Matsumoto, T., Hosoya, K., Hattori, T. and Kaya, K. (2007). Simple and effective 3D
recognition of domoic acid using a molecularly imprinted polymer. Journal American Chemical Society,
129(44): 13626-13632.
24.
Royani, I., Widayani., Abdullah, M. and Khairurrijal.
(2014). Effect of heating time on atrazine-based MIP materials synthesized via
the cooling-heating method. Advanced
Materials Research, 896(2014): 89-94.
25.
Royani, I., Widayani., Abdullah, M. and Khairurrijal.
(2014). An atrazine molecularly imprinted polymer synthesized using a
cooling-heating method with repeated washing: its physico-chemical
characteristics and enhanced cavities. International
Journal Electrochemical Sciences, 9: 5651-5662.
26.
Kintopp, C. C. A.,
Furuse, A. Y., Costa, R. M., Lucena,
F. S., Correr, G.M. and Gonzaga, C. C. (2020).
Influence of acidic monomer concentration and application mode on the bond
strength of experimental adhesives. Brazilian Oral Research, 2020(34):105.
27.
Ceolin, G.,
Navarro- Villoslada F., Moreno-Bondi, MC., Horvai, G. and Horvath., V. (2009). Accelerated development
procedure for molecularly imprinted polymer using membrane filterplates.
Journal of Combinatorial Chemistry,
11(4): 645-652.
28.
Hasanah, A. N., Safitri, N., Zulfa, A., Neli, N. and Rahayu. D. (2021).
Factors affecting preparation of molecularly imprinted polymer and methods on
finding template-monomer interaction as the key of selective properties of the
materials. Molecules, 26: 5612.
29.
Cormack, P.
A. G. and Elorza, AZ. (2004). Molecularly imprinted polymers: synthesis and
characterization. Journal of
Chromatography B, 804: 174-178.
30. Zhao, G., Liu, J., Liu, M., Xiaobin
Han, X., Peng, Y., Xiatian Tian, X., Liu., J. and
Zhang., S. (2020). Synthesis of molecularly imprinted polymer via emulsion
polymerization for application in solanesol
separation. Applied Sciences, 2020(10): 2868.
31.
Mayes, A.
G. and Whitcombe, M. J. (2005). Synthetic strategies for the generation of
molecularly imprinted organic polymers. Advanced
Drug Delivery Reviews, 57(12): 1742-1778.
32.
Yang, F.,
Wang, R., Na, G., Yan, Q., Lin, Z. and Zhang, Z. (2018). Preparation and
application of a molecularly imprinted monolith for specific recognition of
domoic acid. Analytical and Bioanalytical
Chemistry 410: 1845-1854.
33.
Marinah, M. A.,
Yatim, N. I. and Tahir, N. M. (2015). Selective surface characteristics and
extraction performance of a nitro-group explosive molecularly imprinted
polymer. Malaysian Journal of Analytical
Sciences, 19(3): 574-585.
34.
Zeng, Y.,
Fan, C., Do, D. D. and Nicholson, D. (2014). Evaporation from an ink-bottle
pore: mechanisms of adsorption and desorption. Industrial Engineering Chemical Research, 2014(53): 15467-15474.
35.
Lorenzo, R. A. (2011). To remove or not to remove? the challenge of
extracting the template to make the cavities available in molecularly imprinted
polymers (MIPs). Journal Molecular
Sciences, 12(7): 4327-4347.
36.
Hasanah, A. N., Safitri,
N., Zulfa, A., Neli, N. and
Rahayu. D. (2021). Factors affecting preparation of
molecularly imprinted polymer and methods on finding template-monomer
interaction as the key of selective properties of the materials. Molecules, 26: 5612.
37.
Anene, A., Kalfat, R., Chevalier, Y. and Hbaieb,
S. (2020). Design of molecularly imprinted polymeric materials: The crucial
choice of functional monomers. HAL Open
Science, 2020(3): 769-781.
38.
Limousin, G.,
Gaudet, J. –P., Charlet, L., Szenknect,
S., Barthes, V. and Krimissa, M. (2006). Sorption
isotherms: a review on physical bases, modeling and measurement. Applied Geochemistry, 22(2): 249-275.
39.
Kundu, S.
and Gupta, A. K. (2006). Arsenic adsorption onto iron oxide-coated cement
(IOCC): Regression analysis of equilibrium data with several isotherm models
and their optimization. Chemical
Engineering Journal, 122(1-2): 93-106.
40.
Foo, K. Y.
and Hameed, B. H. (2010). Insights into the modeling of adsorption isotherm
systems Chemical Engineering Journal,
156: 2-10.
41.
Ayawei, N.
(2017). Modelling and interpretation of adsorption isotherms. Hindawi Journal of Chemistry, 2017:1-17.
42.
Hande, P. E., Samui, A. B. and
Kulkarni, P.S. (2015). A molecularly imprinted polymer with flash column
chromatography for the selective and continuous extraction of diphenyl amine. RSC Advances, 5: 73434.
43. Bartlett, J. W. and Frost, C. (2008). Reliability, repeatability
and reproducibility: analysis of measurement errors in continuous variables. Ultrasound in Obstetrics and Gynecology, 31(4):
466-475.