Malaysian Journal of Analytical
Sciences, Vol 27
No 2 (2023): 342 - 352
MICROWAVE-ASSISTED AND
CONVENTIONAL SYNTHESIS OF HALOGENATED COUMARIN-AZO DERIVATIVES AND
STRUCTURAL-ACTIVITY RELATIONSHIP STUDY FOR ANTIMICROBIAL POTENTIAL
(Sintesis Berbantukan Gelombang
Mikro dan Konvensional Derivatif Coumarin-Azo Berhalogen dan Kajian Hubungan
Struktur-Aktiviti untuk Potensi Antimikrob)
Nur Arif Mortadza and Zainab
Ngaini*
Faculty of Resource Science and
Technology,
Universiti Malaysia Sarawak, 94300
Kota Samarahan, Sarawak, Malaysia
*Corresponding author: nzainab@unimas.my
Received:
21 September 2022; Accepted: 18 December 2022; Published: 19 April 2023
Abstract
Untreatable bacterial infectious diseases have become a leading cause of
mortality due to the emergence of drug-resistant bacteria. The search for a new
effective pharmaceutical drug can be time-consuming and expensive. Therefore,
structural chemical modification of natural product-based compounds with known
biological properties for potential drug candidates has gained a great interest
among researchers. Microwave-assisted synthesis is quickly becoming the method
of choice in modern organic synthesis for drug discovery due to benefits such
as higher yield and shorter reaction time. In this study, a series of coumarin
derivatives have been synthesized by incorporating halogenated azo moieties in
the molecular network via diazo-coupling, Knoevenagel condensation, and
hydrolysis reactions. Microwave-assisted organic synthesis reaction has
produced overall higher yields of products (74-94 %) in 6-17 mins compared to
the conventional reflux method (56-85 %) in 6-18 h. The structural activity
relationship of all compounds was initially evaluated via in silico
(molecular docking) for potential antimicrobial properties against Escherichia
coli and Staphylococcus aureus. The synthesized compound gave a
higher binding affinity (-6.3 to -8.9 kcal/mol) compared to ampicillin (-6.7 to
-7.3 kcal/mol) and coumarin (-6.0 to -6.2 kcal/mol). In vitro evaluation
(agar well diffusion), nevertheless, gave weak to no bacterial inhibition
activity. This study is significant in searching for potential drug precursors
to benefit mankind.
Keywords: diazo, docking, In
silico, Knoevenagel, microwave
Abstrak
Penyakit berjangkit bakteria yang tidak dirawat disebabkan
oleh kemunculan bakteria kerintangan ubat telah menjadi punca utama kematian.
Proses pencarian ubat farmaseutikal baharu yang efektif boleh mengambil masa
yang lama dan memerlukan kos yang tinggi. Oleh itu, pengubahsuaian struktur
kimia sebatian yang berasaskan produk semula jadi dengan sifat biologi yang
diketahui sebagai calon ubat yang berpotensi telah menarik minat dikalangan
para penyelidik. Kaedah sintesis berbantukan gelombang mikro dengan cepatnya
telah menjadi kaedah pilihan dalam sintesis organik moden untuk pencarian ubat
berpotensi kerana kelebihannya seperti mampu menghasilkan produk yang lebih
tinggi dan mengurangkan masa tindak balas. Dalam kajian ini, siri derivatif
kumarin telah disintesis dengan menggabungkan moieti azo halogen dalam
rangkaian molekul melalui tindak balas gandingan diazo, pemeluwapan
Knoevenagel, dan hidrolisis. Tindak balas sintesis organik berbantukan
gelombang mikro telah berjaya menghasilkan produk keseluruhan yang lebih tinggi
(74-94 %) dalam masa 6-17 minit berbanding kaedah refluks konvensional (56-85
%) yang memerlukan 6-18 jam. Penilaian hubungan aktiviti struktur semua
sebatian untuk potensi aktiviti antimikrob terhadap Escherichia coli dan
Staphylococcus aureus dinilai melalui kaedah in silico (dok molekul).
Sebatian yang disintesis memberikan afiniti pengikatan yang tinggi (-6.3 hingga
-8.9 kcal/mol) berbanding ampicillin (-6.7 hingga -7.3 kcal/mol) dan kumarin
(-6.0 hingga -6.2 kcal/mol). Walaubagaimanapun, penilaian in vitro
(penyebaran perigi agar) menunjukkan tiada aktiviti perencatan tumbuhan
bakteria. Kajian ini penting dalam mencari prekursor ubat yang berpotensi untuk
memberi manfaat kepada manusia.
Kata kunci: diazo, dok, In silico, Knoevenagel, gelombang mikro
References
2.
Hutchings, M., Truman, A., and Wilkinson, B.
(2019). Antibiotics: past, present and future. Current Opinion Microbiology,
51: 72-80.
3.
World Health Organization (2021).
Antimicrobial resistance. https://www.who.int/news-room/fact-sheets/detail/antimicrobial-resistance [Access online 10 August 2022]
4.
Revitt-Mills, S. A. and Robinson, A. (2020).
Antibiotic-induced mutagenesis: Under the microscope. Frontier Microbiology,
11: 1-13.
5.
Davison, E. K. and Brimble, M. A. (2019).
Natural product derived privileged scaffolds in drug discovery. Current
Opinion Chemical Biology, 52: 1-8.
6.
Ngaini, Z. and Mortadza,
N. A. (2019). Synthesis of halogenated azo-aspirin analogues from natural
product derivatives as the potential antibacterial agents. Natural Products
Research, 33(24): 3507-3514.
7.
Yao, H., Liu, J., Xu, S., Zhu, Z. and Xu, J.
(2017). The structural modification of natural products for novel drug
discovery. Expert Opinion Drug Discovery, 12(2): 121-140.
8.
Sharma, N., Sharma, U. K., and Van der Eycken, E. V. (2018). Microwave-assisted organic synthesis:
overview of recent applications. Green Techniques for Organic Synthesis and
Medicinal Chemistry, Second Edition, pp. 441-468.
9.
Farooq, S., Ngaini,
Z., Daud, A. I., and Khairul, W. M. (2021). Microwave
assisted synthesis and antimicrobial activities of carboxylpyrazoline
derivatives: Molecular docking and DFT influence in bioisosteric
replacement. Polycyclic Aromatatic Compound,
42(8): 5422-5435.
10.
Pereira, T. M., Franco, D. P., Vitorio, F., and Kummerle, A. E.
(2018). Coumarin compounds in medicinal chemistry: some important examples from
the last years. Current Topic Medicine Chemistry, 18(2): 124-148.
11.
Annunziata, F., Pinna, C., Dallavalle,
S., Tamborini, L., and Pinto, A. (2020). An overview
of coumarin as a versatile and readily accessible scaffold with broad-ranging
biological activities. International Journal Molecular Sciences, 21(13):
1-83.
12.
Pereira, T. M., Franco, D. P., Vitorio, F. and Kummerle, A. E.
(2018b). Coumarin compounds in medicinal chemistry: some important examples
from the last years. Current Topic Medicine Chemistry, 18(2): 124-148.
13.
Qin, H. L., Zhang, Z. W., Ravindar,
L., and Rakesh, K. P. (2020). Antibacterial activities with the
structure-activity relationship of coumarin derivatives. European Journal
Medicine Chemistry, 207: 1-17.
14.
Akkol, E. K., Genç, Y., Karpuz, B., Sobarzo-Sánchez, E.,
and Capasso, R. (2020). Coumarins and
coumarin-related compounds in pharmacotherapy of cancer. Cancers (Basel),12(7):
1-25.
15.
Detsi, A., Kontogiorgis,
C., and Hadjipavlou-Litina, D. (2017). Coumarin
derivatives: an updated patent review (2015-2016). Expert Opinion Therapy
Patients, 27(11): 1201-1226.
16.
Molnar, M., Lončarić,
M., and Kovač, M. (2020). Green chemistry
approaches to the synthesis of coumarin derivatives. Current Organic
Chemistry, 24(1): 4-43.
17.
Dinparast, L., Hemmati, S., Zengin, G., Alizadeh, A. A., Bahadori,
M. B., Kafil, H. S., and Dastmalchi,
S. (2019). Rapid, efficient, and green synthesis of coumarin derivatives via
Knoevenagel condensation and investigating their biological effects. ChemistrySelect,
4(31): 9211-9215.
18.
Jadhav, N. H., Sakate,
S. S., Rasal, N. K., Shinde, D. R., and Pawar, R. A. (2019). Heterogeneously catalyzed Pechmann condensation employing the tailored
Zn0.925Ti0.075ONPs: Synthesis of coumarin. ACS Omega, 4(5): 8522-8527.
19.
Lončarić, M., Gašo-Sokač,
D., Jokić, S. and Molnar, M. (2020). Recent
advances in the synthesis of coumarin derivatives from different starting
materials. Biomolecules, 10(151): 1-35.
20.
Ngaini, Z., Abd Halim, A. N., Rasin,
F. and Wan Zullkiplee, W. S. H. (2022). Synthesis and
structural-activity relationship studies of mono- and bis-thiourea derivatives
featuring halogenated azo dyes with antibacterial properties. Phosphorus,
Sulfur, and Silicon and the Related Elements, 197(9): 909-917.
21.
Feng, D., Zhang, A., Yang, Y., and Yang, P.
(2020). Coumarin-containing hybrids and their antibacterial activities. Archive
Pharmaceutical, 353(6): 1-12.
22.
Dembitsky, V. M., Gloriozova,
T. A. and Poroikov, V. V. (2017). Pharmacological and
predicted activities of natural azo compounds. Natural Production Bioprospectives, 7(1): 151-169.
23.
Ali, Y., Hamid, S. A., and Rashid, U. (2018).
Biomedical applications of aromatic azo compounds. Mini Review Medicine
Chemistry, 18(18): 1548-1558.
24.
Benkhaya, S., M’rabet, S.
and el Harfi, A. (2020). Classifications, properties,
recent synthesis and applications of azo dyes. Heliyon,
6(1): 1-26.
25.
Prabhakara, C. T., Patil, S. A., Toragalmath,
S. S., Kinnal, S. M. and Badami, P. S. (2016).
Synthesis, characterization and biological approach of metal chelates of some
first-row transition metal ions with halogenated bidentate coumarin Schiff
bases containing N and O donor atoms. Journal Photochemistry Photobiology B,
157: 1-14.
26.
Mortadza, N. A., Ngaini, Z.,
Arif, M. A. M. (2021). Synthesis of silver (I)
coordinated of aspirinate azo ligands as potential
antibacterial agents. Defection Diffusion Forum, 411: 17-24.
27.
Madiahlagan, E., Sunil, B. N., Ngaini
Z., and Hegde, G. (2019). Synthesis, liquid crystalline properties and photo
switching properties of coumarin-azo bearing aliphatic chains: Application in
optical storage devices. Journal Molecular Liquids, 292: 111328.
28.
Trott, O. and Olson, A. J. (2010). AutoDock Vina: improving the speed and accuracy of docking
with a new scoring function, efficient optimization and multithreading. Journal
Computational Chemistry, 31(2): 455-461.
29.
Morris, G. M., Huey, R., Lindstrom, W., Sanner, M. F., Belew, R. K., Goodsell, D. S. and Olson, A. J. (2009). AutoDock4 and
AutoDockTools4: automated docking with selective receptor flexibility. Journal
of Computational Chemistry, 30(16): 2785-2791.
30.
Seo, S., Choi, J., Park, S. and Ahn, J. (2021). Binding affinity prediction for
protein–ligand complex using deep attention mechanism based on intermolecular
interactions. BMC Bioinformatics, 22(1): 542.
31. Johnson, T. W.,
Gallego, R. A., and Edwards, M. P. (2018). Lipophilic efficiency as an
important metric in drug design. Journal Medical Chemistry, 61(15):
6401-6420.
32.
Balouiri, M., Sadiki, M., and Ibnsouda,
S. K. (2016). Methods for in vitro evaluating antimicrobial activity: A
review. Journal Pharmaceutical Analysis, 6(2): 71-79.
33.
Li, X., Wu, B., Chen, H., Nan, K., Jin, Y., Sun, L., and Wang, B. (2018). Recent developments
in smart antibacterial surfaces to inhibit biofilm formation and bacterial
infections. Journal Materials Chemistry B, 6(26): 4274-4292.
34.
Banaszak-Leonard, E., Fayeulle,
A., Franche, A., Sagadevan,
S., and Billamboz, M. (2021). Antimicrobial azo
molecules: A review. Journal of the Iranian Chemical Society, 18(11):
2829-2851.
35.
Antonov, L. (2019). Tautomerism in azo and azomethyne dyes: When and if theory meets experiment. Molecules,
24(12): 2252.
36.
Echeverría, J., Urzúa, A., Sanhueza, L., and Wilkens, M. (2017). Enhanced
antibacterial activity of Ent-labdane derivatives of salvic
acid (7α-hydroxy-8(17)-ent-labden-15-oic acid): effect of lipophilicity
and the hydrogen bonding role in bacterial membrane interaction. Molecules,
22(7): 1039.
37.
Wan Zullkiplee, W.
S. H., Rasin, F., Abd Halim, A. N., Mortadza, N. A., Ramli, N., Hani, N. I., and Ngaini, Z. (2021). Synthesis, biological properties and
comparative molecular docking evaluation studies of 1,3 and 1,4 bis-thiourea
derivatives as potential antimicrobial resistant agents. International
Journal Current Research Review, 13(4): 22-30.
38.
Qin, H. L., Zhang, Z. W., Ravindar,
L., and Rakesh, K. P. (2020). Antibacterial activities with the
structure-activity relationship of coumarin derivatives. European Journal
Medicine Chemistry, 207: 112832.
39.
Wang, S., Konig, G.,
Roth, H. J., Fouche, M., Rodde, S., and Riniker, S. (2021). Effect of flexibility, lipophilicity,
and the location of polar residues on the passive membrane permeability of a
series of cyclic decapeptides. Journal Medicine Chemistry, 64(17): 12761-12773.
40.
Farooq, S., Ngaini,
Z., Mortadza, N. A. (2020). Microwave-assisted
synthesis and molecular docking study of heteroaromatic chalcone derivatives as
potential antibacterial agents. Bull Korean Chem Society, 41(9):
918-924.
41.
Park, K. M., Lee, S. J., Yu, H., Park, J. Y.,
Jung, H. S., Kim, K., Lee, C. J. and Chang, P. S. (2018). Hydrophilic and
lipophilic characteristics of non-fatty acid moieties: significant factors
affecting antibacterial activity of lauric acid esters. Food Science
Biotechnology, 27(2): 401-409.
42.
Johnson, T. W., Gallego, R. A. and Edwards, M.
P. (2018). Lipophilic efficiency as an important metric in drug design. Journal
Medicine Chemistry, 61(15): 6401-6420.