Malaysian Journal of Analytical Sciences, Vol 27 No 2 (2023): 329 - 341

 

APPLICATION OF RESPONSE SURFACE METHODOLOGY ON THE EXTRACTION OF CAFFEINE IN TEA AND COFFEE USING HIGH PERFORMANCE LIQUID CHROMATOGRAPHY TECHNIQUE

 

(Aplikasi Kaedah Gerak Balas Permukaan terhadap Analisis Kafein dalam Teh dan Kopi Menggunakan Teknik Kromatografi Cecair Berprestasi Tinggi)

 

Ibrahim Ali Al-Seade1, Fouad Fadhil Al-Qaim1, Zainab Haider Mussa2, Lubna Raad Al-Ameer3,

and Nurfaizah Abu Tahrim4*

 

1Department of Chemistry,

Faculty of Science for Women, University of Babylon, PO Box 4, Hilla, Iraq

2College of Pharmacy,

University of Al-Ameed, Karbala PO Box 198, Iraq

3College of Pharmacy,

Al-Zahraa University for Women, Karbala, Iraq

4Department of Chemical Sciences,

Faculty of Science and Technology,

Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia

 

*Corresponding author: nfaizah@ukm.edu.my

 

 

Received: 22 September 2022; Accepted: 26 December 2022; Published:  19 April 2023

 

 

Abstract

A rapid and simple extraction method was developed for the analysis of caffeine in tea and coffee using high performance liquid chromatography (HPLC). Independent factors such as extraction method, temperature and residing time were optimized using response surface methodology (RSM) followed by Box-Behnken Design (BBD). All samples were analyzed using HPLC and separated on C18 (150 mm × 4.6 mm, 5μm particle) column. The mobile phases were: (A) water and (B) acetonitrile at the flow rate of 1 mL min-1 under ultraviolet (UV) detection at 273 nm.  Good linearity was obtained in the range of 1–60 mg L-1 (regression coefficient (R2) > 0.995). The limit of quantification (LOQ) and limit of detection (LOD) were 1.0 and 0.4 mg L-1, respectively. Relative standard deviation (RSD) at the range between 3.11 and 11.37 is deemed as highly precise and it is 92% to 98% accurate. Based on the RSM-BDD analysis, extraction of caffeine from tea was directly proportional to temperature, time and method extraction, which exhibited all independent factors of this study were significant. The most optimal condition of caffeine extraction was heat treatment at 100 °C in 16 min and free from any chemical treatment. The highest concentration of caffeine was 366 mg L-1 in Mahmood’s green tea, while it was 334 mg L-1 in Mahmood’s coffee. The proposed method exhibited good results and easier quantification of caffeine in different samples using HPLC, and free from possible interferents.

 

Keywords: caffeine, tea, coffee, Box-Behnken design, high performance liquid chromatography

 

Abstrak

Kaedah pengekstrakan cepat dan mudah telah dibangunkan untuk penganalisaan kafein dalam sampel teh dan kopi dengan menggunakan kromatografi cecair berprestasi tinggi (HPLC). Faktor bebas yang penting seperti kaedah pengekstrakan, suhu dan masa tinggal telah dioptimumkan menggunakan kaedah gerak balas permukaan (RSM) diikuti oleh reka bentuk Kotak-Behnken (BBD). Semua sampel telah dianalisis menggunakan HPLC dan diasingkan pada turus C18 (150 mm × 4.6 mm, 5μm). Fasa gerak alih yamg digunakan ialah (A) air dan (B) asetonitril pada kadar aliran 1 mL min-1 di bawah pengesanan ultra ungu (UV) pada 273 nm. Kelinearan yang baik diperoleh dalam julat 1–60 mg L-1 (pekali regresi (R2) > 0.995). Had kuantifikasi (LOQ) dan had pengesanan (LOD) masing-masing ialah pada 1.0 dan 0.4 mg L-1. Kejituan sisihan piawai relatif (RSD) pada julat antara 3.11 dan 11.37 didapati hampir tepat dan mempunyai ketepatan antara 92% hingga 98%. Berdasarkan analisis RSM-BDD, pengekstrakan kafein daripada teh adalah berkadar terus dengan suhu, masa dan kaedah pengekstrakan yang menunjukkan bahawa semua faktor bebas tersebut adalah signifikan. Keadaan pengekstrakan kafein paling optimum ialah pada suhu 100 °C selama 16 minit dan bebas daripada sebarang rawatan kimia. Kepekatan kafein tertinggi sebanyak 366 mg L-1 diperoleh dalam teh hijau Mahmood manakala 334 mg L-1 dalam kopi Mahmood. Kaedah yang dicadangkan mempamerkan keputusan yang baik dan mudah untuk mengukur kafein dalam sampel yang berbeza menggunakan HPLC.

 

Kata kunci: kafein, teh, kopi, reka bentuk Kotak-Behnken, kromatografi cecair berprestasi tinggi

 

References

1.       Sierakowska, A., Jasiewicz, B. and Pospieszny, T. (2018). mass spectrometry study of new polyamine derivatives of caffeine. Acta Chimica Slovenica, 65(4): 795-800.

2.       Ružić, I., Škerget, M. and Knez, Ž. (2010). Potential of phenolic antioxidants. Acta Chimica Slovenica, 57(2): 263-271.

3.       Crevar, M., Ivkovic, B., Vladimirov, S., Kuntic, V. and Vujic, Z. (2008). Statistical optimization of reverse phase high performance liquid chromatography for the analysis of caffeine paracetamol and its degradation product p-aminophenol. Acta Chimica Slovenica, 55(3): 665-670.

4.       Ali, H. S., Abdullah, A. A., Pınar, P. T., Yardım, Y. and Şentürk, Z. (2017). Simultaneous voltammetric determination of vanillin and caffeine in food products using an anodically pretreated boron-doped diamond electrode: Its comparison with HPLC-DAD. Talanta, 170: 384-391.

5.       Rahim, A. A., Saad, B., Osman, H., Hashim, N., Yahya, S. and Talib, K. M. (2011). Simultaneous determination of diethylene glycol, diethylene glycol monoethyl ether, coumarin and caffeine in food items by gas chromatography. Food Chemistry, 126(3): 1412-1416.

6.       Palo, M., Kogermann. K, Genina, N., Fors, D., Peltonen, J., Heinämäki, J. and Sandler, N. (2016). Quantification of caffeine and loperamide in printed formulations by infrared spectroscopy. Journal of Drug Delivery Science and Technology, 34: 60-70.

7.       Zhang, X., Li, W., Yin, B., Chen, W., Kelly, D. P. and Wang, X. and Du, Y. (2013). Improvement of near infrared spectroscopic (NIRS) analysis of caffeine in roasted Arabica coffee by variable selection method of stability competitive adaptive reweighted sampling (SCARS). Spectrochimica Acta A, 114: 350 - 356.

8.       Shehata, A. B., Rizk, M. S. and Rend, E. A. (2016) Certification of caffeine reference material purity by ultraviolet/visible spectrophotometry and high-performance liquid chromatography with diode-array detection as two independent analytical methods. Journal of Food and Drug Analysis, 24(4): 703-715.

9.       Armenta., S., Garrigues, S and de la Guardia, M. (2005). Solid-phase FT-Raman determination of caffeine in energy drinks. Analytica Chimica Acta, 547(2): 197-203.

10.    Meinhart, A. D., Bizzotto, C. S., Ballus, C. A., Prado, M. A., Bruns, R. E., Teixeira, F. J. and Godoy, H. T. (2010). Optimisation of a CE method for caffeine analysis in decaffeinated coffee. Food Chemistry, 120(4): 1155-1161.

11.    Jeon, D. B., Hong, Y. S., Lee, G. H., Park, Y. M., Lee, C. M., Nho, E. Y. and Kim, K. S. (2017). Determination of volatile organic compounds, catechins, caffeine and theanine in Jukro tea at three growth stages by chromatographic and spectrometric methods. Food Chemistry, 219: 443-52.

12.    Al-Qaim, F. F., Jusof, S. H., Abdullah, M. P., Mussa, Z. H., Tahrim, N. A, Khalik, W. M. A.W. M. and Othman, M. R (2017). Determination of caffeine in surface water using solid phase extraction and high-performance liquid chromatography. Malaysian Journal of Analytical Sciences, 21(1): 95-104.

13.    Lei, Y., He, M., Chen, B. and Hu, B. (2016). Polyaniline/cyclodextrin composite coated stir bar sorptive extraction combined with high performance liquid chromatography-ultraviolet detection for the analysis of trace polychlorinated biphenyls in environmental waters. Talanta, 150: 310-318.

14.    Zhang, H., Low, W. P. and Lee, H. K. (2012). Evaluation of sulfonated graphene sheets as sorbent for micro-solid-phase extraction combined with gas chromatography–mass spectrometry. Journal of Chromatography A, 1233: 16-21.

15.    Feng, L., van Hullebusch, E. D., Rodrigo, M. A., Esposito, G. and Oturan, M, A. (2013). Removal of residual anti-inflammatory and analgesic pharmaceuticals from aqueous systems by electrochemical advanced oxidation processes. A review. Chemical Engineering Journal. 228: 944-964.

16.    Nikolaou, A., Meric, S. and Fatta, D. (2007). Occurrence patterns of pharmaceuticals in water and wastewater environments. Analytical and Bioanalytical Chemistry, 387(4): 1225-1234.

17.    Zhang, Y., Geißen, S. U. and Gal, C. (2008). Carbamazepine and diclofenac: removal in wastewater treatment plants and occurrence in water bodies. Chemosphere, 73(8): 1151-1161.

18.    Al-Qaim, F. F., Yuzir, A. and Mussa, Z. H. (2018). Determination of theobromine and caffeine in some Malaysian beverages by liquid chromatography-time-of-flight mass spectrometry. Tropical Journal of Pharmaceutical Research, 17(3): 529-535.

19.    Choi, E. J, Bae, S. H., Park, J. B., Kwon, M. J., Jang, S, M., Zheng, Y. F. and Bae, S. K. (2013). Simultaneous quantification of caffeine and its three primary metabolites in rat plasma by liquid chromatography–tandem mass spectrometry. Food Chemistry, 141(3): 2735-2742.

20.    Al-Qaim, F. F., Abdullah, P., Othman, M. R., Mussa, Z. H., Zakaria, Z., Latip, J. and Afiq, W. M. (2015). Investigation of the environmental transport of human pharmaceuticals to surface water: A case study of persistence of pharmaceuticals in effluent of sewage treatment plants and hospitals in Malaysia. Journal of the Brazilian Chemical Society, 26: 1124-1135.

21.    Al-Qaim, F. F., Abdullah, P., Othman, M. R., Latip, J. and Afiq, W. M. (2013). Development of analytical method for detection of some pharmaceuticals in surface water. Tropical Journal of Pharmaceutical Research, 12(4): 609-616.