Malaysian Journal of Analytical
Sciences, Vol 27
No 2 (2023): 329 - 341
(Aplikasi Kaedah Gerak Balas Permukaan terhadap Analisis
Kafein dalam Teh dan Kopi Menggunakan Teknik Kromatografi Cecair Berprestasi
Tinggi)
Ibrahim Ali Al-Seade1, Fouad Fadhil Al-Qaim1,
Zainab Haider Mussa2, Lubna Raad Al-Ameer3,
and Nurfaizah Abu Tahrim4*
1Department of Chemistry,
Faculty of Science for Women, University of Babylon, PO
Box 4, Hilla, Iraq
2College
of Pharmacy,
University of Al-Ameed, Karbala PO Box 198, Iraq
3College
of Pharmacy,
Al-Zahraa University for Women, Karbala, Iraq
4Department of Chemical Sciences,
Faculty of Science and Technology,
Universiti Kebangsaan Malaysia, 43600 UKM Bangi,
Selangor, Malaysia
*Corresponding
author: nfaizah@ukm.edu.my
Received:
22 September 2022; Accepted: 26 December 2022; Published: 19 April 2023
Abstract
A rapid and simple extraction method was developed for the analysis of
caffeine in tea and coffee using high performance liquid chromatography (HPLC).
Independent factors such as extraction method, temperature and residing time
were optimized using response surface methodology (RSM) followed by Box-Behnken Design
(BBD). All samples were analyzed using
HPLC and separated on C18 (150 mm × 4.6 mm, 5μm particle)
column. The mobile phases were: (A) water and (B) acetonitrile at the flow rate
of 1 mL min-1 under ultraviolet (UV) detection at 273 nm. Good linearity was obtained in the range of
1–60 mg L-1 (regression coefficient (R2) > 0.995). The
limit of quantification (LOQ) and limit of detection (LOD) were 1.0 and 0.4 mg L-1,
respectively. Relative standard deviation (RSD) at the range between 3.11 and
11.37 is deemed as highly precise and it is 92% to 98% accurate. Based on the RSM-BDD
analysis, extraction of caffeine from tea was directly proportional to
temperature, time and method extraction, which exhibited all independent
factors of this study were significant. The most
optimal condition of caffeine extraction was heat treatment at 100 °C in 16 min
and free from any chemical treatment. The highest concentration of caffeine was
366 mg L-1 in Mahmood’s green tea, while it was 334 mg L-1
in Mahmood’s coffee. The proposed method exhibited good results and easier
quantification of caffeine in different samples using HPLC, and free from
possible interferents.
Keywords: caffeine,
tea, coffee, Box-Behnken design, high performance liquid
chromatography
Abstrak
Kaedah pengekstrakan cepat dan mudah
telah dibangunkan untuk penganalisaan kafein dalam sampel teh dan kopi dengan
menggunakan kromatografi cecair berprestasi tinggi (HPLC). Faktor bebas yang
penting seperti kaedah pengekstrakan, suhu dan masa tinggal telah dioptimumkan
menggunakan kaedah gerak balas permukaan (RSM) diikuti oleh reka bentuk
Kotak-Behnken (BBD). Semua sampel telah dianalisis menggunakan HPLC dan
diasingkan pada turus C18 (150 mm × 4.6 mm, 5μm). Fasa gerak
alih yamg digunakan ialah (A) air dan (B) asetonitril pada kadar aliran 1 mL
min-1 di bawah pengesanan ultra ungu (UV) pada 273 nm. Kelinearan
yang baik diperoleh dalam julat 1–60 mg L-1 (pekali regresi (R2)
> 0.995). Had kuantifikasi (LOQ) dan had pengesanan (LOD) masing-masing
ialah pada 1.0 dan 0.4 mg L-1. Kejituan sisihan piawai relatif (RSD)
pada julat antara 3.11 dan 11.37 didapati hampir tepat dan mempunyai ketepatan
antara 92% hingga 98%. Berdasarkan analisis RSM-BDD, pengekstrakan kafein
daripada teh adalah berkadar terus dengan suhu, masa dan kaedah pengekstrakan
yang menunjukkan bahawa semua faktor bebas tersebut adalah signifikan. Keadaan
pengekstrakan kafein paling optimum ialah pada suhu 100 °C selama 16 minit dan
bebas daripada sebarang rawatan kimia. Kepekatan kafein tertinggi sebanyak 366
mg L-1 diperoleh dalam teh hijau Mahmood manakala 334 mg L-1
dalam kopi Mahmood. Kaedah yang dicadangkan mempamerkan keputusan yang baik dan
mudah untuk mengukur kafein dalam sampel yang berbeza menggunakan HPLC.
Kata kunci: kafein, teh, kopi, reka bentuk
Kotak-Behnken, kromatografi cecair berprestasi tinggi
References
1. Sierakowska, A., Jasiewicz, B. and Pospieszny,
T. (2018). mass spectrometry study of new polyamine derivatives of
caffeine. Acta Chimica Slovenica,
65(4): 795-800.
2. Ružić, I., Škerget, M. and Knez,
Ž. (2010). Potential of phenolic antioxidants. Acta Chimica
Slovenica, 57(2): 263-271.
3. Crevar, M., Ivkovic, B., Vladimirov,
S., Kuntic, V. and Vujic,
Z. (2008). Statistical optimization of reverse phase high performance liquid
chromatography for the analysis of caffeine paracetamol and its degradation
product p-aminophenol. Acta Chimica Slovenica, 55(3): 665-670.
4. Ali, H. S., Abdullah, A. A., Pınar, P.
T., Yardım, Y. and Şentürk,
Z. (2017). Simultaneous voltammetric determination of
vanillin and caffeine in food products using an anodically pretreated
boron-doped diamond electrode: Its comparison with HPLC-DAD. Talanta, 170: 384-391.
5. Rahim, A. A., Saad, B., Osman, H., Hashim, N., Yahya, S. and Talib, K.
M. (2011). Simultaneous determination of diethylene glycol, diethylene glycol monoethyl ether, coumarin and caffeine in food items by gas
chromatography. Food Chemistry, 126(3): 1412-1416.
6. Palo, M., Kogermann. K, Genina,
N., Fors, D., Peltonen, J.,
Heinämäki, J. and Sandler, N. (2016). Quantification
of caffeine and loperamide in printed formulations by infrared
spectroscopy. Journal of Drug Delivery Science and Technology, 34:
60-70.
7. Zhang, X., Li, W., Yin, B., Chen, W., Kelly, D. P. and Wang, X. and Du,
Y. (2013). Improvement of near infrared spectroscopic (NIRS) analysis of
caffeine in roasted Arabica coffee by variable selection method of stability
competitive adaptive reweighted sampling (SCARS). Spectrochimica
Acta A, 114: 350 - 356.
8. Shehata, A. B., Rizk, M. S. and Rend, E. A.
(2016) Certification of caffeine reference material purity by
ultraviolet/visible spectrophotometry and high-performance liquid
chromatography with diode-array detection as two independent analytical
methods. Journal of Food and Drug Analysis, 24(4): 703-715.
9. Armenta., S., Garrigues, S and de la Guardia, M. (2005). Solid-phase
FT-Raman determination of caffeine in energy drinks. Analytica Chimica Acta, 547(2): 197-203.
10. Meinhart, A. D., Bizzotto, C. S., Ballus,
C. A., Prado, M. A., Bruns, R. E., Teixeira, F. J. and Godoy, H. T. (2010). Optimisation of a CE method for caffeine analysis in
decaffeinated coffee. Food Chemistry, 120(4): 1155-1161.
11. Jeon, D. B., Hong, Y. S., Lee, G. H., Park, Y. M., Lee, C. M., Nho, E. Y. and Kim, K. S. (2017). Determination of volatile
organic compounds, catechins, caffeine and theanine in Jukro
tea at three growth stages by chromatographic and spectrometric methods. Food
Chemistry, 219: 443-52.
12. Al-Qaim, F. F., Jusof,
S. H., Abdullah, M. P., Mussa, Z. H., Tahrim, N. A, Khalik, W. M. A.W. M. and Othman, M. R (2017). Determination of caffeine in surface
water using solid phase extraction and high-performance liquid
chromatography. Malaysian Journal of Analytical Sciences, 21(1):
95-104.
13. Lei, Y., He, M., Chen, B. and Hu, B. (2016). Polyaniline/cyclodextrin
composite coated stir bar sorptive extraction
combined with high performance liquid chromatography-ultraviolet detection for
the analysis of trace polychlorinated biphenyls in environmental waters. Talanta, 150: 310-318.
14. Zhang, H., Low, W. P. and Lee, H. K. (2012). Evaluation of sulfonated
graphene sheets as sorbent for micro-solid-phase extraction combined with gas
chromatography–mass spectrometry. Journal of Chromatography A,
1233: 16-21.
15. Feng, L., van Hullebusch, E. D., Rodrigo, M.
A., Esposito, G. and Oturan, M, A. (2013). Removal of
residual anti-inflammatory and analgesic pharmaceuticals from aqueous systems
by electrochemical advanced oxidation processes. A review. Chemical
Engineering Journal. 228: 944-964.
16. Nikolaou, A., Meric, S. and Fatta, D. (2007). Occurrence patterns of pharmaceuticals in
water and wastewater environments. Analytical and Bioanalytical
Chemistry, 387(4): 1225-1234.
17. Zhang, Y., Geißen, S. U. and Gal, C. (2008).
Carbamazepine and diclofenac: removal in wastewater treatment plants and
occurrence in water bodies. Chemosphere, 73(8): 1151-1161.
18. Al-Qaim, F. F., Yuzir,
A. and Mussa, Z. H. (2018). Determination of
theobromine and caffeine in some Malaysian beverages by liquid
chromatography-time-of-flight mass spectrometry. Tropical Journal of
Pharmaceutical Research, 17(3): 529-535.
19. Choi, E. J, Bae, S. H., Park, J. B., Kwon, M. J., Jang, S, M., Zheng, Y.
F. and Bae, S. K. (2013). Simultaneous quantification of caffeine and its three
primary metabolites in rat plasma by liquid chromatography–tandem mass
spectrometry. Food Chemistry, 141(3): 2735-2742.
20. Al-Qaim, F. F., Abdullah, P., Othman, M. R., Mussa, Z. H., Zakaria, Z., Latip,
J. and Afiq, W. M. (2015). Investigation of the environmental transport of
human pharmaceuticals to surface water: A case study of persistence of
pharmaceuticals in effluent of sewage treatment plants and hospitals in
Malaysia. Journal of the Brazilian Chemical Society, 26: 1124-1135.
21. Al-Qaim, F. F., Abdullah, P., Othman, M. R., Latip, J. and Afiq, W. M. (2013). Development of analytical
method for detection of some pharmaceuticals in surface water. Tropical
Journal of Pharmaceutical Research, 12(4): 609-616.