Malaysian Journal of Analytical
Sciences, Vol 27
No 2 (2023): 231 - 241
INFLUENCE
OF DEEP EUTECTIC SOLVENT (DES) ON CLEAVAGE SPECIFICITY OF LIGNIN-DERIVED OIL
PALM BIOMASS
(Pengaruh Pelarut Eutektik Dalam
Terhadap Kespesifikan Lignin
Terbitan Biojisim Kelapa Sawit)
Siti Khadijah Amran, Afiqah Liana Sazali, Khairul
Faizal Pa’ee, Mohd Razealy Anuar,
and Tau-Len Kelly Yong*
Universiti Kuala Lumpur,
Branch Campus Malaysian Institute of Chemical and
Engineering Technology,
Lot 1988 Kawasan Perindustrian Bandar Vendor, Taboh Naning,
78000 Alor Gajah, Melaka,
Malaysia.
*Corresponding author:
kytlen@unikl.edu.my
Received:
28 September 2022; Accepted: 25 January 2023; Published: 19 April 2023
Abstract
Carbon
fibre is widely used in industry, but its high cost limits its use.
Interestingly, lignin has the potential to serve as a carbon fibre precursor
with properties similar to those of polyacrylonitrile (PAN) and pitch-based
precursors. Oil palm frond (OPF), lignocellulosic biomass composed of
cellulose, hemicellulose and lignin, is an attractive source of biomass for
lignin extraction. This study proposes lignin extraction from OPF using a deep
eutectic solvent (DES). DESs are eutectic mixtures of hydrogen bond acceptors
(HBAs) and donors (HBDs) with much lower melting points than their
constituents. This study used choline chloride (ChCl)
and glycerol as HBA and HBD because they are easy to prepare, have low toxicity
and are biodegradable and ecologically benign. Lignin extraction from OPF was
conducted in a batch reactor at different reaction temperatures (130 °C–170 °C)
and reaction times (3–6 h) using a 1:3 molar ratio of ChCl:Glycerol.
The results show that DES can extract lignin with low particulate matter
content (4.53%) at a higher reaction temperature (170 °C) and longer reaction
time (6 h). However, extracted lignin with low ash and volatile matter contents
was obtained at a lower reaction temperature (130 °C) and shorter reaction time
(3 h). The carbon content of the extracted lignin was significantly influenced
by the reaction temperature and reaction time, with a lower reaction
temperature and moderate reaction time capable of producing lignin with a
carbon content of >50%
Keywords:
carbon
fibre, lignin, deep eutectic solvent, oil palm biomass
Abstrak
Gentian
karbon digunakan secara meluas dalam industri, walaupun penggunaannya dihadkan
oleh kos prekursor yang mahal. Lignin mempunyai potensi sebagai prekursor untuk
gentian karbon dengan sifat yang setanding dengan poliakrilonitril dan
prekursor berasaskan pitch. Pelepah kelapa sawit, sejenis biojisim
lignoselulosa yang mengandungi selulosa, hemiselulosa, dan lignin merupakan
sumber biojisim yang menarik untuk pengekstrakan lignin. Penyelidikan ini
mencadangkan pengekstrakan lignin daripada pelepah kelapa sawit menggunakan
pelarut eutektik dalam (DES). DES ialah campuran eutektik yang terdiri daripada
penerima ikatan hidrogen (HBA) dan penderma ikatan hidrogen (HBD) dan mempunyai
takat lebur yang jauh lebih rendah daripada juzuk masing-masing. Kajian ini menggunakan
kolin klorida dan gliserol sebagai HBA dan HBD kerana ia mudah disediakan,
mempunyai ketoksikan yang rendah, boleh terbiodegradasi, dan tidak berbahaya
dari segi ekologi. Pengekstrakan lignin daripada pelepah kelapa sawit
dijalankan dengan menggunakan reaktor kelompok pada suhu tindak balas (130
°C–170 °C) dan masa tindak balas (3–6 jam) yang berbeza bersama dengan kolin
klorida dan gliserol pada nisbah molar 1:3. Kajian ini membuktikan bahawa DES
mampu mengekstrak lignin dengan bahan zarah yang rendah (4.53%) pada suhu
tindak balas yang lebih tinggi (170 °C) dan masa tindak balas yang lebih lama
(6 jam). Walaubagaimanapun, lignin dengan kandungan abu dan bahan meruap yang
rendah diperolehi pada suhu tindak balas yang rendah (130 °C) dan masa tindak balas yang singkat (3 jam). Kandungan
karbon di dalam lignin yang diekstrak dipengaruhi oleh suhu tindak balas dan
masa tindak balas, dengan suhu tindak balas yang lebih rendah dan masa tindak
balas sederhana mampu menghasilkan lignin dengan kandungan karbon lebih
daripada 50%.
Kata kunci: gentian carbon, lignin, pelarut eutektik dalam, biojisim
kelapa sawit
References
2.
Holmes, M. (2017). Lowering the cost of carbon fiber. Reinforced
Plastics 61(5): 279-283.
3.
Bengtsson, A., Bengtsson, J., Sedin, M. and Sjöholm, E.
(2019). Carbon fibers from lignin-cellulose precursors: Effect of stabilization
conditions. ACS Sustainable Chemistry and Engineering 7(9): 8440-8448.
4.
Culebras, M., Sanchis, M. J., Beaucamp, A., Carsi, M. and
Kandola, B. K. (2018). Understanding the thermal and dielectric response of
organosolv and modified kraft lignin as a carbon fibre precursor. Green
Chemistry 20(19): 4461-4472.
5.
Chen, Z., Ragauskas, A. and Wan, C. (2020). Lignin extraction
and upgrading using deep eutectic solvents. Industrial Crops and Products,
147: 1-32.
6.
Abbott, A. P., Boothby, D., Capper, G., Davies, D. and
Rasheed, R. K. (2004). Deep eutectic solvents formed between choline chloride
and carboxylic acids: versatile alternatives to ionic liquids. Journal of
the American Chemical Society, 126(29): 9142-9147.
7.
Kim, K. H., Dutta, T., Sun, J. and Simmons, B. (2018).
Biomass pretreatment using deep eutectic solvents from lignin derived phenols. Green
Chemistry, 20(4): 809-815.
8.
Xia, Q., Liu, Y., Meng, J., Cheng, W. and Chen, W. (2018).
Multiple hydrogen bond coordination in three-constituent deep eutectic solvents
enhances lignin fractionation from biomass. Green Chemistry, 20(12):
2711-2721.
9.
Alvarez-Vasco, C., Ma, R., Quintero, M., Gua, M. and
Geleynse, S. (2016). Unique low-molecular-weight lignin with high purity
extracted from wood by deep eutectic solvents (DES): A source of lignin for
valorization. Green Chemistry, 18(19): 5133-5141.
10.
Wang, S., Bai, J., Innocent, M. T., Wang, Q., Xiang, H. and
Tang, J. (2021). Lignin-based carbon fibers: Formation, modification and
potential applications. Green Energy and Environment, 7(4): 578-605.
11.
Jablonsky, M., Skulcova, A. B. and Vrska, M. (2015). Deep
Eutectic Solvents: Fractionation of wheat straw. BioResources, 10(4):
8039-8047.
12.
Di-Marino, D., Stockmann, D., Kriescher, S. and Stiefel, S.
(2016). Electrochemical depolymerisation of lignin in a deep eutectic solvent. Green
Chemistry, 18(22): 6021-6028.
13.
Huang, D., Li, R., Xu, P., Tao, L. and Rui, D. (2020). The
cornerstone of realizing lignin value-addition: Exploiting the native structure
and properties of lignin by extraction methods. Chemical Engineering
Journal, 402: 126237.
14.
Xu, L., Zhang, S., Zhong, C., Li, B. Z. and Yuan, Y. J.
(2020). Alkali-based pretreatment-facilitated lignin valorization: A review. Industrial
and Engineering Chemistry Research, 59(39): 16923-16938.
15.
Evdokimov, A., Kurzin, A., Fedorova, O. and Lukanin, P.
(2018). Desulfurization of kraft lignin. Wood Science and Technology,
52(4): 1165-1174.
16.
Baker, D. A. and Rials, T. G. (2013). Recent advances in
low-cost carbon fiber manufacture from lignin. Journal of Applied Polymer
Science, 130(2): 713-728.
17.
Luo, J. (2010). Lignin-Based Carbon Fiber. Thesis from
University of Maine.
18.
Kadla, J. F., Kubo, S., Venditti, R., Gilbert, R. D. and
Compere, A. L. (2002). Lignin-based carbon fibers for composite fiber
applications. Carbon, 40(15): 2913–20.
19.
Souto, F., Calado, V. and Pereira, N. (2018). Lignin-based
carbon fiber: A current overview. Materials Research Express, 5(7):
072001.
20.
Nunes, K. D. and Pardini, L. C. (2019). Purification and
characterization methods for lignin biomass as a potential precursor for carbon
materials. Cellulose Chemistry and Technology, 53(3-4): 227-242.
21.
Hong, S., Sun, X., Lian, H., Pojman, J. A. and Mota-Morales,
J. D. (2016). Zinc-based deep eutectic solvent-mediated hydroxylation and
demethoxylation of lignin for the production of wood adhesive. RSC Advances,
6(92): 8959989608.
22.
Asawaworarit, P., Daorattanachai, W., Laosiripojana, W. and
Sakdaronnarong, C. (2019). Catalytic depolymerization of organosolv lignin from
bagasse by carbonaceous solid acids derived from hydrothermal of
lignocellulosic compounds. Chemical Engineering Journal, 356: 461-471.
23.
Zhang, R., Du, Q., Wang, L., Zheng, Z. and Guo, L. (2019).
Unlocking the response of lignin structure for improved carbon fiber production
and mechanical strength. Green Chemistry, 21(18): 4981-4987.
24.
Sameni, J., krigstiin, S., Rosa, D. and Leao, A. (2014).
Thermal characteristics of lignin residue from industrial processes. BioResources,
9(1): 725-737.
25.
Omar, N. N., Abdullah, N., Mustafa, I. S. and Sulaiman, F.
(2018). Characterisation of oil palm frond for bio-oil production. ASM
Science Journal, 11(1): 9-22.
26.
Khalid, K. A., Karunakaran, V., Ahmad, A. A., Pa’ee, K. F.,
Abd-Talib, N. and Yong, T. L. (2020). Lignin from oil palm frond under
subcritical phenol conditions as a precursor for carbon fiber production. Malaysian
Journal of Analytical Sciences, 24(4): 484-494.
27.
Karunakaran, V, Abd-Talib, N. and Yong, T. L. (2020). Lignin
from oil palm empty fruit bunches (EFB) under subcritical phenol conditions as
a precursor for carbon fiber production. Materials Today: Proceedings,
31(February): 100-105.
28.
Atnaw, S. M., Sulaiman, S. A. and Yusup, S. (2013). Syngas
production from downdraft gasification of oil palm fronds. Energy, 61:
491-501.
29.
Qu, W., Liu, J., Xue. Y., Wang, X. and Bai, X. (2018).
Potential of producing carbon fiber from biorefinery corn stover lignin with
high ash content. Journal of Applied Polymer Science, 135(4): 1–11.