Malaysian Journal of Analytical Sciences, Vol 27 No 2 (2023): 231 - 241

 

INFLUENCE OF DEEP EUTECTIC SOLVENT (DES) ON CLEAVAGE SPECIFICITY OF LIGNIN-DERIVED OIL PALM BIOMASS

 

(Pengaruh Pelarut Eutektik Dalam Terhadap Kespesifikan Lignin

Terbitan Biojisim Kelapa Sawit)

 

Siti Khadijah Amran, Afiqah Liana Sazali, Khairul Faizal Pa’ee, Mohd Razealy Anuar,

and Tau-Len Kelly Yong*

 

Universiti Kuala Lumpur,

Branch Campus Malaysian Institute of Chemical and Engineering Technology,

Lot 1988 Kawasan Perindustrian Bandar Vendor, Taboh Naning,

78000 Alor Gajah, Melaka, Malaysia.

 

*Corresponding author: kytlen@unikl.edu.my

 

 

Received: 28 September 2022; Accepted: 25 January 2023; Published:  19 April 2023

 

 

Abstract

Carbon fibre is widely used in industry, but its high cost limits its use. Interestingly, lignin has the potential to serve as a carbon fibre precursor with properties similar to those of polyacrylonitrile (PAN) and pitch-based precursors. Oil palm frond (OPF), lignocellulosic biomass composed of cellulose, hemicellulose and lignin, is an attractive source of biomass for lignin extraction. This study proposes lignin extraction from OPF using a deep eutectic solvent (DES). DESs are eutectic mixtures of hydrogen bond acceptors (HBAs) and donors (HBDs) with much lower melting points than their constituents. This study used choline chloride (ChCl) and glycerol as HBA and HBD because they are easy to prepare, have low toxicity and are biodegradable and ecologically benign. Lignin extraction from OPF was conducted in a batch reactor at different reaction temperatures (130 °C–170 °C) and reaction times (3–6 h) using a 1:3 molar ratio of ChCl:Glycerol. The results show that DES can extract lignin with low particulate matter content (4.53%) at a higher reaction temperature (170 °C) and longer reaction time (6 h). However, extracted lignin with low ash and volatile matter contents was obtained at a lower reaction temperature (130 °C) and shorter reaction time (3 h). The carbon content of the extracted lignin was significantly influenced by the reaction temperature and reaction time, with a lower reaction temperature and moderate reaction time capable of producing lignin with a carbon content of >50%

 

Keywords: carbon fibre, lignin, deep eutectic solvent, oil palm biomass

 

Abstrak

Gentian karbon digunakan secara meluas dalam industri, walaupun penggunaannya dihadkan oleh kos prekursor yang mahal. Lignin mempunyai potensi sebagai prekursor untuk gentian karbon dengan sifat yang setanding dengan poliakrilonitril dan prekursor berasaskan pitch. Pelepah kelapa sawit, sejenis biojisim lignoselulosa yang mengandungi selulosa, hemiselulosa, dan lignin merupakan sumber biojisim yang menarik untuk pengekstrakan lignin. Penyelidikan ini mencadangkan pengekstrakan lignin daripada pelepah kelapa sawit menggunakan pelarut eutektik dalam (DES). DES ialah campuran eutektik yang terdiri daripada penerima ikatan hidrogen (HBA) dan penderma ikatan hidrogen (HBD) dan mempunyai takat lebur yang jauh lebih rendah daripada juzuk masing-masing. Kajian ini menggunakan kolin klorida dan gliserol sebagai HBA dan HBD kerana ia mudah disediakan, mempunyai ketoksikan yang rendah, boleh terbiodegradasi, dan tidak berbahaya dari segi ekologi. Pengekstrakan lignin daripada pelepah kelapa sawit dijalankan dengan menggunakan reaktor kelompok pada suhu tindak balas (130 °C–170 °C) dan masa tindak balas (3–6 jam) yang berbeza bersama dengan kolin klorida dan gliserol pada nisbah molar 1:3. Kajian ini membuktikan bahawa DES mampu mengekstrak lignin dengan bahan zarah yang rendah (4.53%) pada suhu tindak balas yang lebih tinggi (170 °C) dan masa tindak balas yang lebih lama (6 jam). Walaubagaimanapun, lignin dengan kandungan abu dan bahan meruap yang rendah diperolehi pada suhu tindak balas yang rendah (130 °C) dan masa tindak balas yang singkat (3 jam). Kandungan karbon di dalam lignin yang diekstrak dipengaruhi oleh suhu tindak balas dan masa tindak balas, dengan suhu tindak balas yang lebih rendah dan masa tindak balas sederhana mampu menghasilkan lignin dengan kandungan karbon lebih daripada 50%.

 

Kata kunci: gentian carbon, lignin, pelarut eutektik dalam, biojisim kelapa sawit


 

References

1.       Lim, T. H., Kim M. S., Yeo, S. Y. and Jeong, E. (2018). Preparation and evaluation of isotropic and mesophase pitch-based carbon fibers using the pelletizing and continuous spinning process. Journal of Industrial Textiles, 48(7): 1242-1253.

2.       Holmes, M. (2017). Lowering the cost of carbon fiber. Reinforced Plastics 61(5): 279-283.

3.       Bengtsson, A., Bengtsson, J., Sedin, M. and Sjöholm, E. (2019). Carbon fibers from lignin-cellulose precursors: Effect of stabilization conditions. ACS Sustainable Chemistry and Engineering 7(9): 8440-8448.

4.       Culebras, M., Sanchis, M. J., Beaucamp, A., Carsi, M. and Kandola, B. K. (2018). Understanding the thermal and dielectric response of organosolv and modified kraft lignin as a carbon fibre precursor. Green Chemistry 20(19): 4461-4472.

5.       Chen, Z., Ragauskas, A. and Wan, C. (2020). Lignin extraction and upgrading using deep eutectic solvents. Industrial Crops and Products, 147: 1-32.

6.       Abbott, A. P., Boothby, D., Capper, G., Davies, D. and Rasheed, R. K. (2004). Deep eutectic solvents formed between choline chloride and carboxylic acids: versatile alternatives to ionic liquids. Journal of the American Chemical Society, 126(29): 9142-9147.

7.       Kim, K. H., Dutta, T., Sun, J. and Simmons, B. (2018). Biomass pretreatment using deep eutectic solvents from lignin derived phenols. Green Chemistry, 20(4): 809-815.

8.       Xia, Q., Liu, Y., Meng, J., Cheng, W. and Chen, W. (2018). Multiple hydrogen bond coordination in three-constituent deep eutectic solvents enhances lignin fractionation from biomass. Green Chemistry, 20(12): 2711-2721.

9.       Alvarez-Vasco, C., Ma, R., Quintero, M., Gua, M. and Geleynse, S. (2016). Unique low-molecular-weight lignin with high purity extracted from wood by deep eutectic solvents (DES): A source of lignin for valorization. Green Chemistry, 18(19): 5133-5141.

10.    Wang, S., Bai, J., Innocent, M. T., Wang, Q., Xiang, H. and Tang, J. (2021). Lignin-based carbon fibers: Formation, modification and potential applications. Green Energy and Environment, 7(4): 578-605.

11.    Jablonsky, M., Skulcova, A. B. and Vrska, M. (2015). Deep Eutectic Solvents: Fractionation of wheat straw. BioResources, 10(4): 8039-8047.

12.    Di-Marino, D., Stockmann, D., Kriescher, S. and Stiefel, S. (2016). Electrochemical depolymerisation of lignin in a deep eutectic solvent. Green Chemistry, 18(22): 6021-6028.

13.    Huang, D., Li, R., Xu, P., Tao, L. and Rui, D. (2020). The cornerstone of realizing lignin value-addition: Exploiting the native structure and properties of lignin by extraction methods. Chemical Engineering Journal, 402: 126237.

14.    Xu, L., Zhang, S., Zhong, C., Li, B. Z. and Yuan, Y. J. (2020). Alkali-based pretreatment-facilitated lignin valorization: A review. Industrial and Engineering Chemistry Research, 59(39): 16923-16938.

15.    Evdokimov, A., Kurzin, A., Fedorova, O. and Lukanin, P. (2018). Desulfurization of kraft lignin. Wood Science and Technology, 52(4): 1165-1174.

16.    Baker, D. A. and Rials, T. G. (2013). Recent advances in low-cost carbon fiber manufacture from lignin. Journal of Applied Polymer Science, 130(2): 713-728.

17.    Luo, J. (2010). Lignin-Based Carbon Fiber. Thesis from University of Maine.

18.    Kadla, J. F., Kubo, S., Venditti, R., Gilbert, R. D. and Compere, A. L. (2002). Lignin-based carbon fibers for composite fiber applications. Carbon, 40(15): 2913–20.

19.    Souto, F., Calado, V. and Pereira, N. (2018). Lignin-based carbon fiber: A current overview. Materials Research Express, 5(7): 072001.

20.    Nunes, K. D. and Pardini, L. C. (2019). Purification and characterization methods for lignin biomass as a potential precursor for carbon materials. Cellulose Chemistry and Technology, 53(3-4): 227-242.

21.    Hong, S., Sun, X., Lian, H., Pojman, J. A. and Mota-Morales, J. D. (2016). Zinc-based deep eutectic solvent-mediated hydroxylation and demethoxylation of lignin for the production of wood adhesive. RSC Advances, 6(92): 8959989608.

22.    Asawaworarit, P., Daorattanachai, W., Laosiripojana, W. and Sakdaronnarong, C. (2019). Catalytic depolymerization of organosolv lignin from bagasse by carbonaceous solid acids derived from hydrothermal of lignocellulosic compounds. Chemical Engineering Journal, 356: 461-471.

23.    Zhang, R., Du, Q., Wang, L., Zheng, Z. and Guo, L. (2019). Unlocking the response of lignin structure for improved carbon fiber production and mechanical strength. Green Chemistry, 21(18): 4981-4987.

24.    Sameni, J., krigstiin, S., Rosa, D. and Leao, A. (2014). Thermal characteristics of lignin residue from industrial processes. BioResources, 9(1): 725-737.

25.    Omar, N. N., Abdullah, N., Mustafa, I. S. and Sulaiman, F. (2018). Characterisation of oil palm frond for bio-oil production. ASM Science Journal, 11(1): 9-22.

26.    Khalid, K. A., Karunakaran, V., Ahmad, A. A., Pa’ee, K. F., Abd-Talib, N. and Yong, T. L. (2020). Lignin from oil palm frond under subcritical phenol conditions as a precursor for carbon fiber production. Malaysian Journal of Analytical Sciences, 24(4): 484-494.

27.    Karunakaran, V, Abd-Talib, N. and Yong, T. L. (2020). Lignin from oil palm empty fruit bunches (EFB) under subcritical phenol conditions as a precursor for carbon fiber production. Materials Today: Proceedings, 31(February): 100-105.

28.    Atnaw, S. M., Sulaiman, S. A. and Yusup, S. (2013). Syngas production from downdraft gasification of oil palm fronds. Energy, 61: 491-501.

29.    Qu, W., Liu, J., Xue. Y., Wang, X. and Bai, X. (2018). Potential of producing carbon fiber from biorefinery corn stover lignin with high ash content. Journal of Applied Polymer Science, 135(4): 1–11.