Malaysian Journal of Analytical
Sciences, Vol 27
No 1 (2023): 74 - 86
NOVEL MAGNETIC
EGGSHELL MEMBRANE FUNCTIONALIZED WITH WASTE PALM FATTY ACID FOR SELECTIVE
ADSORPTION OF OIL FROM AQUEOUS SOLUTION
(Novel Magnetik Membran Kulit
Telur Berfungsikan dengan Sisa Asid Lemak Sawit untuk Penjerapan Minyak Terpilih
daripada Larutan Akueus)
Siti Khalijah Mahmad Rozi1,2, Khairul
Muzzammil Berhanundin1, Ahmad Razali Ishak3,*, Fairuz
Liyana Mohd Rasdi3, Nazri Che Dom3, Nurul Yani Rahim4,
Mohd
Yusmaidie Aziz5, Farah Ayuni Shafie3, and
Abdul Mujid Abdullah3
1 Faculty of Chemical Engineering and Technology,
Universiti Malaysia Perlis,
Kompleks Pusat Pengajian Jejawi 3, 02600 Arau, Perlis,
Malaysia
2Centre
of Excellence for Biomass Utilization,
Universiti
Malaysia Perlis, 02600 Arau, Perlis, Malaysia
3Centre for Environmental Health and Safety,
Faculty of
Health Sciences,
Universiti
Teknologi MARA, Puncak Alam Campus,
42300 Kuala
Selangor, Malaysia
4 School of Chemical Sciences,
Universiti
Sains Malaysia,
11900 Minden,
Pulau Pinang
5 Integrative Medicine Cluster, Advanced Medical and
Dental Institute,
Universiti Sains
Malaysia, 13200 Bertam, Kepala Batas, Penang, Malaysia
*Correspondence
author: ahmadr2772@uitm.edu.my
Received: 17 June 2022; Accepted: 14
October 2022; Published: 22 February
2023
Abstract
Emulsified oil in wastewater is a severe problem and requires extensive
treatment before it can be disposed of in a manner that meets environmental
regulation standards. One strategy to remove emulsified oil is by utilizing the
adsorption process. The goal of this study is to synthesis magnetic eggshell membrane (ESM) functionalized with waste
palm fatty acid, (MNP@ESM-WPFA) for the adsorption of oils (lubricating
oil). The synthesis procedure involves three steps including preparation of
ESM, functionalization of ESM with waste palm fatty acid (WPFA) and
magnetization of eggshell membrane (ESM) functionalized with waste palm fatty
acid (ESM-WPFA) through co-precipitation method to obtain MNP@ESM-WPFA. The
novel adsorbent was characterized using SEM, FTIR, and EDX analyses. SEM
analysis revealed the magnetic nanoparticles scattered throughout the porous
and fibrous network structure of ESM-WPFA, confirming the successful synthesis
of the MNP@ESM-WPFA. Further FTIR analysis on MNP@ESM-WPFA adsorbent revealed the appearance of peaks at 2933 cm-1 and
2852 cm-1 and 630 cm-1, thus confirming the presence
of the alkyl chain of the waste palm fatty acid (WPFA) and Fe-O band on the
surface of MNP@ESM-WPFA. The oil adsorption performance of MNP@ESM-WPFA was
optimal at pH 7, treatment time of 50 minutes, and adsorbent dosage of 50 mg. The
MNP@ESM-WPFA showed the highest oil adsorption capacity (K) for lubricating oil
(4.61 mg/mg), followed by olive oil (2.72 mg/mg), and corn oil (2.00 mg/mg).
The MNP@ESM-WPFA adsorbent was also reusable, with a sorption capacity that was
maintained after five usage-regeneration cycles.
Key words: Eggshell membrane, waste palm fatty acids,
magnetic nanoparticles, adsorbents, oil removal
Abstrak
Minyak teremulsi dalam
air sisa merupakan satu cabaran yang serius dan memerlukan rawatan yang meluas
sebelum ia boleh dilupuskan dengan cara yang memenuhi piawaian peraturan alam
sekitar. Salah satu strategi untuk mengeluarkan minyak emulsi adalah dengan
menggunakan proses penjerapan. Kajian ini bermatlamat untuk sintesis membran
kulit telur (ESM) magnetik berfungsikan dengan sisa asid lemak sawit,
(MNP@ESM-WPFA) untuk penjerapan minyak (minyak pelincir). Prosedur sintesis
merangkumi tiga langkah termasuk penyediaan ESM, perfungsian ESM dengan sisa
asid lemak sawit dan permagnetan membran kulit telur (ESM) berfungsikan dengan
sisa asid lemak sawit (ESM-WPFA) melalui kaedah kopresipitasi untuk mendapatkan
MNP@ESM-WPFA. Penjerap novel ini telah dicirikan menggunakan analisis SEM,
FTIR, dan EDX. Analisis SEM mendedahkan nanopartikel magnetik yang bertaburan
di seluruh struktur rangkaian berliang dan berserabut ESM-WPFA, mengesahkan
kejayaan sintesis MNP@ESM-WPFA. Selanjutnya, analisis FTIR pada penjerap
MNP@ESM-WPFA mendedahkan kemunculan puncak-puncak pada 2933 cm-1 and
2852 cm-1 and 630 cm-1 mengesahkan kehadiran rantai alkil
WPFA dan Fe-O pada permukaan MNP@ESM-WPFA. Prestasi penjerapan minyak
MNP@ESM-WPFA adalah optimum pada pH 7, masa rawatan 50 minit, dan dos penjerap
50 mg. MNP@ESM-WPFA menunjukkan kapasiti penjerapan minyak (K) tertinggi untuk
minyak pelincir (4.61 mg/mg), diikuti minyak zaitun (2.72 mg/mg), dan minyak
jagung (2.00 mg/mg). Penjerap MNP@ESM-WPFA juga boleh digunasemula, dengan
kapasiti penyerapan yang dikekalkan selepas lima kitaran penjanaan semula
penggunaan.
Kata
kunci: membran kulit telur, sisa
asid lemak sawit, zarah nano magnetik, penjerap, penyingkiran minyak
References
1.
Sanghamitra, P., Mazumder, D., and Mukherjee, S.
(2021). Treatment of wastewater containing oil and grease by biological
method- a review. Journal of Environmental Science and Health, Part A,
56(4): 394-412.
2.
Benito, J. M., Pazos, C., Coca J, and Rios G. (1998).
Methods for the separation of emulsified oil from water: a state-of-the-art
review. Trends in Chemical Engineering, 4: 203-231.
3.
Lawrence K. W., Jiaping, P. C., Yung-Tse, H., Nazih,
K. S. (2008). Membrane and Desalination Technologies (Vol. 13). Springer
Science+ Business Media, LLC.
4.
Quemeneur, M. (1994). Fatty acids and sterols in
domestic wastewaters. Water Research, 28(5): 1217-1226.
5.
Jamaly, S., Giwa, A., and Hasan, S. W. (2015). Recent
improvements in oily wastewater treatment: Progress, challenges, and future
opportunities. Journal of Environmental Sciences, 37: 15-30.
6.
Ibrahim, S., Ang, H.-M., and Wang, S. (2012).
Adsorptive separation of emulsified oil in wastewater using biosorbents. Asia-Pacific
Journal of Chemical Engineering, 7: S216-S221.
7.
Abass, O. A., Jameel, A. T., Muyubi, S. A., Abdul
Karim, M. I., and Alam, A. Md. Z. (1970). Removal of Oil and Grease as
Emerging Pollutants of Concern (EPC) in Wastewater Stream. IIUM Engineering
Journal, 12(4): 161-169.
8.
Kundu, P., and Mishra, I. M. (2018). Treatment and
reclamation of hydrocarbon-bearing oily wastewater as a hazardous pollutant by
different processes and technologies: a state-of-the-art review. Reviews in
Chemical Engineering, 35(1): 73-108.
9.
Fadile, A., El Hassani, F. Z., Aissam, H., Merzouki,
M., and Benlemlih, M. (2011). Aerobic treatment of lipid-rich wastewater by a
bacterial consortium. African Journal of Microbiology Research, 5(30):
5333-5342.
10. Rajak, V. K., Singh, I., Kumar,
A., and Mandal, A. (2016). Optimization of separation of oil from oil-in-water
emulsion by demulsification using different demulsifiers. Petroleum Science
and Technology, 34(11–12), 1026–1032.
11. Rajak, V. K., Relish, K. K.,
Kumar, S. and Mandal, A. (2015). Mechanism and kinetics of separation of oil
from oil-in-water emulsion by air flotation. Petroleum Science and
Technology, 33(23-24): 1861-1868.
12. Xu, X., Liu, W., Tian, S., Wang,
W., Qi, Q. et al. (2018). Petroleum hydrocarbon-degrading bacteria for the
remediation of oil pollution under aerobic conditions: a perspective analysis.
Frontiers in Microbiology, 9: 1-11.
13. Manilal, A. M., Soloman, P. A.
and Basha, C. A. (2020). Removal of oil and grease from produced water using
electrocoagulation. Journal of Hazardous, Toxic, and Radioactive Waste,
24(1): 04019023.
14. Chawaloesphonsiya, N., Guiraud,
P. and Painmanakul, P. (2018). Analysis of cutting-oil emulsion
destabilization by aluminum sulfate. Environmental Technology, 39(11):
1450-1460.
15. Lobo, A., Cambiella, Á., Benito,
J. M., Pazos, C. and Coca, J. (2006). Ultrafiltration of oil-in-water
emulsions with ceramic membranes: Influence of pH and crossflow velocity. Journal
of Membrane Science, 278(1-2): 328-334.
16. Fallah, Z., and Roberts, E. P.
L. (2019). Combined adsorption/regeneration process for the removal of trace
emulsified hydrocarbon contaminants. Chemosphere, 230: 596-605.
17. Srinivasan, A., and
Viraraghavan, T. (2010). Oil removal from water using biomaterials. Bioresource
Technology, 101(17): 6594-6600.
18. Elanchezhiyan, S. S., Prabhu, S.
M. and Meenakshi, S. (2018). Effective adsorption of oil droplets from
oil-in-water emulsion using metal ions encapsulated biopolymers: Role of metal
ions and their mechanism in oil removal. International Journal of
Biological Macromolecules, 112: 294-305.
19. Albatrni, H., Qiblawey, H.,
Almomani, F., Adham, S. and Khraisheh, M. (2019). Polymeric adsorbents for oil
removal from water. Chemosphere, 233: 809-817.
20. Ji, F., Li, C., Dong, X., Li, Y.
and Wang, D. (2009). Separation of oil from oily wastewater by sorption and
coalescence technique using ethanol grafted polyacrylonitrile. Journal of
Hazardous Materials, 164(2–3): 1346-1351.
21. Wu, D., Fang, L., Qin, Y., Wu,
W., Mao, C. and Zhu, H. (2014). Oil sorbents with high sorption capacity,
oil/water selectivity and reusability for oil spill cleanup. Marine
Pollution Bulletin, 84(1–2): 263-267.
22. Bessashia, W., Berredjem, Y.,
Hattab, Z. and Bououdina, M. (2020). Removal of basic fuchsin from water by
using mussel powdered eggshell membrane as novel bioadsorbent: equilibrium,
kinetics, and thermodynamic studies. Environmental Research, 186:
109484.
23. Wang, W., Chen, B., Huang, Y.,
and Cao, J. (2010). Evaluation of eggshell membrane-based bio-adsorbent for
solid-phase extraction of linear alkylbenzene sulfonates coupled with
high-performance liquid chromatography. Journal of Chromatography A,
1217(36): 5659-5664.
24. Torres, F. G., Troncoso, O. P.,
Piaggio, F. and Hijar, A. (2010). Structure–property relationships of a
biopolymer network: The eggshell membrane. Acta Biomaterialia, 6(9):
3687-3693.
25. Abdulla, R., Sanny, S. A., and
Derman, E. (2017). Stability studies of immobilized lipase on rice husk and
eggshell membrane. IOP Conference Series: Materials Science and Engineering,
206: 012032.
26. Ravi, T, and Sundararaman, S. (2020).
Synthesis and characterization of chicken eggshell powder coated magnetic nano
adsorbent by an ultrasonic bath assisted co-precipitation for Cr(VI) removal
from its aqueous mixture. Journal of Environmental Chemical Engineering,
8(4): 103877.
27. Li, J., Ng, D. H. L., Ma, R.,
Zuo, M., and Song, P. (2017). Eggshell membrane-derived MgFe2O4
for pharmaceutical antibiotics removal and recovery from water. Chemical
Engineering Research and Design, 126: 123-133.
28. Sathasivam, K., and Mas Haris,
M. R. H. (2010). Adsorption kinetics and capacity of fatty acid-modified
banana trunk fibers for oil in water. Water, Air, & Soil Pollution,
213(1-4): 413-423.
29. Rozi, S. K. M., Nodeh, H. R.,
Kamboh, M. A., Manan, N. S. A., and Mohamad, S. (2017). Novel palm fatty acid
functionalized magnetite nanoparticles for magnetic solid-phase extraction of
trace polycyclic aromatic hydrocarbons from environmental samples. Journal
of Oleo Science, 66(7): 771-784.
30. Ahmad A, Sumathi, S., and
Hameed, B. (2005). Adsorption of residue oil from palm oil mill effluent using
powder and flake chitosan: Equilibrium and kinetic studies. Water Research,
39(12): 2483-2494.
31. Baharin, S. N. A., Muhamad
Sarih, N., Mohamad, S., Shahabuddin, S., Sulaiman, K., and Ma’amor, A. (2016).
Removal of endocrine disruptor di-(2-ethylhexyl)phthalate by modified
polythiophene-coated magnetic nanoparticles: characterization, adsorption isotherm,
kinetic study, thermodynamics. RSC Advances, 6(50): 44655-44667.
32. Wu, J., Wang, N., Wang, L.,
Dong, H., Zhao, Y. and Jiang, L. (2012). Electrospun porous structure fibrous
film with high oil adsorption capacity. ACS Applied Materials &
Interfaces, 4(6): 3207-3212.
33. Kumagai, S., Noguchi, Y.,
Kurimoto, Y. and Takeda, K. (2007). Oil adsorbent produced by the
carbonization of rice husks. Waste Management, 27(4): 554-561.
34. Johnson, R. F., Manjreker, T. G.
and Halligan, J. E. (1973). Removal of oil from water surfaces by sorption on
unstructured fibers. Environmental Science & Technology, 7(5):
439-443.
35. Zheng, J., He, A., Li, J., Xu,
J. and Han, C. C. (2006). Studies on the controlled morphology and wettability
of polystyrene surfaces by electrospinning or electrospraying. Polymer,
47(20): 7095-7102.
36. Guan, H., Cheng, Z. and Wang, X.
(2018). Highly compressible wood sponges with a spring-like lamellar structure
as effective and reusable oil absorbents. ACS Nano, 12(10): 0365-10373.
37. Raj, K. G. and Joy, P. A. (2015).
Coconut shell based activated carbon–iron oxide magnetic nanocomposite for
fast and efficient removal of oil spills. Journal of Environmental Chemical
Engineering, 3(3): 2068-2075.
38. Chen, M., Jiang, W., Wang, F.,
Shen, P., Ma, P. et al. (2013). Synthesis of highly hydrophobic floating
magnetic polymer nanocomposites for the removal of oils from water surface. Applied
Surface Science, 286: 249-256.
39. Gu, J., Jiang, W., Wang, F.,
Chen, M., Mao, J. and Xie, T. (2014). Facile removal of oils from water surfaces
through highly hydrophobic and magnetic polymer nanocomposites. Applied
Surface Science, 301: 492-499.