Malaysian Journal of Analytical Sciences, Vol 27 No 1 (2023): 74 - 86

 

NOVEL MAGNETIC EGGSHELL MEMBRANE FUNCTIONALIZED WITH WASTE PALM FATTY ACID FOR SELECTIVE ADSORPTION OF OIL FROM AQUEOUS SOLUTION

 

(Novel Magnetik Membran Kulit Telur Berfungsikan dengan Sisa Asid Lemak Sawit untuk Penjerapan Minyak Terpilih daripada Larutan Akueus)

 

Siti Khalijah Mahmad Rozi1,2, Khairul Muzzammil Berhanundin1, Ahmad Razali Ishak3,*, Fairuz Liyana Mohd Rasdi3, Nazri Che Dom3, Nurul Yani Rahim4, Mohd Yusmaidie Aziz5, Farah Ayuni Shafie3, and

Abdul Mujid Abdullah3

 

1 Faculty of Chemical Engineering and Technology,

Universiti Malaysia Perlis,

Kompleks Pusat Pengajian Jejawi 3, 02600 Arau, Perlis, Malaysia

2Centre of Excellence for Biomass Utilization,

Universiti Malaysia Perlis, 02600 Arau, Perlis, Malaysia

3Centre for Environmental Health and Safety,

Faculty of Health Sciences,

Universiti Teknologi MARA, Puncak Alam Campus,

42300 Kuala Selangor, Malaysia

4 School of Chemical Sciences,

Universiti Sains Malaysia,

11900 Minden, Pulau Pinang

5 Integrative Medicine Cluster, Advanced Medical and Dental Institute,

Universiti Sains Malaysia, 13200 Bertam, Kepala Batas, Penang, Malaysia

 

*Correspondence author: ahmadr2772@uitm.edu.my

 

 

Received: 17 June 2022; Accepted: 14 October 2022; Published:  22 February 2023

 

 

Abstract

Emulsified oil in wastewater is a severe problem and requires extensive treatment before it can be disposed of in a manner that meets environmental regulation standards. One strategy to remove emulsified oil is by utilizing the adsorption process. The goal of this study is to synthesis magnetic eggshell membrane (ESM) functionalized with waste palm fatty acid, (MNP@ESM-WPFA) for the adsorption of oils (lubricating oil). The synthesis procedure involves three steps including preparation of ESM, functionalization of ESM with waste palm fatty acid (WPFA) and magnetization of eggshell membrane (ESM) functionalized with waste palm fatty acid (ESM-WPFA) through co-precipitation method to obtain MNP@ESM-WPFA. The novel adsorbent was characterized using SEM, FTIR, and EDX analyses. SEM analysis revealed the magnetic nanoparticles scattered throughout the porous and fibrous network structure of ESM-WPFA, confirming the successful synthesis of the MNP@ESM-WPFA. Further FTIR analysis on MNP@ESM-WPFA adsorbent revealed the appearance of peaks at 2933 cm-1 and 2852 cm-1 and 630 cm-1, thus confirming the presence of the alkyl chain of the waste palm fatty acid (WPFA) and Fe-O band on the surface of MNP@ESM-WPFA. The oil adsorption performance of MNP@ESM-WPFA was optimal at pH 7, treatment time of 50 minutes, and adsorbent dosage of 50 mg. The MNP@ESM-WPFA showed the highest oil adsorption capacity (K) for lubricating oil (4.61 mg/mg), followed by olive oil (2.72 mg/mg), and corn oil (2.00 mg/mg). The MNP@ESM-WPFA adsorbent was also reusable, with a sorption capacity that was maintained after five usage-regeneration cycles.

 

Key words: Eggshell membrane, waste palm fatty acids, magnetic nanoparticles, adsorbents, oil removal

 

Abstrak

Minyak teremulsi dalam air sisa merupakan satu cabaran yang serius dan memerlukan rawatan yang meluas sebelum ia boleh dilupuskan dengan cara yang memenuhi piawaian peraturan alam sekitar. Salah satu strategi untuk mengeluarkan minyak emulsi adalah dengan menggunakan proses penjerapan. Kajian ini bermatlamat untuk sintesis membran kulit telur (ESM) magnetik berfungsikan dengan sisa asid lemak sawit, (MNP@ESM-WPFA) untuk penjerapan minyak (minyak pelincir). Prosedur sintesis merangkumi tiga langkah termasuk penyediaan ESM, perfungsian ESM dengan sisa asid lemak sawit dan permagnetan membran kulit telur (ESM) berfungsikan dengan sisa asid lemak sawit (ESM-WPFA) melalui kaedah kopresipitasi untuk mendapatkan MNP@ESM-WPFA. Penjerap novel ini telah dicirikan menggunakan analisis SEM, FTIR, dan EDX. Analisis SEM mendedahkan nanopartikel magnetik yang bertaburan di seluruh struktur rangkaian berliang dan berserabut ESM-WPFA, mengesahkan kejayaan sintesis MNP@ESM-WPFA. Selanjutnya, analisis FTIR pada penjerap MNP@ESM-WPFA mendedahkan kemunculan puncak-puncak pada 2933 cm-1 and 2852 cm-1 and 630 cm-1 mengesahkan kehadiran rantai alkil WPFA dan Fe-O pada permukaan MNP@ESM-WPFA. Prestasi penjerapan minyak MNP@ESM-WPFA adalah optimum pada pH 7, masa rawatan 50 minit, dan dos penjerap 50 mg. MNP@ESM-WPFA menunjukkan kapasiti penjerapan minyak (K) tertinggi untuk minyak pelincir (4.61 mg/mg), diikuti minyak zaitun (2.72 mg/mg), dan minyak jagung (2.00 mg/mg). Penjerap MNP@ESM-WPFA juga boleh digunasemula, dengan kapasiti penyerapan yang dikekalkan selepas lima kitaran penjanaan semula penggunaan.

 

Kata kunci: membran kulit telur, sisa asid lemak sawit, zarah nano magnetik, penjerap, penyingkiran minyak

 

References

1.         Sanghamitra, P., Mazumder, D., and Mukherjee, S. (2021). Treatment of wastewater containing oil and grease by biological method- a review. Journal of Environmental Science and Health, Part A, 56(4): 394-412.

2.         Benito, J. M., Pazos, C., Coca  J, and Rios G. (1998). Methods for the separation of emulsified oil from water: a state-of-the-art review. Trends in Chemical Engineering, 4: 203-231.

3.         Lawrence K. W., Jiaping, P. C., Yung-Tse, H., Nazih, K. S. (2008). Membrane and Desalination Technologies (Vol. 13). Springer Science+ Business Media, LLC.

4.         Quemeneur, M. (1994). Fatty acids and sterols in domestic wastewaters. Water Research, 28(5): 1217-1226.

5.         Jamaly, S., Giwa, A., and Hasan, S. W. (2015). Recent improvements in oily wastewater treatment: Progress, challenges, and future opportunities. Journal of Environmental Sciences, 37: 15-30.

6.         Ibrahim, S., Ang, H.-M., and Wang, S. (2012). Adsorptive separation of emulsified oil in wastewater using biosorbents. Asia-Pacific Journal of Chemical Engineering, 7: S216-S221.

7.         Abass, O. A., Jameel, A. T., Muyubi, S. A., Abdul Karim, M. I., and Alam, A. Md. Z. (1970). Removal of Oil and Grease as Emerging Pollutants of Concern (EPC) in Wastewater Stream. IIUM Engineering Journal, 12(4): 161-169.

8.         Kundu, P., and Mishra, I. M. (2018). Treatment and reclamation of hydrocarbon-bearing oily wastewater as a hazardous pollutant by different processes and technologies: a state-of-the-art review. Reviews in Chemical Engineering, 35(1): 73-108.

9.         Fadile, A., El Hassani, F. Z., Aissam, H., Merzouki, M., and Benlemlih, M. (2011). Aerobic treatment of lipid-rich wastewater by a bacterial consortium. African Journal of Microbiology Research, 5(30): 5333-5342.

10.      Rajak, V. K., Singh, I., Kumar, A., and Mandal, A. (2016). Optimization of separation of oil from oil-in-water emulsion by demulsification using different demulsifiers. Petroleum Science and Technology, 34(11–12), 1026–1032.

11.      Rajak, V. K., Relish, K. K., Kumar, S. and Mandal, A. (2015). Mechanism and kinetics of separation of oil from oil-in-water emulsion by air flotation. Petroleum Science and Technology, 33(23-24): 1861-1868.

12.      Xu, X., Liu, W., Tian, S., Wang, W., Qi, Q. et al. (2018). Petroleum hydrocarbon-degrading bacteria for the remediation of oil pollution under aerobic conditions: a perspective analysis. Frontiers in Microbiology, 9: 1-11.

13.      Manilal, A. M., Soloman, P. A. and Basha, C. A. (2020). Removal of oil and grease from produced water using electrocoagulation. Journal of Hazardous, Toxic, and Radioactive Waste, 24(1): 04019023.

14.      Chawaloesphonsiya, N., Guiraud, P. and Painmanakul, P. (2018). Analysis of cutting-oil emulsion destabilization by aluminum sulfate. Environmental Technology, 39(11): 1450-1460.

15.      Lobo, A., Cambiella, Á., Benito, J. M., Pazos, C. and Coca, J. (2006). Ultrafiltration of oil-in-water emulsions with ceramic membranes: Influence of pH and crossflow velocity. Journal of Membrane Science, 278(1-2): 328-334.

16.      Fallah, Z., and Roberts, E. P. L. (2019). Combined adsorption/regeneration process for the removal of trace emulsified hydrocarbon contaminants. Chemosphere, 230: 596-605.

17.      Srinivasan, A., and Viraraghavan, T. (2010). Oil removal from water using biomaterials. Bioresource Technology, 101(17): 6594-6600.

18.      Elanchezhiyan, S. S., Prabhu, S. M. and Meenakshi, S. (2018). Effective adsorption of oil droplets from oil-in-water emulsion using metal ions encapsulated biopolymers: Role of metal ions and their mechanism in oil removal. International Journal of Biological Macromolecules, 112: 294-305.

19.      Albatrni, H., Qiblawey, H., Almomani, F., Adham, S. and Khraisheh, M. (2019). Polymeric adsorbents for oil removal from water. Chemosphere, 233: 809-817.

20.      Ji, F., Li, C., Dong, X., Li, Y. and Wang, D. (2009). Separation of oil from oily wastewater by sorption and coalescence technique using ethanol grafted polyacrylonitrile. Journal of Hazardous Materials, 164(2–3): 1346-1351.

21.      Wu, D., Fang, L., Qin, Y., Wu, W., Mao, C. and Zhu, H. (2014). Oil sorbents with high sorption capacity, oil/water selectivity and reusability for oil spill cleanup. Marine Pollution Bulletin, 84(1–2): 263-267.

22.      Bessashia, W., Berredjem, Y., Hattab, Z. and Bououdina, M. (2020). Removal of basic fuchsin from water by using mussel powdered eggshell membrane as novel bioadsorbent: equilibrium, kinetics, and thermodynamic studies. Environmental Research, 186: 109484.

23.      Wang, W., Chen, B., Huang, Y., and Cao, J. (2010). Evaluation of eggshell membrane-based bio-adsorbent for solid-phase extraction of linear alkylbenzene sulfonates coupled with high-performance liquid chromatography. Journal of Chromatography A, 1217(36): 5659-5664.

24.      Torres, F. G., Troncoso, O. P., Piaggio, F. and Hijar, A. (2010). Structure–property relationships of a biopolymer network: The eggshell membrane. Acta Biomaterialia, 6(9): 3687-3693.

25.      Abdulla, R., Sanny, S. A., and Derman, E. (2017). Stability studies of immobilized lipase on rice husk and eggshell membrane. IOP Conference Series: Materials Science and Engineering, 206: 012032.

26.      Ravi, T, and Sundararaman, S. (2020). Synthesis and characterization of chicken eggshell powder coated magnetic nano adsorbent by an ultrasonic bath assisted co-precipitation for Cr(VI) removal from its aqueous mixture. Journal of Environmental Chemical Engineering, 8(4): 103877.

27.      Li, J., Ng, D. H. L., Ma, R., Zuo, M., and Song, P. (2017). Eggshell membrane-derived MgFe2O4 for pharmaceutical antibiotics removal and recovery from water. Chemical Engineering Research and Design, 126: 123-133.

28.      Sathasivam, K., and Mas Haris, M. R. H. (2010). Adsorption kinetics and capacity of fatty acid-modified banana trunk fibers for oil in water. Water, Air, & Soil Pollution, 213(1-4): 413-423.

29.      Rozi, S. K. M., Nodeh, H. R., Kamboh, M. A., Manan, N. S. A., and Mohamad, S. (2017). Novel palm fatty acid functionalized magnetite nanoparticles for magnetic solid-phase extraction of trace polycyclic aromatic hydrocarbons from environmental samples. Journal of Oleo Science, 66(7): 771-784.

30.      Ahmad A, Sumathi, S., and Hameed, B. (2005). Adsorption of residue oil from palm oil mill effluent using powder and flake chitosan: Equilibrium and kinetic studies. Water Research, 39(12): 2483-2494.

31.      Baharin, S. N. A., Muhamad Sarih, N., Mohamad, S., Shahabuddin, S., Sulaiman, K., and Ma’amor, A. (2016). Removal of endocrine disruptor di-(2-ethylhexyl)phthalate by modified polythiophene-coated magnetic nanoparticles: characterization, adsorption isotherm, kinetic study, thermodynamics. RSC Advances, 6(50): 44655-44667.

32.      Wu, J., Wang, N., Wang, L., Dong, H., Zhao, Y. and Jiang, L. (2012). Electrospun porous structure fibrous film with high oil adsorption capacity. ACS Applied Materials & Interfaces, 4(6): 3207-3212.

33.      Kumagai, S., Noguchi, Y., Kurimoto, Y. and Takeda, K. (2007). Oil adsorbent produced by the carbonization of rice husks. Waste Management, 27(4): 554-561.

34.      Johnson, R. F., Manjreker, T. G. and Halligan, J. E. (1973). Removal of oil from water surfaces by sorption on unstructured fibers. Environmental Science & Technology, 7(5): 439-443.

35.      Zheng, J., He, A., Li, J., Xu, J. and Han, C. C. (2006). Studies on the controlled morphology and wettability of polystyrene surfaces by electrospinning or electrospraying. Polymer, 47(20): 7095-7102.

36.      Guan, H., Cheng, Z. and Wang, X. (2018). Highly compressible wood sponges with a spring-like lamellar structure as effective and reusable oil absorbents. ACS Nano, 12(10): 0365-10373.

37.      Raj, K. G. and Joy, P. A. (2015). Coconut shell based activated carbon–iron oxide magnetic nanocomposite for fast and efficient removal of oil spills. Journal of Environmental Chemical Engineering, 3(3): 2068-2075.

38.      Chen, M., Jiang, W., Wang, F., Shen, P., Ma, P. et al. (2013). Synthesis of highly hydrophobic floating magnetic polymer nanocomposites for the removal of oils from water surface. Applied Surface Science, 286: 249-256.

39.      Gu, J., Jiang, W., Wang, F., Chen, M., Mao, J. and Xie, T. (2014). Facile removal of oils from water surfaces through highly hydrophobic and magnetic polymer nanocomposites. Applied Surface Science, 301: 492-499.