Malaysian Journal of Analytical Sciences, Vol 27 No 1 (2023): 63 - 73

 

THE EFFECT OF NANOFILLERS ON THE FUNCTIONAL PROPERTIES OF PLA AND CHITOSAN BASED FILM

 

(Kesan Pengisian Nano Kepada Sifat Filem yang Berasaskan Asid Polilatik dan Kitosan)

 

Raja Hasnida Raja Hashim1*, Ahmad Anas Nagoor Gunny1,2, Sam Sung Ting1,

Nor Helya Iman Kamaludim1, Subash C. B. Gopinath2,3

 

 1Faculty of Chemical Engineering Technology,

Universiti Malaysia Perlis, Kompleks Pusat Pengajian Jejawi 3,

Kawasan Perindustrian Jejawi, 02600, Arau, Perlis, Malaysia

2 Centre of Excellence for Biomass Utilization,

Faculty of Chemical Engineering Technology,

Universiti Malaysia Perlis, 02600, Arau, Perlis, Malaysia

3Institute of Nano Electronic Engineering,

Universiti Malaysia, Perlis, 01000 Kangar, Perlis, Malaysia

 

*Corresponding author: ahmadanas@unimap.edu.my

 

 

Received: 20 September 2021; Accepted: 13 September 2022; Published:  22 February 2023

 

 

Abstract

The aim of this study was to develop poly (lactic acid) and chitosan-based films and to examine the effect of cellulose nanocrystal (CNC) as nanofillers on the properties of the films. The biofilms were prepared by solvent casting method. The physical and mechanical properties of the resulting films were examined. SEM analysis showed that the surface of PLA/Cs films smoother when 1% and 2 % of CNC were added. The results for percent of water absorption of the films increased with increasing amount of CNC in PLA/Chitosan matrix. Tensile test results indicated higher TS value by incorporation of 2% of CNC. However, the PLA/Chitosan-CNC films at 3% and 4% CNC concentration exhibited a decreased TS value. PLA/Chitosan films were improved with the addition of a small amount of CNC resulting in PLA nanocomposite, which will be further evaluated for fruit packaging applications. The data obtained through this research could contribute to the establishment of a biofilms with improved the physical and mechanical properties promising significant advantages in term of longer storage life, maintaining safety, and keeping quality of a product especially in fruit packaging.

.

Keywords: polylactic acid, chitosan, cellulose nanocrystal, films, packaging

 

Abstrak

Tujuan kajian ini adalah untuk membuat filem berasaskan poli (asid laktik) dan kitosan dan mengkaji kesan kristal nano selulosa (CNC) sebagai pengisi nano pada sifat filem. Biofilm tersebut disiapkan dengan kaedah tuangan pelarut. Sifat fizikal dan mekanikal filem yang dihasilkan diperiksa. Analisis SEM menunjukkan bahawa permukaan filem PLA/Cs lebih licin apabila 1% dan 2 % CNC ditambah.Selanjutnya, peratus penyerapan air filem meningkat dengan peningkatan jumlah CNC dalam matriks PLA/ kitosan. Hasil ujian tegangan menunjukkan nilai TS yang lebih tinggi dengan memasukkan 2% CNC. Walau bagaimanapun, filem PLA / Chitosan-CNC pada kepekatan CNC 3% dan 4% menunjukkan penurunan nilai TS. Filem PLA / kitosan ditambah baik dengan penambahan sejumlah kecil CNC yang menghasilkan nanokomposit PLA, yang akan dinilai lebih lanjut untuk aplikasi pembungkusan buah. Data yang diperoleh melalui penyelidikan ini dapat menyumbang pada pembentukan biofilm dengan peningkatan sifat sifat fizikal dan mekanikal yang lebih baik yang menjanjikan kelebihan yang ketara dari segi jangka hayat penyimpanan yang lebih lama, mengekalkan keselamatan, dan mengekalkan kualiti produk terutamanya dalam pembungkusan buah-buahan

.

Kata kunci: asid polilaktik, kitosan, selulosa nanokristal, filem, pembungkusan

 

References

1.         Jovanovic, G. D., Klaus, A. S. and Niksic, M. P. (2016). Antimicrobial activity of chitosan films with essential oils against listeria monocytogenes on cabbage. Jundishapur Journal of Microbiology, 9(9): e34804.

2.         Bhuvaneshwari, S., Sruthi, D., Sivasubramanian, V., Niranjana, K. and Sugunabai, J. (2011). Development and characterization of chitosan films. International Journal of Engineering Research and Applications, 1(2): 292-299.

3.         Priyadarshi, R., Kumar, B., Deeba, F., Kulshreshtha, A. and Negi, Y. S. (2018). Chitosan films incorporated with apricot (Prunus armeniaca) kernel essential oil as active food packaging material. Food Hydrocolloids, 85: 158-166.

4.         Raghav, P. K., Agarwal, N. and Saini, M. (2012). Edible coating of fruits and vegetables: a review. International Journal of Scientific Research and Modern Education, 1(1): 188-204.

5.         Farah, S., Anderson, D. G. and Langer, R. (2016). Physical and mechanical properties of PLA, and their functions in widespread applications—a comprehensive review. Advanced Drug Delivery Reviews, 107: 367-392.

6.         Casalini, T., Rossi, F., Castrovinci, A. and Perale, G. (2019). A perspective on polylactic acid-based polymers use for nanoparticles synthesis and applications. Frontiers in Bioengineering and Biotechnology, 7: 259.

7.         Salmieri, S., Islam, F., Khan, R. A., Hossain, F. M., Ibrahim, H. M., Miao, C. and Lacroix, M. (2014). Antimicrobial nanocomposite films made of poly (lactic acid)–cellulose nanocrystals (PLA–CNC) in food applications—Part B: Effect of oregano essential oil release on the inactivation of listeria monocytogenes in mixed vegetables. Cellulose, 21(6): 4271-4285.

8.         Wildan, M. W. and Lubis, F. I. (2021). Fabrication and characterization of chitosan/cellulose nanocrystal/glycerol bio-composite films. Polymers, 13(7): 1096

9.         Salmieri, S., Islam, F., Khan, R. A., Hossain, F. M., Ibrahim, H. M., Miao, C. and Lacroix, M. (2014). Antimicrobial nanocomposite films made of poly (lactic acid)-cellulose nanocrystals (PLA-CNC) in food applications: part a—effect of nisin release on the inactivation of listeria monocytogenes in ham. Cellulose, 21(3): 1837-1850.

10.      Yang, W., Fortunati, E., Dominici, F., Giovanale, G., Mazzaglia, A., Balestra, G. M., ... and Puglia, D. (2016). Effect of cellulose and lignin on disintegration, antimicrobial and antioxidant properties of PLA active films. International Journal of Biological Macromolecules, 89: 360-368.

11.      Zakaria, Z., Islam, M., Hassan, A., Mohamad Haafiz, M. K., Arjmandi, R., Inuwa, I. M. and Hasan, M. (2013). Mechanical properties and morphological characterization of PLA/chitosan/epoxidized natural rubber composites. Advances in Materials Science and Engineering, 2013: 629092.

12.      Wei, L., Stark, N. M., Sabo, R. C. and Matuana, L. (2016). Modification of cellulose nanocrystals (CNCs) for use in poly (lactic acid) (PLA)-CNC composite packaging products. In: Proceedings, Forest Products Society International Convention, June 28-29, 2016, Portland, OR.

13.      Sullivan, E. M., Moon, R. J. and Kalaitzidou, K. (2015). Processing and characterization of cellulose nanocrystals/polylactic acid nanocomposite films. Materials, 8(12): 8106-8116.

14.      Dos Santos, F. A., Iulianelli, G. C. and Tavares, M. I. (2017). Effect of microcrystalline and nanocrystals cellulose fillers in materials based on PLA matrix. Polymer Testing, 61: 280-288.

15.      Rhim, J. W., Park, H. M. and Ha, C. S. (2013). Bio-nanocomposites for food packaging applications. Progress in Polymer Science, 38(10-11): 1629-1652.

16.      Lim, W. L., Gunny, A. A. N., Kasim, F. H., Gopinath, S. C., Kamaludin, N. H. I. and Arbain, D. (2021). Cellulose nanocrystals from bleached rice straw pulp: acidic deep eutectic solvent versus sulphuric acid hydrolyses. Cellulose, 28(10), 6183-6199.

17.      Zeid, A., Karabagias, I. K., Nassif, M. and Kontominas, M. G. (2019). Preparation and evaluation of antioxidant packaging films made of polylactic acid containing thyme, rosemary, and oregano essential oils. Journal of Food Processing and Preservation, 43(10): e14102.

18.      Qin, Y., Li, W., Liu, D., Yuan, M. and Li, L. (2017). Development of active packaging film made from poly (lactic acid) incorporated essential oil. Progress in Organic Coatings, 103: 76-82.

19.      Rosdi, N. and Zakaria, Z. (2016). Biodegradability properties of chitin/polylactic acid composite films. eProceedings Chemistry, 1(1): 48-52.

20.      Graupner, N. (2008). Application of lignin as natural adhesion promoter in cotton fibre-reinforced poly (lactic acid)(PLA) composites. Journal of Materials Science, 43(15): 5222-5229.

21.      Albahr, Z. (2018). Development of polylactic acid (PLA)-based nanocomposite films for smart food packaging applications. Thesis of Master Degree, South Dakhota State University.

22.      Orellana, J. L., Wichhart, D. and Kitchens, C. L. (2018). Mechanical and optical properties of polylactic acid films containing surfactant-modified cellulose nanocrystals. Journal of Nanomaterials, 2018.

23.      Wildan, M. W. and Lubis, F. I. (2021). Fabrication and characterization of chitosan/cellulose nanocrystal/glycerol bio-composite films. Polymers, 13(7): 1096.

24.      Hossain, K. M. Z., Ahmed, I., Parsons, A. J., Scotchford, C. A., Walker, G. S., Thielemans, W. and Rudd, C. D. (2012). Physico-chemical and mechanical properties of nanocomposites prepared using cellulose nanowhiskers and poly (lactic acid). Journal of Materials Science, 47(6): 2675-2686.


25.      Jakubowska, E., Gierszewska, M., Nowaczyk, J. and Olewnik-Kruszkowska, E. (2020). Physicochemical and storage properties of chitosan-based films plasticized with deep eutectic solvent. Food Hydrocolloids, 108: 106007.

26.      Nikonenko, N. A., Buslov, D. K., Sushko, N. I. and Zhbankov, R. G. (2000). Investigation of stretching vibrations of glycosidic linkages in disaccharides and polysaccarides with use of IR spectra deconvolution. Biopolymers: Original Research on Biomolecules, 57(4): 257-262.

27.      El-Sakhawy, M., Kamel, S., Salama, A. and Tohamy, H. A. S. (2018). Preparation and infrared study of cellulose based amphiphilic materials. Cellulose Chemical Technology, 52(3-4): 193-200.