Malaysian Journal of Analytical
Sciences, Vol 27
No 1 (2023): 63 - 73
THE
EFFECT OF NANOFILLERS ON THE FUNCTIONAL PROPERTIES OF PLA AND CHITOSAN BASED
FILM
(Kesan Pengisian Nano Kepada Sifat Filem yang Berasaskan Asid
Polilatik dan Kitosan)
Raja Hasnida Raja Hashim1*,
Ahmad Anas Nagoor Gunny1,2, Sam Sung Ting1,
Nor Helya Iman Kamaludim1, Subash C. B. Gopinath2,3
1Faculty of Chemical Engineering
Technology,
Universiti Malaysia Perlis, Kompleks
Pusat Pengajian Jejawi 3,
Kawasan Perindustrian Jejawi, 02600,
Arau, Perlis, Malaysia
2 Centre of
Excellence for Biomass Utilization,
Faculty of Chemical Engineering
Technology,
Universiti Malaysia Perlis, 02600,
Arau, Perlis, Malaysia
3Institute of Nano Electronic
Engineering,
Universiti Malaysia, Perlis, 01000
Kangar, Perlis, Malaysia
*Corresponding
author: ahmadanas@unimap.edu.my
Received: 20 September 2021;
Accepted: 13 September 2022; Published: 22
February 2023
Abstract
The
aim of this study was to develop poly (lactic acid) and chitosan-based films
and to examine the effect of cellulose nanocrystal (CNC) as nanofillers on the
properties of the films. The biofilms were prepared by solvent casting method.
The physical and mechanical properties of the resulting films were examined. SEM analysis showed that the surface of
PLA/Cs films smoother when 1% and 2 % of CNC were added. The results for
percent of water absorption of the films increased with increasing amount of
CNC in PLA/Chitosan matrix. Tensile test results indicated higher TS value by
incorporation of 2% of
CNC. However, the PLA/Chitosan-CNC films at 3% and 4% CNC concentration
exhibited a decreased TS value. PLA/Chitosan
films were improved with the addition of a small amount of CNC resulting in PLA
nanocomposite, which will be further evaluated for fruit packaging
applications. The data obtained through this research could contribute to the
establishment of a biofilms with improved the physical and mechanical properties
promising significant advantages in term of longer storage life, maintaining
safety, and keeping quality of a product especially in fruit packaging.
.
Keywords: polylactic acid, chitosan, cellulose nanocrystal,
films, packaging
Abstrak
Tujuan kajian ini adalah untuk
membuat filem berasaskan poli (asid laktik) dan kitosan dan mengkaji kesan
kristal nano selulosa (CNC) sebagai pengisi nano pada sifat filem. Biofilm
tersebut disiapkan dengan kaedah tuangan pelarut. Sifat fizikal dan mekanikal
filem yang dihasilkan diperiksa. Analisis SEM menunjukkan bahawa permukaan
filem PLA/Cs lebih licin apabila 1% dan 2 % CNC ditambah.Selanjutnya, peratus
penyerapan air filem meningkat dengan peningkatan jumlah CNC dalam matriks PLA/
kitosan. Hasil ujian tegangan menunjukkan nilai TS yang lebih tinggi dengan
memasukkan 2% CNC. Walau bagaimanapun, filem PLA / Chitosan-CNC pada kepekatan
CNC 3% dan 4% menunjukkan penurunan nilai TS. Filem PLA / kitosan ditambah baik
dengan penambahan sejumlah kecil CNC yang menghasilkan nanokomposit PLA, yang
akan dinilai lebih lanjut untuk aplikasi pembungkusan buah. Data yang diperoleh
melalui penyelidikan ini dapat menyumbang pada pembentukan biofilm dengan
peningkatan sifat sifat fizikal dan mekanikal yang lebih baik yang menjanjikan
kelebihan yang ketara dari segi jangka hayat penyimpanan yang lebih lama,
mengekalkan keselamatan, dan mengekalkan kualiti produk terutamanya dalam
pembungkusan buah-buahan
.
Kata kunci: asid polilaktik, kitosan, selulosa nanokristal, filem,
pembungkusan
References
1.
Jovanovic,
G. D., Klaus, A. S. and Niksic, M. P. (2016).
Antimicrobial activity of chitosan films with essential oils against listeria
monocytogenes on cabbage. Jundishapur
Journal of Microbiology, 9(9): e34804.
2.
Bhuvaneshwari, S., Sruthi, D., Sivasubramanian, V., Niranjana,
K. and Sugunabai, J. (2011). Development and characterization of chitosan films.
International Journal of Engineering Research and Applications, 1(2):
292-299.
3.
Priyadarshi, R., Kumar, B., Deeba,
F., Kulshreshtha, A. and Negi, Y. S. (2018). Chitosan
films incorporated with apricot (Prunus armeniaca)
kernel essential oil as active food packaging material. Food Hydrocolloids,
85: 158-166.
4.
Raghav,
P. K., Agarwal, N. and Saini, M. (2012). Edible coating of fruits and
vegetables: a review. International Journal of Scientific Research and
Modern Education, 1(1): 188-204.
5.
Farah,
S., Anderson, D. G. and Langer, R. (2016). Physical and mechanical properties
of PLA, and their functions in widespread applications—a comprehensive review. Advanced
Drug Delivery Reviews, 107: 367-392.
6.
Casalini, T., Rossi, F., Castrovinci,
A. and Perale, G. (2019). A perspective on polylactic acid-based polymers use
for nanoparticles synthesis and applications. Frontiers in Bioengineering
and Biotechnology, 7: 259.
7.
Salmieri, S., Islam, F., Khan, R. A., Hossain, F. M.,
Ibrahim, H. M., Miao, C. and Lacroix, M. (2014). Antimicrobial nanocomposite
films made of poly (lactic acid)–cellulose nanocrystals (PLA–CNC) in food
applications—Part B: Effect of oregano essential oil release on the
inactivation of listeria monocytogenes in mixed vegetables. Cellulose,
21(6): 4271-4285.
8.
Wildan, M. W. and Lubis, F. I.
(2021). Fabrication and characterization of chitosan/cellulose
nanocrystal/glycerol bio-composite films. Polymers, 13(7): 1096
9.
Salmieri, S., Islam, F., Khan, R. A., Hossain, F. M.,
Ibrahim, H. M., Miao, C. and Lacroix, M. (2014). Antimicrobial nanocomposite
films made of poly (lactic acid)-cellulose nanocrystals (PLA-CNC) in food
applications: part a—effect of nisin release on the inactivation of listeria
monocytogenes in ham. Cellulose, 21(3): 1837-1850.
10.
Yang,
W., Fortunati, E., Dominici,
F., Giovanale, G., Mazzaglia,
A., Balestra, G. M., ... and Puglia, D. (2016). Effect of cellulose and lignin on disintegration,
antimicrobial and antioxidant properties of PLA active films. International
Journal of Biological Macromolecules, 89: 360-368.
11.
Zakaria,
Z., Islam, M., Hassan, A., Mohamad Haafiz, M. K., Arjmandi, R., Inuwa, I. M. and
Hasan, M. (2013). Mechanical properties and morphological characterization of
PLA/chitosan/epoxidized natural rubber composites. Advances in Materials
Science and Engineering, 2013: 629092.
12.
Wei,
L., Stark, N. M., Sabo, R. C. and Matuana, L. (2016).
Modification of cellulose nanocrystals (CNCs) for use in poly (lactic acid)
(PLA)-CNC composite packaging products. In: Proceedings, Forest Products
Society International Convention, June 28-29, 2016, Portland, OR.
13.
Sullivan,
E. M., Moon, R. J. and Kalaitzidou, K. (2015).
Processing and characterization of cellulose nanocrystals/polylactic acid
nanocomposite films. Materials, 8(12): 8106-8116.
14.
Dos
Santos, F. A., Iulianelli, G. C. and Tavares, M. I.
(2017). Effect of
microcrystalline and nanocrystals cellulose fillers in materials based on PLA
matrix. Polymer Testing, 61: 280-288.
15.
Rhim, J. W., Park, H. M. and Ha, C. S. (2013).
Bio-nanocomposites for food packaging applications. Progress in Polymer
Science, 38(10-11): 1629-1652.
16.
Lim,
W. L., Gunny, A. A. N., Kasim, F. H., Gopinath, S. C., Kamaludin,
N. H. I. and Arbain, D. (2021). Cellulose
nanocrystals from bleached rice straw pulp: acidic deep eutectic solvent versus
sulphuric acid hydrolyses. Cellulose, 28(10),
6183-6199.
17.
Zeid, A., Karabagias, I. K.,
Nassif, M. and Kontominas, M. G. (2019). Preparation and evaluation of antioxidant packaging
films made of polylactic acid containing thyme, rosemary, and oregano essential
oils. Journal of Food Processing and Preservation, 43(10): e14102.
18.
Qin,
Y., Li, W., Liu, D., Yuan, M. and Li, L. (2017). Development of active packaging film made from poly
(lactic acid) incorporated essential oil. Progress in Organic Coatings,
103: 76-82.
19.
Rosdi, N. and Zakaria, Z. (2016). Biodegradability
properties of chitin/polylactic acid composite films. eProceedings
Chemistry, 1(1): 48-52.
20.
Graupner, N. (2008). Application of lignin as natural
adhesion promoter in cotton fibre-reinforced poly
(lactic acid)(PLA) composites. Journal of Materials Science, 43(15):
5222-5229.
21.
Albahr, Z. (2018). Development of polylactic acid
(PLA)-based nanocomposite films for smart food packaging applications. Thesis
of Master Degree, South Dakhota State University.
22.
Orellana,
J. L., Wichhart, D. and Kitchens, C. L. (2018).
Mechanical and optical properties of polylactic acid films containing
surfactant-modified cellulose nanocrystals. Journal of Nanomaterials,
2018.
23.
Wildan, M. W. and Lubis, F. I.
(2021). Fabrication and characterization of chitosan/cellulose
nanocrystal/glycerol bio-composite films. Polymers, 13(7): 1096.
24.
Hossain,
K. M. Z., Ahmed, I., Parsons, A. J., Scotchford, C.
A., Walker, G. S., Thielemans, W. and Rudd, C. D. (2012). Physico-chemical
and mechanical properties of nanocomposites prepared using cellulose nanowhiskers and poly (lactic acid). Journal of Materials
Science, 47(6): 2675-2686.
25.
Jakubowska, E., Gierszewska, M., Nowaczyk, J. and Olewnik-Kruszkowska,
E. (2020). Physicochemical and storage properties of chitosan-based films
plasticized with deep eutectic solvent. Food Hydrocolloids, 108: 106007.
26.
Nikonenko, N. A., Buslov, D. K., Sushko, N. I. and Zhbankov, R. G.
(2000). Investigation of stretching vibrations of glycosidic linkages in
disaccharides and polysaccarides with use of IR
spectra deconvolution. Biopolymers: Original Research on Biomolecules, 57(4):
257-262.
27.
El-Sakhawy, M., Kamel, S., Salama, A. and Tohamy,
H. A. S. (2018). Preparation and infrared study of cellulose based amphiphilic
materials. Cellulose Chemical Technology, 52(3-4): 193-200.