Malaysian
Journal of Analytical Sciences, Vol 27 No 1 (2023): 54 - 62
HYDROTHERMAL SYNTHESIS OF
Co AND Pd DOPED TIN OXIDE NANORODS AND THEIR PHOTOCATALYTIC DEGRADATION OF
POLYPROPYLENE
(Sintesis Hidroterma Nanorod Stanum Oksida Terdop Co dan Pd
dan
Degradasi Fotokatalitik Polipropilena)
Vicinisvarri Inderan1,*, Nur Aina Shahida Ahmad1,
Nurizyan Amirah Mohd Zaidi1, Norain Isa1,
Wan Zuraida Wan Kamis1, Hooi Ling Lee2,
and Siva Raseetha3
1Chemical Engineering Studies,
College of
Engineering,
Universiti
Teknologi MARA, Penang Branch,
13500 Permatang
Pauh, Penang, Malaysia
2Nanomaterials Research Group,
School of
Chemical Sciences,
Universiti
Sains Malaysia, 11800 USM, Penang, Malaysia
3Faculty of Applied Sciences,
Universiti
Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia
*Corresponding
author: vicinisvarri@uitm.edu.my
Received: 6 October 2022; Accepted:17
Jan 2023; Published: 22 February 2023
Abstract
It has been reported that
the wastewater treatment processes are unable to remove microplastics (MPs)
from wastewater completely and often bypass the treatment plants into water
resources. Hence, this study tested cobalt (Co) and palladium (Pd) doped tin
oxide SnO2 nanorods as photocatalysts to degrade the MPs. Co and Pd were selected
as dopants due to their high oxidation catalytic characteristics. A dosage of
10 mol% dopants was used to prepare the doped SnO2 nanorods. The SnO2
was synthesized using a facile hydrothermal route at a relatively lower
temperature, 180 °C. To study the photocatalytic performance of MPs, the
reaction was executed on polypropylene (PP) for 72 hours under visible light
irradiation. While, the effect of pH was
tested at different pH conditions (5,7, and 9). The SnO2 nanorods
were analyzed using X-ray diffraction (XRD), field emission scanning electron
microscope (FESEM), Fourier transforms infrared (FTIR) spectrometer, and UV-Vis
spectrometer. The broadening of XRD peaks in Pd and Co-doped SnO2
nanorods signifies a decrease in crystalline size, which is supported by FESEM
images with ~15 nm diameter. The performance of the photodegradation of PP is
verified by using FTIR analysis. The strong vibration peaks of the carbonyl and
hydroxyl bands confirmed that the polymer chain broke down via a
photo-oxidation reaction. Cracks and cavities have been found on the surface of
PP after the photocatalytic reaction. Overall, 10% Pd-doped and Co-doped SnO2
have exhibited good performance after 72 hours of photocatalytic reaction at pH
9, and it has a high potential as a photocatalyst for the degradation of MPs.
Keywords: tin oxide, palladium
doped, cobalt doped, microplastics, photodegradation
Abstrak
Laporan menunjukkan bahawa proses
rawatan air sisa tidak dapat membuang mikroplastik (MP) sepenuhnya yang
terkandung dalam air sisa malah sering memintas loji rawatan ke sumber air.
Oleh yang demikian, dalam kajian ini kobalt (Co) dan paladium (Pd) terdop
stanum oksida (SnO2) telah diselidik sebagai fotokatalis untuk
mendegradasi MP. Co dan Pd telah dipilih sebagai logam dopan disebabkan
kedua-dua logam tersebut mempunyai ciri-ciri pemangkin oksida yang tinggi.
Sukatan sebanyak 10 mol% dopan telah digunakan untuk menyediakan nanorod SnO2
terdop. SnO2 telah disintesis menggunakan laluan hidroterma yang
mudah pada suhu yang agak rendah, 180 °C. Untuk mengkaji prestasi fotodegradasi
MP, proses fotokatalisis telah dijalankan pada polipropilena (PP) selama 72
jam, di bawah penyinaran cahaya nampak. Manakala,
kesan pH pada telah dikaji pada pH yang berlainan (5,7 dan 9). Nanorod SnO2 yang terhasil telah
dianalisis menggunakan pembelauan sinar-X (XRD), mikroskop elektron pengimbasan
pancaran medan (FESEM), spektrometer Fourier inframerah transfomasi (FTIR) dan
spektrometer UV-Vis. Pelebaran puncak XRD bagi sampel nanorod SnO2
terdop menunjukkan penurunan dalam saiz kristal, yang disokong oleh imej FESEM
dengan diameter ~ 15 nm. Prestasi fotodegradasi PP telah disahkan melalui
analisis FTIR. Kehadiran puncak getaran kuat karbonil dan hidroksil mengesahkan
rantai polimer terputus melalui tindak balas pengoksidaan foto. Keretakan dan
rongga telah ditemui pada permukaan PP yang telah dirawat dengan fotokatalisis.
Secara keseluruhan, SnO2 terdop dengan 10 mol% Co and Pd telah
menunjukkan prestasi yang baik selepas 72 jam tindak balas fotokatalitik pada
pH 9 dan ia mempunyai potensi tinggi sebagai fotomangkin untuk degradasi
mikroplastik.
Kata
kunci: stanum oksida, dop palladium, dop kobalt, mikroplastik,
penguraian foto.
References
1. Issac, M. N. and Kandasubramanian, B. (2021). Effect of
microplastics in water and aquatic systems. Environmental Science Pollution
Research, 28(16):19544-19562.
2. Auta, H.S., Emenike, C. U. and Fauziah, S. H. (2017). Distribution and importance of
microplastics in the marine environment: A review of the sources, fate,
effects, and potential solutions. Environmental International,
102:165-176.
3. Elkhatib, D., Oyanedel-Craver, V.
and Carissimi, E. (2021). Electrocoagulation applied
for the removal of microplastics from wastewater treatment facilities. Separation
Purification Technology, 276: 11887.
4. Zhang,
Y., Jiang, H., Bian, K. et al (2021). A critical review of
control and removal strategies for microplastics from aquatic environments. Journal
Environmental Chemical Engineering, 9:105463.
5. Ge,
J., Zhang, Z., Ouyang, Z., et al (2022). Photocatalytic degradation
of (micro)plastics using TiO2-based and other catalysts:
Properties, influencing factor, and mechanism. Environmental Research,
209: 112729.
6. Maulana,
D. A, Ibadurrohman, M. and Slamet
(2021). Synthesis of nano-composite Ag/TiO for
polyethylene microplastic degradation applications. IOP Conference Material
Science Engineering, 1011(1): 012054.
7. Tofa, T. S., Ye, F., Kunjali, K.
L. and Dutta, J. (2019). Enhanced visible light photodegradation of
microplastic fragments with plasmonic platinum/zinc oxide nanorod
photocatalysts. Catalysts, 9: 819.
8. Uheida, A., Mejía, H. G., Abdel-Rehim, M., et al (2021). Visible light
photocatalytic degradation of polypropylene microplastics in a continuous
water flow system. Journal Hazard Materials, 406: 124299.
9. Syeed Tofa, T., Karthik, Kunjali, L., et al. (2019). Visible light photocatalytic
degradation of microplastic residues with zinc oxide nanorods. Environmental
Chemistry Letters, 17:1341-1346.
10. Kim, S.,
Sin, A., Nam, H., et al. (2022), Advanced oxidation processes for
microplastics degradation: A recent trend. Chemical Engineering Journal
Advances, 9:100213.
11. Inderan, V., Lim, S. Y., Ong, T. S., et al. (2015).
Synthesis and characterisations of SnO2
nanorods via low temperature hydrothermal method. Superlattices
Microstructure, 88: 396-402.
12. Tamez Uddin Md, Nicolas Y,
Olivier C, et al. (2012). Nanostructured SnO2–ZnO heterojunction photocatalysts showing enhanced
photocatalytic activity for the degradation of organic dyes. Inorganic
Chemistry, 51: 7764-7773.
13. Inderan, V., Arafat, M. M., Kumar, S., et al. (2017).
Study of structural properties and defects of Ni-doped SnO2
nanorods as ethanol gas sensors. Nanotechnology, 28(26): 265702.
14. Inderan, V., Arafat, M. M., Haseeb, A. S. M. A., et al
(2019), A comparative study of structural and ethanol gas sensing properties
of pure, nickel and palladium doped SnO2 nanorods synthesised by the hydrothermal method. Journal
Physical Sciences, 30:127-143.
15. Epifani, M., Arbiol, J., Pellicer, E., et al. (2008). Synthesis and gas-sensing
properties of Pd-doped SnO2 nanocrystals. A case study of a general
methodology for doping metal oxide nanocrystals. Crystal Growth Design,
8(5):1774-1778.
16. Medhi,
R., Marquez, M. D., Lee, T. R. (2020). Visible-light-active doped
metal oxide nanoparticles: Review of their synthesis, properties, and
applications. ACS Applied Nano Materials, 3(7): 6156-6185.
17. Babu,
B., Kadam, A. N., Rao, G. T., et al. (2018). Enhancement of visible-light-driven photoresponse of Mn-doped SnO2 quantum dots
obtained by rapid and energy efficient synthesis. Journal Luminescence,
195: 283-289.
18. Liu, Y.,
Liu, X. and Zhang, X. (2023). Synergy of multi-means to improve SnO2
lithium storage performance achieved by one-pot solvothermal method. Electrochimica Acta, 437:141453.
19. Longo,
C., Savaris, M., Zeni, M.,
et al. (2011). Degradation study of polypropylene (PP) and bioriented
polypropylene (BOPP) in the environment. Material Research, 14:
442-448.
20. Dai, S.
and Yao, Z. (2012). Synthesis of flower-like SnO2 single crystals
and its enhanced photocatalytic activity. Applied Surface Sciences,
258: 5703-5706.
21. Kim, S.
P., Choi, M. Y. and Choi, H. C. (2016). Photocatalytic activity of SnO2
nanoparticles in methylene blue degradation. Materials Research Bulletin,
74: 85-89.