Malaysian Journal of Analytical
Sciences, Vol 27
No 1 (2023): 44 - 53
STUDIES
ON THE SYNTHESIS OF β-CARBOLINE AND ITS DERIVATIVES AS POTENTIAL
ANTIMALARIAL DRUG COMPONENTS
(Kajian Mengenai Sintesis β-Karbolina dan
Terbitannya sebagai Komponen Ubat Anti Malaria yang Berpotensi)
Ruwaida Shamsujunaidi1,3,
Aimi Suhaily Saaidin1,2*, Muhammad Hazim Abdul Aziz1,3,
Mohd Fazli Mohammat1,3, Noor Hidayah Pungot1,3
1Organic Synthesis Laboratory,
Institute of Science,
Universiti Teknologi MARA Kampus Puncak Alam,
42300 Bandar Puncak Alam, Selangor, Malaysia
2Centre of Foundation Studies,
Universiti Teknologi MARA, Cawangan Selangor, Kampus Dengkil,
43800 Dengkil, Selangor, Malaysia
3School of Chemistry and Environment,
Faculty of Applied Sciences,
Universiti Teknologi MARA, 40450 Shah Alam, Selangor,
Malaysia
*Corresponding
author: aimisuhaily@uitm.edu.my
Received: 29 September 2022;
Accepted: 17 January 2023; Published: 22
February 2023
Abstract
β-Carboline constitutes a tricyclic pyrido[3,4-b] indole ring
structure and is widely recognized for its prevalent biological activities. In
recent years, numerous studies have reported on its excellent biological
activities, particularly anti-cancer, anti-fungal, anti-malarial agents and
many more. Thus, a collective of β-carboline derivatives were synthesized
to explore its pharmacological properties. The synthetic approach towards
β-carboline derivatives has been constructed in a two-step reaction, including
Pictet-Spengler condensation reaction and the
iodine-mediated oxidative dehydrogenation reaction. Pictet-Spengler
was carried out by treating aldehydes bearing different substituents with
tryptamine in the presence of trifluoroacetic acid. The synthesized
intermediates were then aromatized to give the desired β-carboline
derivatives. All these synthesized intermediates and β-carboline
derivatives were analyzed and confirmed by NMR and ATR-FTIR
spectroscopy. The working foundation established in this study will be
applied in future research and development of new broad-spectrum
β-carboline based anti-malarial drugs. Compounds 6, 9 and 12
synthesized in this work could be promising anti-malaria candidates in this
future user.
Keywords: β-carboline, oxidative dehydrogenation reaction, pictet-spengler condensation, tetrahydro-β-carboline,
trifluoroacetic acid
Abstrak
β-Karbolina
membentuk struktur cincin indol pyrido trisiklik [3,4-b] dan diiktiraf secara
meluas untuk aktiviti biologinya yang lazim. Dalam beberapa tahun kebelakangan
ini, banyak kajian telah dilaporkan mengenai aktiviti biologinya yang sangat
baik terutamanya sebagai agen anti-kanser, anti-kulat, anti-malaria dan banyak
lagi. Oleh itu, satu kolektif terbitan β-karbolina telah disintesis untuk
meneroka lebih lanjut sifat farmakologinya. Pendekatan sintetik terhadap
terbitan β-karbolina telah dibina dalam tindak balas dua langkah yang
merangkumi tindak balas pemeluwapan Pictet-Spengler dan tindak balas
dehidrogenasi oksidatif pengantara iodin. Pictet-Spengler telah dijalankan
dengan merawat aldehid yang mengandungi substituen berbeza dengan triptamina
dengan kehadiran trifluoroasetik asid. Perantaraan yang disintesis kemudiannya
diaromatis untuk memberikan terbitan β-karbolina yang dikehendaki. Semua
perantaraan yang disintesis dan terbitan β-karbolina ini dianalisis dan
disahkan oleh spektroskopi NMR dan ATR-FTIR. Asas kerja yang ditubuhkan dalam
kajian ini akan digunakan dalam penyelidikan dan pembangunan masa depan ubat
antimalaria berasaskan β-karbolina spektrum luas baharu. Kompaun 6,
9 dan 12 yang disintesis dalam kerja ini boleh menjanjikan calon
anti-malaria pada pengguna masa hadapan ini.
Kata kunci: terbitan
β-karbolina, tindak balas pendehidrogenan oksidatif, pemeluwapan
picter-spengler, tetrahydro-β-karbolina, trifluoroasetik asid
References
1.
Health Organization, W. (2022).
WHO Guidelines for malaria-3 June 2022. (No. WHO/UCN/ GMP/2022.01 Rev. 2).
World Health Organization.
2.
Phillips, M. A. and Rathod, P. K.
(2010). Plasmodium dihydroorotate dehydrogenase: a promising target for novel
anti-malarial chemotherapy. Infectious Disorders Drug Targets, 10(3):
226-239.
3.
Jaromin, A., Gryzło, B.,
Jamrozik, M., Parapini, S., Basilico, N., Cegła, M., Taramelli, D. and
Zagórska, A. (2021). Synthesis, molecular docking and antiplasmodial activities
of new tetrahydro-β-carbolines. International Journal of Molecular
Sciences, 22(24):13569.
4.
Gorki, V., Singh, R., Walter, N.
S., Bagai, U. and Salunke, D. B. (2018). Synthesis and evaluation of
antiplasmodial efficacy of β-carboline derivatives against murine malaria.
ACS Omega, 3(10): 13200-13210.
5.
World Health Organization. (2018).
Artemisinin resistance and artemisinin-based combination therapy efficacy: status report (No. WHO/CDS/GMP/2018.18) World
Health Organization.
6.
Eagon, S., Hammill, J. T., Bach,
J., Everson, N., Sisley, T. A., Walls, M. J., Durham, S., Pillai, D. R.,
Falade, M. O., Rice, A. L., Kimball, J. J., Lazaro, H., DiBernardo, C. and
Kiplin Guy, R. (2020). Antimalarial activity of tetrahydro-β-carbolines
targeting the ATP binding pocket of the Plasmodium falciparum heat shock 90
protein. Bioorganic & Medicinal Chemistry Letters, 30(21): 127502.
7.
Morita, H., Tomizawa, Y., Deguchi,
J., Ishikawa, T., Arai, H., Zaima, K., Hosoya, T., Hirasawa, Y., Matsumoto, T.,
Kamata, K., Ekasari, W., Widyawaruyanti, A., Wahyuni, T. S., Zaini, N. C. and
Honda, T. (2009). Synthesis and structure-activity relationships of cassiarin A
as potential antimalarials with vasorelaxant activity. Bioorganic &
Medicinal Chemistry, 17(24): 8234-8240.
8.
Yeung, B. K. S., Zou, B.,
Rottmann, M., Lakshminarayana, S. B., Ang, S. H., Leong, S. Y., Tan, J., Wong,
J., Keller-Maerki, S., Fischli, C., Goh, A., Schmitt, E. K., Krastel, P.,
Francotte, E., Kuhen, K., Plouffe, D., Henson, K., Wagner, T., Winzeler, E. A.,
… Keller, T. H. (2010). Spirotetrahydro β-carbolines (spiroindolones): A
new class of potent and orally efficacious compounds for the treatment of
malaria. Journal of Medicinal Chemistry, 53(14): 5155–5164.
9.
Singh, R., Jaisingh, A., Maurya,
I. K. and Salunke, D. B. (2020). Design, synthesis and bio-evaluation of C-1
alkylated tetrahydro-β-carboline derivatives as novel antifungal lead
compounds. Bioorganic & Medicinal Chemistry Letters, 30(3): 126869.
10.
Saify, Z. S., Farhad, J., Mushtaq,
N., Noor, F., Akhtar, S., Arif, M., Naqvi, B. S. and Shoaib, M. H. (2005).
Antibacterial activity of 1-methyl-7-methoxy-beta-carboline and its phenacyl
and coumarine analogues. Pakistan Journal of Pharmaceutical Sciences,
18(3): 39-41.
11.
Mohamed, H. A., Girgis, N. M. R.,
Wilcken, R., Bauer, M. R., Tinsley, H. N., Gary, B. D., Piazza, G. A.,
Boeckler, F. M. and Abadi, A. H. (2010). Synthesis and molecular modeling of
novel tetrahydro-β-carboline derivatives with phosphodiesterase 5
inhibitory and anticancer properties. Journal of Medicinal Chemistry,
54(2): 495-509.
12.
Ferraz, C. A. A., de Oliveira
Júnior, R. G., Picot, L., da Silva Almeida, J. R. G. and Nunes, X. P. (2019).
Pre-clinical investigations of β-carboline alkaloids as antidepressant
agents: A systematic review. Fitoterapia, 137.
13.
Yang, M. L., Kuo, P. C., Damu, A.
G., Chang, R. J., Chiou, W. F. and Wu, T. S. (2006). A versatile route to the
synthesis of 1-substituted β-carbolines by a single step Pictet–Spengler
cyclization. Tetrahedron, 62(47): 10900-10906.
14.
Zhang, J., Li, L., Dan, W., Li,
J., Zhang, Q., Bai, H. and Wang, J. (2015). Synthesis and
antimicrobial activities of 3-methyl-β-carboline derivatives. Natural
Product Communications, 10(6): 9-12.
15.
Kumar, V., Sachdeva, C., Waidha,
K., Sharma, S., Ray, D., Kumar Kaushik, N. and Saha, B. (2021). In vitro and in
silico anti-plasmodial evaluation of newly synthesized β-carboline
derivatives. ChemistrySelect, 6(21): 5338-5342.
16.
Ash’ari, N. A. N., Pungot, N. H.,
Shaameri, Z. and Jani, N. A. (2021). A facile synthesis of n-alkylated
daibucarboline a derivatives via pictet-spengler condensation of tryptamine. Malaysian
Journal of Analytical Sciences, 25(5): 706-715.
17.
Soerens, D., Sandrin, J.,
Ungemach, F., Mokry, P., Wu, G. S., Yamanaka, E., Hutchins, L., DiPierro, M.
and Cook, J. M. (1979). Study of the Pictet-Spengler reaction in aprotic media:
synthesis of the β-galactosidase inhibitor, pyridindolol10. Journal of
Organic Chemistry, 44(4): 535-545.
18.
Cain, M., Weber, R. W., Guzman,
F., Cook, J. M., Barker, S. A., Rice, K. C., Crawley, J. N., Paul, S. M. and
Skolnick, P. (1982). β-Carbolines: Synthesis and neurochemical and
pharmacological actions on brain benzodiazepine receptors. Journal of
Medicinal Chemistry, 25(9): 1081-1091.
19.
Lippke, K. P., Schunack, W. G.,
Wenning, W. and Muller, W. E. (1983). β-carbolines as benzodiazepine
receptor ligands. 1. synthesis and benzodiazepine receptor interaction of
esters of β-carboline-3-carboxylic acid. Journal of Medicinal Chemistry,
26(4): 499-503.
20.
Jun’ichi, K., Cheng, J. F.,
Ohizumi, Y., Ohta, T., Nozoe, S. and Sasaki, T. (1990). Eudistomidins B, C, and
D: novel antileukemic alkaloids from the okinawan marine tunicate Eudistoma
glaucus. Journal of Organic Chemistry, 55(11): 3666-3670.
21.
Yin, W., Sarma, P. V. V. S., Ma,
J., Han, D., Chen, J. L. and Cook, J. M. (2005). Synthesis of bivalent ligands
of β-carboline-3-carboxylates via a palladium-catalyzed homocoupling
process. Tetrahedron Letters, 46(37): 6363-6368.
22.
Kamal, A., Tangella, Y., Manasa,
K. L., Sathish, M., Srinivasulu, V., Chetna, J. and Alarifi, A. (2015).
PhI(OAc)2-mediated one-pot oxidative decarboxylation and aromatization of
tetrahydro-β-carbolines: synthesis of norharmane, harmane, eudistomin U
and eudistomin I. Organic & Biomolecular Chemistry, 13(32):
8652-8662.
23.
Kamal, A., Sathish, M., Prasanthi,
A. V. G., Chetna, J., Tangella, Y., Srinivasulu, V., Shankaraiah, N. and
Alarifi, A. (2015). An efficient one-pot decarboxylative aromatization of
tetrahydro-β-carbolines by using N-chlorosuccinimide: total synthesis of
norharmane, harmane and eudistomins. RSC Advances, 5(109): 90121-90126.
24.
Panarese, J. D. and Waters, S. P.
(2010). Room-temperature aromatization of tetrahydro-β-carbolines by
2-iodoxybenzoic acid: Utility in a total synthesis of eudistomin U. Organic
Letters, 12(18): 4086-4089.
25.
Gaikwad, S., Kamble, D. and
Lokhande, P. (2018). Iodine-catalyzed chemoselective dehydrogenation and
aromatization of tetrahydro-β-carbolines: A short synthesis of Kumujian-C,
Eudistomin-U, Norharmane, Harmane Harmalan and Isoeudistomine-M. Tetrahedron
Letters, 59(25): 2387-2392.
26.
Chu, J. W. and Trout, B. L.
(2004). On the mechanisms of oxidation of organic sulfides by H2O2
in aqueous solutions. Journal of the American Chemical Society, 126(3):
900-908.