Malaysian Journal of Analytical Sciences, Vol 27 No 1 (2023): 44 - 53

 

STUDIES ON THE SYNTHESIS OF β-CARBOLINE AND ITS DERIVATIVES AS POTENTIAL ANTIMALARIAL DRUG COMPONENTS

 

(Kajian Mengenai Sintesis β-Karbolina dan Terbitannya sebagai Komponen Ubat Anti Malaria yang Berpotensi)

 

Ruwaida Shamsujunaidi1,3, Aimi Suhaily Saaidin1,2*, Muhammad Hazim Abdul Aziz1,3, Mohd Fazli Mohammat1,3, Noor Hidayah Pungot­1,3

 

1Organic Synthesis Laboratory,

Institute of Science,

Universiti Teknologi MARA Kampus Puncak Alam,

42300 Bandar Puncak Alam, Selangor, Malaysia

2Centre of Foundation Studies,

Universiti Teknologi MARA, Cawangan Selangor, Kampus Dengkil,

43800 Dengkil, Selangor, Malaysia

3School of Chemistry and Environment,

Faculty of Applied Sciences,

Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia

 

*Corresponding author: aimisuhaily@uitm.edu.my

 

 

Received: 29 September 2022; Accepted: 17 January 2023; Published:  22 February 2023

 

 

Abstract

β-Carboline constitutes a tricyclic pyrido[3,4-b] indole ring structure and is widely recognized for its prevalent biological activities. In recent years, numerous studies have reported on its excellent biological activities, particularly anti-cancer, anti-fungal, anti-malarial agents and many more. Thus, a collective of β-carboline derivatives were synthesized to explore its pharmacological properties. The synthetic approach towards β-carboline derivatives has been constructed in a two-step reaction, including Pictet-Spengler condensation reaction and the iodine-mediated oxidative dehydrogenation reaction. Pictet-Spengler was carried out by treating aldehydes bearing different substituents with tryptamine in the presence of trifluoroacetic acid. The synthesized intermediates were then aromatized to give the desired β-carboline derivatives. All these synthesized intermediates and β-carboline derivatives were analyzed and confirmed by NMR and ATR-FTIR spectroscopy. The working foundation established in this study will be applied in future research and development of new broad-spectrum β-carboline based anti-malarial drugs. Compounds 6, 9 and 12 synthesized in this work could be promising anti-malaria candidates in this future user.

 

Keywords: β-carboline, oxidative dehydrogenation reaction, pictet-spengler condensation, tetrahydro-β-carboline, trifluoroacetic acid

 

Abstrak

β-Karbolina membentuk struktur cincin indol pyrido trisiklik [3,4-b] dan diiktiraf secara meluas untuk aktiviti biologinya yang lazim. Dalam beberapa tahun kebelakangan ini, banyak kajian telah dilaporkan mengenai aktiviti biologinya yang sangat baik terutamanya sebagai agen anti-kanser, anti-kulat, anti-malaria dan banyak lagi. Oleh itu, satu kolektif terbitan β-karbolina telah disintesis untuk meneroka lebih lanjut sifat farmakologinya. Pendekatan sintetik terhadap terbitan β-karbolina telah dibina dalam tindak balas dua langkah yang merangkumi tindak balas pemeluwapan Pictet-Spengler dan tindak balas dehidrogenasi oksidatif pengantara iodin. Pictet-Spengler telah dijalankan dengan merawat aldehid yang mengandungi substituen berbeza dengan triptamina dengan kehadiran trifluoroasetik asid. Perantaraan yang disintesis kemudiannya diaromatis untuk memberikan terbitan β-karbolina yang dikehendaki. Semua perantaraan yang disintesis dan terbitan β-karbolina ini dianalisis dan disahkan oleh spektroskopi NMR dan ATR-FTIR. Asas kerja yang ditubuhkan dalam kajian ini akan digunakan dalam penyelidikan dan pembangunan masa depan ubat antimalaria berasaskan β-karbolina spektrum luas baharu. Kompaun 6, 9 dan 12 yang disintesis dalam kerja ini boleh menjanjikan calon anti-malaria pada pengguna masa hadapan ini.

 

Kata kunci: terbitan β-karbolina, tindak balas pendehidrogenan oksidatif, pemeluwapan picter-spengler, tetrahydro-β-karbolina, trifluoroasetik asid

 

References

1.              Health Organization, W. (2022). WHO Guidelines for malaria-3 June 2022. (No. WHO/UCN/ GMP/2022.01 Rev. 2). World Health Organization.

2.              Phillips, M. A. and Rathod, P. K. (2010). Plasmodium dihydroorotate dehydrogenase: a promising target for novel anti-malarial chemotherapy. Infectious Disorders Drug Targets, 10(3): 226-239.

3.              Jaromin, A., Gryzło, B., Jamrozik, M., Parapini, S., Basilico, N., Cegła, M., Taramelli, D. and Zagórska, A. (2021). Synthesis, molecular docking and antiplasmodial activities of new tetrahydro-β-carbolines. International Journal of Molecular Sciences, 22(24):13569.

4.              Gorki, V., Singh, R., Walter, N. S., Bagai, U. and Salunke, D. B. (2018). Synthesis and evaluation of antiplasmodial efficacy of β-carboline derivatives against murine malaria. ACS Omega, 3(10): 13200-13210.

5.              World Health Organization. (2018). Artemisinin resistance and artemisinin-based combination therapy efficacy: status report (No. WHO/CDS/GMP/2018.18) World Health Organization.

6.              Eagon, S., Hammill, J. T., Bach, J., Everson, N., Sisley, T. A., Walls, M. J., Durham, S., Pillai, D. R., Falade, M. O., Rice, A. L., Kimball, J. J., Lazaro, H., DiBernardo, C. and Kiplin Guy, R. (2020). Antimalarial activity of tetrahydro-β-carbolines targeting the ATP binding pocket of the Plasmodium falciparum heat shock 90 protein. Bioorganic & Medicinal Chemistry Letters, 30(21): 127502.

7.              Morita, H., Tomizawa, Y., Deguchi, J., Ishikawa, T., Arai, H., Zaima, K., Hosoya, T., Hirasawa, Y., Matsumoto, T., Kamata, K., Ekasari, W., Widyawaruyanti, A., Wahyuni, T. S., Zaini, N. C. and Honda, T. (2009). Synthesis and structure-activity relationships of cassiarin A as potential antimalarials with vasorelaxant activity. Bioorganic & Medicinal Chemistry, 17(24): 8234-8240.

8.              Yeung, B. K. S., Zou, B., Rottmann, M., Lakshminarayana, S. B., Ang, S. H., Leong, S. Y., Tan, J., Wong, J., Keller-Maerki, S., Fischli, C., Goh, A., Schmitt, E. K., Krastel, P., Francotte, E., Kuhen, K., Plouffe, D., Henson, K., Wagner, T., Winzeler, E. A., … Keller, T. H. (2010). Spirotetrahydro β-carbolines (spiroindolones): A new class of potent and orally efficacious compounds for the treatment of malaria. Journal of Medicinal Chemistry, 53(14): 5155–5164.

9.              Singh, R., Jaisingh, A., Maurya, I. K. and Salunke, D. B. (2020). Design, synthesis and bio-evaluation of C-1 alkylated tetrahydro-β-carboline derivatives as novel antifungal lead compounds. Bioorganic & Medicinal Chemistry Letters, 30(3): 126869.

10.           Saify, Z. S., Farhad, J., Mushtaq, N., Noor, F., Akhtar, S., Arif, M., Naqvi, B. S. and Shoaib, M. H. (2005). Antibacterial activity of 1-methyl-7-methoxy-beta-carboline and its phenacyl and coumarine analogues. Pakistan Journal of Pharmaceutical Sciences, 18(3): 39-41.

11.           Mohamed, H. A., Girgis, N. M. R., Wilcken, R., Bauer, M. R., Tinsley, H. N., Gary, B. D., Piazza, G. A., Boeckler, F. M. and Abadi, A. H. (2010). Synthesis and molecular modeling of novel tetrahydro-β-carboline derivatives with phosphodiesterase 5 inhibitory and anticancer properties. Journal of Medicinal Chemistry, 54(2): 495-509.

12.           Ferraz, C. A. A., de Oliveira Júnior, R. G., Picot, L., da Silva Almeida, J. R. G. and Nunes, X. P. (2019). Pre-clinical investigations of β-carboline alkaloids as antidepressant agents: A systematic review. Fitoterapia, 137.

13.           Yang, M. L., Kuo, P. C., Damu, A. G., Chang, R. J., Chiou, W. F. and Wu, T. S. (2006). A versatile route to the synthesis of 1-substituted β-carbolines by a single step Pictet–Spengler cyclization. Tetrahedron, 62(47): 10900-10906.

14.           Zhang, J., Li, L., Dan, W., Li, J., Zhang, Q., Bai, H. and Wang, J. (2015). Synthesis and antimicrobial activities of 3-methyl-β-carboline derivatives. Natural Product Communications, 10(6): 9-12.

15.           Kumar, V., Sachdeva, C., Waidha, K., Sharma, S., Ray, D., Kumar Kaushik, N. and Saha, B. (2021). In vitro and in silico anti-plasmodial evaluation of newly synthesized β-carboline derivatives. ChemistrySelect, 6(21): 5338-5342.

16.           Ash’ari, N. A. N., Pungot, N. H., Shaameri, Z. and Jani, N. A. (2021). A facile synthesis of n-alkylated daibucarboline a derivatives via pictet-spengler condensation of tryptamine. Malaysian Journal of Analytical Sciences, 25(5): 706-715.

17.           Soerens, D., Sandrin, J., Ungemach, F., Mokry, P., Wu, G. S., Yamanaka, E., Hutchins, L., DiPierro, M. and Cook, J. M. (1979). Study of the Pictet-Spengler reaction in aprotic media: synthesis of the β-galactosidase inhibitor, pyridindolol10. Journal of Organic Chemistry, 44(4): 535-545.

18.           Cain, M., Weber, R. W., Guzman, F., Cook, J. M., Barker, S. A., Rice, K. C., Crawley, J. N., Paul, S. M. and Skolnick, P. (1982). β-Carbolines: Synthesis and neurochemical and pharmacological actions on brain benzodiazepine receptors. Journal of Medicinal Chemistry, 25(9): 1081-1091.

19.           Lippke, K. P., Schunack, W. G., Wenning, W. and Muller, W. E. (1983). β-carbolines as benzodiazepine receptor ligands. 1. synthesis and benzodiazepine receptor interaction of esters of β-carboline-3-carboxylic acid. Journal of Medicinal Chemistry, 26(4): 499-503.

20.           Jun’ichi, K., Cheng, J. F., Ohizumi, Y., Ohta, T., Nozoe, S. and Sasaki, T. (1990). Eudistomidins B, C, and D: novel antileukemic alkaloids from the okinawan marine tunicate Eudistoma glaucus. Journal of Organic Chemistry, 55(11): 3666-3670.

21.           Yin, W., Sarma, P. V. V. S., Ma, J., Han, D., Chen, J. L. and Cook, J. M. (2005). Synthesis of bivalent ligands of β-carboline-3-carboxylates via a palladium-catalyzed homocoupling process. Tetrahedron Letters, 46(37): 6363-6368.

22.           Kamal, A., Tangella, Y., Manasa, K. L., Sathish, M., Srinivasulu, V., Chetna, J. and Alarifi, A. (2015). PhI(OAc)2-mediated one-pot oxidative decarboxylation and aromatization of tetrahydro-β-carbolines: synthesis of norharmane, harmane, eudistomin U and eudistomin I. Organic & Biomolecular Chemistry, 13(32): 8652-8662.

23.           Kamal, A., Sathish, M., Prasanthi, A. V. G., Chetna, J., Tangella, Y., Srinivasulu, V., Shankaraiah, N. and Alarifi, A. (2015). An efficient one-pot decarboxylative aromatization of tetrahydro-β-carbolines by using N-chlorosuccinimide: total synthesis of norharmane, harmane and eudistomins. RSC Advances, 5(109): 90121-90126.

24.           Panarese, J. D. and Waters, S. P. (2010). Room-temperature aromatization of tetrahydro-β-carbolines by 2-iodoxybenzoic acid: Utility in a total synthesis of eudistomin U. Organic Letters, 12(18): 4086-4089.

25.           Gaikwad, S., Kamble, D. and Lokhande, P. (2018). Iodine-catalyzed chemoselective dehydrogenation and aromatization of tetrahydro-β-carbolines: A short synthesis of Kumujian-C, Eudistomin-U, Norharmane, Harmane Harmalan and Isoeudistomine-M. Tetrahedron Letters, 59(25): 2387-2392.

26.           Chu, J. W. and Trout, B. L. (2004). On the mechanisms of oxidation of organic sulfides by H2O2 in aqueous solutions. Journal of the American Chemical Society, 126(3): 900-908.