Malaysian Journal of Analytical Sciences, Vol 27 No 1 (2023): 8 – 19

 

Characterization of Anadara granosa as a potential source of calcium carbonate for Glass ionomer cement formulation

 

(Pencirian Anadara granosa Sebagai Sumber Kalsium Karbonat yang Berpotensi untuk Formulasi Simen Kaca Ionomer)

 

Nur’Izzah Md Nasir, Norhazlin Zainuddin*, and Francis Thoo Voon Wai

 

Department of Chemistry, Faculty of Science,

Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia

 

*Corresponding author: norhazlin@upm.edu.my

 

 

Received: 6 October 2022; Accepted: 18 December 2022; Published:  22 February 2023

 

 

Abstract

Glass ionomer cements (GIC) are produced via acid-base reaction between calcium fluoroaluminosilicate glass powders and freeze-dried polyacrylic acid powder. Shells from Anadara granosa or commonly known as cockle, consist of >90% calcium carbonate (CaCO3), have been utilized as the source of CaCO3 by incorporating it as part of glass components for production of GIC. The main objective of this research is to investigate the effect of Anadara granosa shells in setting reaction of GIC using FT-IR spectroscopy. Two types of GIC were synthesized, GIC-A (analytical grade CaCO3) and GIC-B (replacing CaCO3 with the shells). FT-IR spectra showed the setting reaction for both GICs with the occurrence of cross-linking between polyacrylate chain and metal ion from the glass by gradual conversion of COOH at 1690-1700 cm-1 into COO-Mn+ at 1550-1600 cm-1. For compressive strength, GIC-B showed a lower compressive strength compared to GIC-A at 1-day aging time. However, it reached similar value as GIC-A after 28 days aging time. In conclusion, Anadara granosa shells can be utilized for Ca aluminosilicate glass in GIC production where it exhibited similar setting properties and compressive strength as GIC from glass synthesized using commercial CaCO3.

 

Keywords: Anadara granosa, glass ionomer cement, calcium carbonate, calcium fluoroaluminosilicate

 

Abstrak

Simen kaca ionomer (GIC) dihasilkan melalui tindak balas asid-bes di antara serbuk kaca kalsium fluoroaluminosilikat dan serbuk asid poliakrilik kering sejuk beku. Cengkerang dari Anadara granosa atau kebiasaannya dikenali sebagai kerang ini mengandungi >90% kalsium karbonat (CaCO3), telah dimanfaatkan sebagai sumber kalsium karbonat dengan menggabungkannya sebagai sebahagian daripada komponen kaca untuk menghasilkan GIC. Objektif utama kajian ini adalah untuk menyiasat kesan cengkerang Andara granosa dalam tindak balas pengerasan GIC menggunakan spektroskopi FT-IR. Dua jenis GIC telah disintesis, GIC-A (CaCO3 gred analisis) dan GIC-B (menggantikan CaCO3 dengan cengkerang). Spektrum FT-IR menunjukkan bahawa tindak balas pengerasan bagi kedua-dua GIC berlaku dengan kehadiran rangkai silang antara rantai poliakrilat dan ion logam daripada kaca dengan pertukaran COOH secara beransur-ansur pada 1690-1700 cm-1 kepada COO-Mn+ pada 1550-1600 cm-1. Untuk kekuatan mampatan, GIC-B menunjukkan kekuatan mampatan yang lebih rendah berbanding GIC-A pada masa penuaan 1 hari, namun, ia mencapai nilai yang sama seperti GIC-A selepas masa penuaan 28 hari. Kesimpulannya, cengkerang Anadara granosa boleh digunakan untuk kaca Ca aluminosilikat dalam penghasilan GIC di mana ia mempamerkan sifat pengerasan dan kekuatan mampatan yang sama seperti GIC daripada kaca yang disintesis menggunakan CaCO3 komersial.

 

Kata kunci: Anadara granosa, simen kaca ionomer, kalsium karbonat, kalsium floroaluminosilikat

 

References

1.         Jaji, A.Z., Md Zuki, A.B.Z., Mahmud, R., Yusof, M.L., Mohamad, M.N.H., Isa, T., Fu., W. and Hammadi, N.I. (2017). Synthesis, characterization, and cytocompatibility of potential cockle shell aragonite nanocrystals for osteoporosis therapy and hormonal delivery. Nanotechnology, Science and Applications, 10: 23-33.

2.         Fu, W., Mohd Noor, M. H., Mohamad Yusof, L., Tengku Ibrahim, T. A., Keong, Y. S., Jaji, A. Z. and Abu Bakar Zakaria, M. Z. (2017). In vitro evaluation of a novel pH-sensitive drug delivery system-based cockle shell-derived aragonite nanoparticles against osteosarcoma. Journal of Experimental Nanoscience, 12: 166-187.

3.         Summa D., Lanzoni, M., Castaldelli, G., Fano, E. A., & Tamburini, E. (2022). Review: Trends and opportunities of bivalve shells’ waste valorization in a prospect of circular blue bioeconomy. Resources, 11(48); 1-16

4.         Yang, E. I., Yi, S. T., and Leem, Y. M. (2005). Effect of oyster shell substituted for fine aggregate on concrete characteristics: Part I. Fundamental properties. Cement and Concrete Research, 35(11): 2175-2182.

5.         Ballester, P., Mármol, I., Morales, J., and Sánchez, L. (2007). Use of limestone obtained from waste of the mussel cannery industry for the production of mortars. Cement and Concrete Research, 37(4): 559-564.

6.         Mohamed, M., Yusup, S., and Maitra, S. (2012). Decomposition study of calcium carbonate in cockle shell. Journal of Engineering Science and Technology, 7(1): 1-10.

7.         Asmi, D., and Zulfia, A. (2017). blood cockle shells waste as renewable source for the production of biogenic CaCO3 and its characterisation. IOP Conference Series: Earth and Environmental Science, 94: 012049.

8.         Ghafar, M. S. L., Hussein, M. Z., Rukayadi, Y. and Zakaria, M. Z. A. B. (2017). Synthesis and characterization of cockle shell-based calcium carbonate aragonite polymorph nanoparticles with surface functionalization. Journal of Nanoparticle, 2017: 1-12.

9.         Mailafiya, M. M.,Abubakar, K., Danmaigoro, A., Chiroma, S. M., Abdul Rahim,E.  Mohd Moklas, M. A. and Zakaria, Z. A. B. (2019). Review: Cockle shell-derived calcium carbonate (aragonite) nanoparticles: A dynamite to nanomedicine. Applied Science, 9(2897): 1-25.

10.      Sainudin, M. S., Othman, N. H., Ismail, N. N., Wan Ibrahim, M. H. and Rahim, M. A. (2020). Utilization of cockle shell (Anadara granosa) powder as partial replacement of fine aggregates in cement brick. The International Journal of Integrated Engineering, 12(9): 161-168.

11.      Syafwandi, and Cerra, R. A. (2021). The effect of substitution of coarse and fine aggregates with shells of blood clams and cement with fly ash and the additional of superplasticizer against the compressive test. International Journal of Transportation and Infrastucture, 4(2): 148-156.

12.      Chen, J. and Xiang, L. (2009). Controllable synthesis of calcium carbonate polymorphs at different temperatures. Powder Technology, 189(1): 64-69.

13.      Akilal, N., Lemaire, F., Bercu, N. B., Sayen, S., Gangloff, S. C., Khelfaoui, Y., Rammal, H., Kerdjoudj, H. (2019). Cowries derived aragonite as raw biomaterials for bone regenerative medicine. Materials Science and Engineering: C, 94: 894-900.

14.      Tram, N. X. T., (2020). Synthesis and characterization of calcite nano-particle derived from cockle shell for clinical application. ASEAN Engineering Journal, 10(1): 49-54.

15.       Ni, M., and Ratner, B. D. (2008). Differentiation of calcium carbonate polymorphs by surface analysis techniques – an XPS and TOF-SIMS study. Surface and Interface Analysis, 40(10): 1356-1361.

16.      Praja, H. A., Dhaniar, N., Santoso, R. M., Putri, D., Annisa Salsabila A. P., Veda Sahasika A. N., Soetojo, A. and Saraswati, W. (2022) Calcium carbonate of blood cockle (Anadara granosa) shells induced VEGF-A expression in dentin pulp complex an in vivo study. Malaysian Journal of Medicine and Health Sciences, 18(SUPP6): 24-30.

17.      Al Omari, M. M. H., Rashid, I. S., Qinna, N. A., Jaber, A. M. and Badwan, A. A. (2016). Chapter 2: Calcium carbonate. Book title: Profiles of drug substances, excipients, and related methodology. Elsevier, 41: pp 2-445.

18.      Hussein, A. I., Che Mat, A. N., Abd Wahab, N. A. A., Rahman, Husein, A. and Ab-Ghani, Z. (2020). Synthesis and properties of novel calcia-stabilized zirconia (Ca-SZ) with nano calcium oxide derived from cockle shells and commercial source for dental application. Applied Science, 10(5751): 1-13.

19.      Nugroho, J. J., Natsir, N., Trilaksana, A. C., Rovani, C. A., and Atlanta, M. M. (2019). The increase of tooth enamel surface hardness after application blood cockle shells (Anadara granosa) paste as remineralization agent. International Journal of Applied Pharmaceutics, 11(4): 26-29.

20.      Wan Jusoh, W. N., Matori, K. A., Mohd Zaid, M. H., Zainuddin, N., Ahmad Khiri, M. Z., Abdul Rahman, N. A., Abdul Jalil, R. and Kul, E. (2021). Incorporation of hydroxyapatite into glass ionomer cement (GIC) formulated based on alumino-silicate-fluoride glass ceramics from waste materials. Materials, 14(954): 1-14.

21.      International Organization for Stadardization (2007). Dentistry-water-based cements Part 1: Powder/liquid acid-base cements (ISO 9917-1:2007). Retrieved from https://www.iso.org/standard/ 45818.html

22.      Genebra (1986). International organization for standardization. ISO7489. Dental glass polyalkenoate cements.

23.      Mallmann, A., Ataíde, J. C. O., Amoedo, R., Rocha, P. V. and Jacques, L. B. (2007). Compressive strength of glass ionomer cements using different specimen dimensions. Brazillian Oral Restorative, 21: 204-208.

24.      Awang-Hazmi, A. J., Zuki, A. B. Z., Noordin, M. M., Jalila, A., and Norimah, Y. (2007). Mineral composition of the cockle (Anadara granosa) shells of West Coast of Peninsular Malaysia and it's potential as biomaterial for use in bone repair. Journal of Animal and Veterinary Advances, 6(5): 591-594.

25.      Hoque E, Shehryar M, Islam K. N. (2013). Processing and characterization of cockle shell calcium carbonate (CaCO3) bioceramic for potential application in bone tissue engineering. Journal Materials Sciences Engineering, 2(4): 2-6.

26.      Tomlinson, S. K., Ghita, O. R., Hooper, R. M. and Evans, K. E. (2007). Investigation of the dual setting mechanism of a novel dental cement using infrared spectroscopy. Vibrational Spectroscopy, 45(1): 10-17.

27.      Crisp, S., M. A. Pringuer, M. A., Wardleworth, D. and Wilson, A. D. (1974). Reactions in glass ionomer cements: II. An infrared spectroscopic study. Journal of Dental Research, 53(6): 1414-1419.

28.      Md Nasir, N. I., Zainuddin, N., Wan Yunus, W. M. Z. and Matori, K. A. (2014). The influence of modified sodium montmorillonite as filler on the performance of glass polyalkenoate cement. Malaysian Journal of Analytical Sciences, 18(3): 572-583.

29.      Matsuya, S., Maeda, T. and Ohta, M. (1996). IR and NMR analyses of hardening and maturation of glass- ionomer cement. Journal of Dentistry Restorative, 75(12): 1920-1927.

30.      Hill, R. G. (1993). The fracture properties of glass polyalkenoate cements as a function of cement age. Journal of Materials Science, 28(14): 3851-3858.

31.      Crisp, S. and A. D. Wilson (1974). Reactions in glass ionomer cements: I. Decomposition of the powder. Journal of Dental Research, 53(6): 1408-1413.

32.      Crisp, S. and A. D. Wilson (1974). Reactions in glass ionomer cements: III. The precipitation reaction. Journal of Dental Research, 53(6): 1420-1424.

33.      -Cattani-Lorente, M. A., Godin, C. and Meyer, J. M. (1994). Mechanical behavior of glass ionomer cements affected by long-term storage in water. Dental Materials, 10(1): 37-44.

34.      Lohbauer, U. (2010). Dental glass ionomer cements as permanent filling materials? – properties, limitations and future trends. Materials, 3(1): 76-96

35.      De Barra, E. and Hill, R. G. (1998). Influence of alkali metal ions on the fracture properties of glass polyalkenoate (ionomer) cements. Biomaterials, 19(6): 495-502.

36.      Cattani-Lorente, M. A., Godin, C. and Meyer, J. M. (1993). Early strength of glass ionomer cements. Dental Materials, 9(1): 57-62.