Malaysian
Journal of Analytical Sciences, Vol 27 No 1 (2023): 8 – 19
Characterization of Anadara granosa as a potential source of calcium carbonate for Glass ionomer cement
formulation
(Pencirian Anadara granosa Sebagai Sumber Kalsium
Karbonat yang Berpotensi untuk Formulasi Simen Kaca Ionomer)
Nur’Izzah Md Nasir, Norhazlin
Zainuddin*, and Francis Thoo Voon Wai
Department of Chemistry, Faculty of Science,
Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
*Corresponding author: norhazlin@upm.edu.my
Received: 6 October 2022; Accepted: 18
December 2022; Published: 22 February
2023
Abstract
Glass ionomer cements (GIC) are produced via
acid-base reaction between calcium fluoroaluminosilicate
glass powders and freeze-dried polyacrylic acid powder. Shells from Anadara granosa or
commonly known as cockle, consist of >90% calcium carbonate (CaCO3),
have been utilized as the source of CaCO3 by incorporating it as
part of glass components for production of GIC. The main objective of this
research is to investigate the effect of Anadara
granosa shells in setting reaction of GIC using
FT-IR spectroscopy. Two types of GIC were synthesized, GIC-A (analytical grade
CaCO3) and GIC-B (replacing CaCO3 with the shells). FT-IR
spectra showed the setting reaction for both GICs with the occurrence of
cross-linking between polyacrylate chain and metal ion from the glass by
gradual conversion of COOH at 1690-1700 cm-1 into COO-Mn+
at 1550-1600 cm-1. For compressive strength, GIC-B showed a lower
compressive strength compared to GIC-A at 1-day aging time. However, it reached
similar value as GIC-A after 28 days aging time. In conclusion, Anadara granosa
shells can be utilized for Ca aluminosilicate glass in GIC production where it
exhibited similar setting properties and compressive strength as GIC from glass
synthesized using commercial CaCO3.
Keywords: Anadara granosa, glass ionomer cement, calcium carbonate,
calcium fluoroaluminosilicate
Abstrak
Simen kaca
ionomer (GIC) dihasilkan melalui tindak balas asid-bes di antara serbuk kaca
kalsium fluoroaluminosilikat dan serbuk asid poliakrilik kering sejuk beku.
Cengkerang dari Anadara granosa atau kebiasaannya dikenali sebagai
kerang ini mengandungi >90% kalsium karbonat (CaCO3), telah
dimanfaatkan sebagai sumber kalsium karbonat dengan menggabungkannya sebagai
sebahagian daripada komponen kaca untuk menghasilkan GIC. Objektif utama kajian
ini adalah untuk menyiasat kesan cengkerang Andara granosa dalam tindak
balas pengerasan GIC menggunakan spektroskopi FT-IR. Dua jenis GIC telah
disintesis, GIC-A (CaCO3 gred analisis) dan GIC-B (menggantikan CaCO3
dengan cengkerang). Spektrum FT-IR menunjukkan bahawa tindak balas pengerasan
bagi kedua-dua GIC berlaku dengan kehadiran rangkai silang antara rantai
poliakrilat dan ion logam daripada kaca dengan pertukaran COOH secara
beransur-ansur pada 1690-1700 cm-1 kepada COO-Mn+ pada
1550-1600 cm-1. Untuk kekuatan mampatan, GIC-B menunjukkan kekuatan
mampatan yang lebih rendah berbanding GIC-A pada masa penuaan 1 hari, namun, ia
mencapai nilai yang sama seperti GIC-A selepas masa penuaan 28 hari.
Kesimpulannya, cengkerang Anadara granosa boleh digunakan untuk kaca Ca
aluminosilikat dalam penghasilan GIC di mana ia mempamerkan sifat pengerasan
dan kekuatan mampatan yang sama seperti GIC daripada kaca yang disintesis
menggunakan CaCO3 komersial.
Kata kunci: Anadara
granosa, simen kaca ionomer, kalsium karbonat, kalsium
floroaluminosilikat
References
1.
Jaji, A.Z., Md Zuki, A.B.Z., Mahmud, R., Yusof, M.L., Mohamad, M.N.H.,
Isa, T., Fu., W. and Hammadi, N.I. (2017). Synthesis, characterization, and
cytocompatibility of potential cockle shell aragonite nanocrystals for
osteoporosis therapy and hormonal delivery. Nanotechnology,
Science and Applications, 10: 23-33.
2.
Fu, W., Mohd Noor, M. H., Mohamad Yusof, L., Tengku
Ibrahim, T. A., Keong, Y. S., Jaji,
A. Z. and Abu Bakar Zakaria, M. Z. (2017). In vitro evaluation of a novel
pH-sensitive drug delivery system-based cockle shell-derived aragonite
nanoparticles against osteosarcoma. Journal
of Experimental Nanoscience, 12: 166-187.
3.
Summa D., Lanzoni, M., Castaldelli, G., Fano, E. A., & Tamburini,
E. (2022). Review: Trends and opportunities of bivalve shells’ waste
valorization in a prospect of circular blue bioeconomy. Resources, 11(48); 1-16
4.
Yang, E. I., Yi, S. T., and Leem, Y. M. (2005). Effect
of oyster shell substituted for fine aggregate on concrete characteristics:
Part I. Fundamental properties. Cement
and Concrete Research, 35(11): 2175-2182.
5.
Ballester, P., Mármol, I., Morales, J., and Sánchez, L. (2007). Use of
limestone obtained from waste of the mussel cannery industry for the production
of mortars. Cement and Concrete Research,
37(4): 559-564.
6.
Mohamed, M., Yusup, S.,
and Maitra, S. (2012). Decomposition study of calcium carbonate in cockle
shell. Journal of Engineering Science and
Technology, 7(1): 1-10.
7.
Asmi, D., and Zulfia, A.
(2017). blood cockle shells waste as renewable source for the production of
biogenic CaCO3 and its characterisation. IOP Conference Series: Earth and
Environmental Science, 94: 012049.
8.
Ghafar, M. S. L., Hussein, M.
Z., Rukayadi, Y. and Zakaria, M. Z. A. B. (2017).
Synthesis and characterization of cockle shell-based calcium carbonate
aragonite polymorph nanoparticles with surface functionalization. Journal of Nanoparticle, 2017: 1-12.
9.
Mailafiya, M. M.,Abubakar,
K., Danmaigoro, A., Chiroma,
S. M., Abdul Rahim,E.
Mohd Moklas, M. A. and Zakaria, Z. A. B.
(2019). Review: Cockle shell-derived calcium carbonate (aragonite)
nanoparticles: A dynamite to nanomedicine. Applied
Science, 9(2897): 1-25.
10.
Sainudin, M. S., Othman, N. H.,
Ismail, N. N., Wan Ibrahim, M. H. and Rahim, M. A. (2020). Utilization of
cockle shell (Anadara granosa)
powder as partial replacement of fine aggregates in cement brick. The International Journal of Integrated
Engineering, 12(9): 161-168.
11.
Syafwandi, and Cerra, R. A.
(2021). The effect of substitution of coarse and fine aggregates with shells of
blood clams and cement with fly ash and the additional of superplasticizer
against the compressive test. International
Journal of Transportation and Infrastucture,
4(2): 148-156.
12.
Chen, J. and Xiang, L. (2009). Controllable
synthesis of calcium carbonate polymorphs at different temperatures. Powder Technology, 189(1): 64-69.
13.
Akilal,
N., Lemaire, F., Bercu, N. B., Sayen,
S., Gangloff, S. C., Khelfaoui, Y., Rammal, H., Kerdjoudj, H. (2019).
Cowries
derived aragonite as raw biomaterials for bone regenerative medicine. Materials
Science and Engineering: C, 94: 894-900.
14.
Tram, N. X. T., (2020). Synthesis and
characterization of calcite nano-particle derived from cockle shell for
clinical application. ASEAN Engineering
Journal, 10(1): 49-54.
15.
Ni, M., and
Ratner, B. D. (2008). Differentiation of calcium carbonate polymorphs by
surface analysis techniques – an XPS and TOF-SIMS study. Surface and Interface
Analysis, 40(10):
1356-1361.
16.
Praja, H. A., Dhaniar, N., Santoso, R. M., Putri, D., Annisa
Salsabila A. P., Veda Sahasika
A. N., Soetojo, A. and Saraswati,
W. (2022) Calcium carbonate of blood cockle (Anadara granosa) shells induced VEGF-A
expression in dentin pulp complex an in vivo study. Malaysian Journal of Medicine and Health Sciences, 18(SUPP6):
24-30.
17.
Al Omari, M. M. H., Rashid, I. S., Qinna, N. A., Jaber, A. M. and Badwan,
A. A. (2016). Chapter 2: Calcium carbonate. Book title: Profiles of drug
substances, excipients, and related methodology. Elsevier, 41: pp 2-445.
18.
Hussein, A. I., Che Mat, A. N., Abd Wahab, N. A.
A., Rahman, Husein, A. and Ab-Ghani, Z. (2020).
Synthesis and properties of novel calcia-stabilized
zirconia (Ca-SZ) with nano calcium oxide derived from cockle shells and
commercial source for dental application. Applied
Science, 10(5751): 1-13.
19.
Nugroho, J. J., Natsir,
N., Trilaksana, A. C., Rovani,
C. A., and Atlanta, M. M. (2019). The increase of tooth enamel surface hardness
after application blood cockle shells (Anadara granosa) paste as remineralization agent. International Journal of Applied
Pharmaceutics, 11(4): 26-29.
20.
Wan Jusoh, W. N., Matori, K. A., Mohd Zaid, M. H., Zainuddin, N., Ahmad
Khiri, M. Z., Abdul Rahman, N. A., Abdul Jalil, R. and Kul, E. (2021).
Incorporation of hydroxyapatite into glass ionomer cement (GIC) formulated
based on alumino-silicate-fluoride glass ceramics
from waste materials. Materials, 14(954):
1-14.
21.
International Organization for Stadardization
(2007). Dentistry-water-based cements Part 1: Powder/liquid acid-base cements
(ISO 9917-1:2007). Retrieved from https://www.iso.org/standard/ 45818.html
22.
Genebra (1986). International
organization for standardization. ISO7489. Dental glass polyalkenoate cements.
23.
Mallmann, A., Ataíde, J. C. O., Amoedo, R.,
Rocha, P. V. and Jacques, L. B. (2007). Compressive strength of glass ionomer
cements using different specimen dimensions. Brazillian Oral Restorative, 21: 204-208.
24.
Awang-Hazmi, A. J., Zuki, A. B. Z., Noordin, M. M., Jalila, A., and Norimah, Y.
(2007). Mineral composition of the cockle (Anadara granosa) shells of West Coast of
Peninsular Malaysia and it's potential as biomaterial for use in bone repair. Journal of Animal and Veterinary Advances,
6(5): 591-594.
25.
Hoque E,
Shehryar M, Islam K. N. (2013). Processing and
characterization of cockle shell calcium carbonate (CaCO3) bioceramic for potential application in bone tissue
engineering. Journal Materials Sciences
Engineering, 2(4): 2-6.
26.
Tomlinson, S. K., Ghita, O. R., Hooper, R. M. and
Evans, K. E. (2007). Investigation of the dual setting mechanism of a novel
dental cement using infrared spectroscopy. Vibrational
Spectroscopy, 45(1): 10-17.
27.
Crisp, S., M. A. Pringuer,
M. A., Wardleworth, D. and Wilson, A. D. (1974).
Reactions in glass ionomer cements: II. An infrared spectroscopic study. Journal of Dental Research, 53(6):
1414-1419.
28.
Md Nasir, N. I., Zainuddin, N., Wan Yunus, W. M. Z. and Matori, K. A.
(2014). The influence of modified sodium montmorillonite as filler on the
performance of glass polyalkenoate cement. Malaysian
Journal of Analytical Sciences, 18(3): 572-583.
29.
Matsuya, S., Maeda, T. and Ohta,
M. (1996). IR and NMR analyses of hardening and maturation of glass- ionomer
cement. Journal of Dentistry Restorative,
75(12): 1920-1927.
30.
Hill, R. G. (1993). The fracture properties of
glass polyalkenoate cements as a function of cement age. Journal of Materials Science, 28(14): 3851-3858.
31.
Crisp, S. and A. D. Wilson (1974). Reactions in
glass ionomer cements: I. Decomposition of the powder. Journal of Dental Research, 53(6): 1408-1413.
32.
Crisp, S. and A. D. Wilson (1974). Reactions in
glass ionomer cements: III. The precipitation reaction. Journal of Dental Research, 53(6): 1420-1424.
33.
-Cattani-Lorente, M. A.,
Godin, C. and Meyer, J. M. (1994). Mechanical behavior of glass ionomer cements
affected by long-term storage in water. Dental
Materials, 10(1): 37-44.
34.
Lohbauer, U. (2010). Dental
glass ionomer cements as permanent filling materials? – properties, limitations
and future trends. Materials, 3(1):
76-96
35.
De Barra, E. and Hill, R. G. (1998). Influence of
alkali metal ions on the fracture properties of glass polyalkenoate (ionomer)
cements. Biomaterials, 19(6):
495-502.
36.
Cattani-Lorente, M. A., Godin, C. and
Meyer, J. M. (1993). Early strength of glass ionomer cements. Dental Materials, 9(1): 57-62.