Malaysian Journal of Analytical Sciences, Vol 27 No 1 (2023): 198 - 215

 

FORMATION AND STABILITY STUDY OF SILVER NANOPARTICLES REDUCED BY Murdania Loriformis EXTRACT FOR

ANTIBACTERIAL APPLICATIONS

 

(Kajian Pembentukan dan Kestabilan Nanopartikel Perak yang Diturunkan oleh Ekstrak Murdania Loriformis untuk Aplikasi Antibakteria)

 

Norain Isa1,2*, Nazatul Nabila Mohamad1, Ainorkhilah Mahmood3, Nor Aziyah Bakhari3,

Marlina Mohd Mydin4 and Norhafiza Mohd Arshad5

 

1Chemical Engineering Studies,

College of Engineering,

Universiti Teknologi MARA, Cawangan Pulau Pinang,

Permatang Pauh Campus, 13500 Pulau Pinang, Malaysia

2Waste Management and Resource Recovery (WeResCue) Group,

Chemical Engineering Studies,

College of Engineering,

Universiti Teknologi MARA, Cawangan Pulau Pinang,

Permatang Pauh Campus, 13500 Pulau Pinang, Malaysia

3Department of Applied Sciences,

Universiti Teknologi MARA, Cawangan Pulau Pinang,

Permatang Pauh Campus, 13500 Pulau Pinang, Malaysia

4Faculty of Health Sciences,

Universiti Teknologi MARA,

Cawangan Pulau Pinang Kampus Bertam, 13200 Kepala Batas,Pulau Pinang, Malaysia

5Centre for Research in Biotechnology for Agriculture,

Universiti Malaya, 50603 Kuala Lumpur, Malaysia

 

*Corresponding author: norain012@uitm.edu.my

 

 

Received: 21 September 2022; Accepted: 30 January 2023; Published:  22 February 2023

 

 

Abstract

The aggregation of silver nanoparticles (AgNPs) is a serious problem in their applications. This article describes the synthesis of AgNPs using AgNO3 as a metal precursor and Murdannia loriformis extract (MLE) as a reducing agent. The effect of MLE concentration, AgNO3 concentration, reaction time, and pH on the synthesis of AgNPs was studied using the absorbance of the surface plasmon resonance (SPR) band. From the TEM image, highly scattered AgNPs with a spherical shape and an average particle size of around 12.60 nm ± 2.83 nm were observed for synthesized AgNPs at optimized conditions (pH 8, 100% MLE concentration, 2 mM of AgNO3 and 24 hr reaction time). The stability of synthesized AgNPs was initially studied using a different initial concentration (5 and 10 mM) of the metal precursor. The aggregation process was evaluated by the zeta potential and UV-vis spectra measurements and finally confirmed by TEM. For an antibacterial performance, the disk diffusion method was applied. It was observed that the synthesized AgNPs showed enhanced antibacterial activity depicting the inhibition zone between 18.27 and 22.09 mm reported against Escherichia coli (E. coli) compared to Staphylococcus aureus (S aureus), which has an inhibition zone between 9.11 and 10.99 mm. The significance of this study showed that the AgNPs synthesized in this process were found to have efficient antibacterial activity against bacteria E. coli. Additionally, the increasing metal precursor concentrations exhibited a reduction in the stability of AgNPs.

 

Keywords: Murdannia loriformis, silver nanoparticles, stability, Escherichia coli, Staphylococcus aureus

 

Abstrak

Penggumpalan nanopartikel perak (AgNPs) adalah masalah serius dalam aplikasinya. Artikel ini menerangkan sintesis AgNPs menggunakan AgNO3 sebagai prekursor logam dan ekstrak Murdannia loriformis (MLE) sebagai agen penurunan. Kesan kepekatan MLE, kepekatan AgNO3, masa tindak balas, dan pH ke atas sintesis AgNPs telah dikaji menggunakan penyerapan jalur resonans plasmon permukaan (SPR). Daripada imej TEM, AgNPs yang tersebar adalah dalam bentuk sfera dan saiz zarah purata sekitar 12.60 nm ± 2.83 nm di sintesis pada keadaan optimum (pH 8, 100% kepekatan MLE, 2 mM AgNO3 dan 24 jam masa tindak balas). Kestabilan AgNPs pada mulanya dikaji menggunakan kepekatan awal prekursor logam yang berbeza (5 dan 10 mM). Proses penggumpalan dinilai oleh potensi Zeta dan ukuran spektrum UV/vis dan akhirnya disahkan oleh TEM. Untuk prestasi antibakteria, penyebaran cakera dilaksanakan. Diperhatikan bahawa AgNPs menunjukkan aktiviti antibakteria yang dipertingkatkan yang menggambarkan zon perencatan antara 18.27 dan 22.09 mm yang dilaporkan terhadap Escherichia coli (E. coli) berbanding Staphylococcus aureus (S aureus), yang mempunyai zon perencatan antara 9.11 dan 10.99 mm. Kepentingan kajian ini menunjukkan bahawa AgNPs yang disintesis dalam proses ini didapati mempunyai aktiviti antibakteria yang cekap terhadap bakteria E. coli. Di samping itu, didapati bahawa peningkatan kepekatan prekursor logam menunjukkan pengurangan kestabilan AgNPs.

 

Kata kunci: Murdannia loriformis, nanopartikel perak, kestabilan, Escherichia coli, Staphylococcus aureus

 

References

1.      Royle, M., Bot, I., Mts, H. and Rafinesque, S. (2000). 8. Murdannia Royle, Ill. Bot. Himal. Mts. 1: 403. 1840, nom. cons. 5–12. Flora of China, 24: 25-31.

2.      Soraya, I., Sulaiman, C., Mohamad, A. and Ahmed, O. H. (2021). Murdannia loriformis : A review of ethnomedicinal uses, phytochemistry, pharmacology, contemporary application, and toxicology. Evidence-Based Complementary and Alternative Medicine (eCAM), 2021: 9976202.

3.      Poonthananiwatkul, B., Lim, R. H. M., Howard, R. L., Pibanpaknitee, P. and Williamson, E. M. (2015). Traditional medicine use by cancer patients in Thailand. Journal of Ethnopharmacology, 168: 100-107.

4.      Jiratchariyakul, W. and Kummalue, T. (2011). Experimental therapeutics in breast cancer cells. Breast Cancer-Current and Alternative Therapeutic Modalities, 2011: 243-269.

5.      Kunnaja, P., Wongpalee, S. P., & Panthong, A. (2014). Evaluation of anti-inflammatory, analgesic, and antipyretic activities of the  ethanol extract from Murdannia loriformis (Hassk.) Rolla Rao et Kammathy. BioImpacts, 4(4): 183-189.

6.      Mohamad, N. N., Basir, M. R., Mahmood, A., Bakhari, N. A., Mydin, M. M., Arshad, N. M., Hamid, H. A., and Isa, N. (2022). Synthesis of silver nanoparticles using beijing grass extract as reducing agent and the comparative study of AgNPs toxicity. International Journal Electroactive Materials, 10: 1-11.

7.      Mohamad, N. N., Mahmood, A., Bakhari, N. A., Mydin, M. M., Arshad, N. M. and Isa, N. (2021). Studies on surface plasmon resonance of Murdannia loriformis silver nanoparticles. Journal of Physics: Conference Series, 2129(1): 12084.

8.      Azhar, A. S., Kamis, W. Z. W., Hamid, H. A., Kassim, N. F. A. and Isa, N. (2021). Removal of tartrazine dye using Kyllinga Brevifolia Extract and silver nanoparticles as catalysts. Journal of Physics: Conference Series, 2129(1): 12033.

9.      Isa, N., Kian, T. W., Kawamura, G., Matsuda, A. and Lockman, Z. (2018). Synthesis of TiO2 nanotubes decorated with ag nanoparticles (TNTs/AgNPs) for visible light degradation of methylene blue. Journal of Physics: Conference Series, 1082(1): 12105.

10.    Abdul Aziz, N. S., Isa, N., Osman, M. S., Wan Kamis, W. Z., So’aib, M. S. and Mohd Ariff, M. A. (2022). A mini review on the effects of synthesis‎ conditions of bimetallic Ag/Si‎ nanoparticles on their physicochemical‎ properties. International Journal of Nanoscience and Nanotechnology, 18(4): 219-232.

11.   Isa, N., Osman, M. S., Abdul Hamid, H., Inderan, V. and Lockman, Z. (2022). Studies of surface plasmon resonance of silver nanoparticles reduced by aqueous extract of shortleaf spikesedge and their catalytic activity. International Journal of Phytoremediation, 20:1-12.

12.    Srikar, S. K., Giri, D. D., Pal, D. B., Mishra, P. K. and Upadhyay, S. N. (2016). Green synthesis of silver nanoparticles: a review. Green and Sustainable Chemistry, 6(1): 34-56.

13.    Jamkhande, P. G., Ghule, N. W., Bamer, A. H. and Kalaskar, M. G. (2019). Metal nanoparticles synthesis: An overview on methods of preparation, advantages and disadvantages, and applications. Journal of Drug Delivery Science and Technology, 53: 101174.

14.    Isa, N., Wan Kamis, W. Z., Inderan, V., Husin, N. I., Ahmad, F. N., Bashirom, N. H. and Lockman, Z. (2019). Shape, size and dispersion of plant-driven silver nanoparticles for removal of methylene blue dyes. Journal of Physics: Conference Series, 1349(1): 012115.

15.    Usman, H., Abdulrahman, F. I. and Usman, A. (2009). Qualitative phytochemical screening and in vitro antimicrobial effects of methanol stem bark extract of Ficus thonningii (Moraceae). African Journal of Traditional, Complementary and Alternative Medicines, 6(3): 289-295.

16.    Ministry of Health Malaysia. (2010). Guide to Nutrition Labelling and Claims (2010). Food Safety and Quality Division, Ministry of Health Malaysia, Putrajaya.

17.    Isa, N., Sarijo, S. H., Aziz, A. and Lockman, Z. (2017). Synthesis colloidal Kyllinga brevifolia-mediated silver nanoparticles at different temperature for methylene blue removal. In AIP Conference Proceedings, 1877(1): 070001.

18.    Muniandy, S. S., Sasidharan, S. and Lee, H. L. (2019). Green synthesis of Ag nanoparticles and their performance towards antimicrobial properties. Sains Malaysiana, 48(4): 851-860.

19.    Isa, N. and Lockman, Z. (2019). Methylene blue dye removal on silver nanoparticles reduced by Kyllinga brevifolia. Environmental Science and Pollution Research, 26(11): 11482-11495.

20.    Das, M. P., Livingstone, J. R., Veluswamy, P. and Das, J. (2018). Exploration of Wedelia chinensis leaf-assisted silver nanoparticles for antioxidant, antibacterial and in vitro cytotoxic applications. Journal of Food and Drug Analysis, 26(2): 917-925.

21.    Abdelghaffar, F., Mahmoud, M. G., Asker, M. S. and Mohamed, S. S. (2021). Facile green silver nanoparticles synthesis to promote the antibacterial activity of cellulosic fabric. Journal of Industrial and Engineering Chemistry, 99: 224-234.

22.    Mata, R., Nakkala, J. R. and Sadras, S. R. (2015). Biogenic silver nanoparticles from Abutilon indicum: their antioxidant, antibacterial and cytotoxic effects in vitro. Colloids and Surfaces B: Biointerfaces, 128: 276-286.

23.    Yin, Y., Li, Z.-Y., Zhong, Z., Gates, B., Xia, Y. and Venkateswaran, S. (2002). Synthesis and characterization of stable aqueous dispersions of silver nanoparticles through the Tollens process. Journal of Materials Chemistry, 12(3): 522-527.

24.    Stebounova, L. V, Guio, E. and Grassian, V. H. (2011). Silver nanoparticles in simulated biological media: a study of aggregation, sedimentation, and dissolution. Journal of Nanoparticle Research, 13(1): 233-244.

25.    Sosa, Y. D., Rabelero, M., Treviño, M. E., Saade, H. and López, R. G. (2010). High-yield synthesis of silver nanoparticles by precipitation in a high-aqueous phase content reverse microemulsion. Journal of Nanomaterials, 2010: 392572.

26.    Perugu, S., Nagati, V. and Bhanoori, M. (2016). Green synthesis of silver nanoparticles using leaf extract of medicinally potent plant Saraca indica: a novel study. Applied Nanoscience, 6(5): 747-753.