Malaysian
Journal of Analytical Sciences, Vol 27 No 1 (2023): 198 - 215
FORMATION AND STABILITY STUDY OF SILVER NANOPARTICLES
REDUCED BY Murdania Loriformis EXTRACT FOR
ANTIBACTERIAL APPLICATIONS
(Kajian Pembentukan dan
Kestabilan Nanopartikel Perak yang Diturunkan oleh Ekstrak Murdania
Loriformis untuk Aplikasi Antibakteria)
Norain Isa1,2*, Nazatul Nabila Mohamad1, Ainorkhilah
Mahmood3, Nor Aziyah
Bakhari3,
Marlina Mohd Mydin4 and Norhafiza Mohd Arshad5
1Chemical
Engineering Studies,
College
of Engineering,
Universiti Teknologi MARA, Cawangan Pulau Pinang,
Permatang
Pauh Campus, 13500 Pulau Pinang, Malaysia
2Waste
Management and Resource Recovery (WeResCue) Group,
Chemical
Engineering Studies,
College
of Engineering,
Universiti Teknologi MARA, Cawangan Pulau Pinang,
Permatang
Pauh Campus, 13500 Pulau Pinang, Malaysia
3Department
of Applied Sciences,
Universiti Teknologi MARA, Cawangan Pulau Pinang,
Permatang Pauh Campus, 13500 Pulau Pinang, Malaysia
4Faculty
of Health Sciences,
Universiti Teknologi MARA,
Cawangan Pulau Pinang Kampus Bertam, 13200 Kepala Batas,Pulau
Pinang, Malaysia
5Centre
for Research in Biotechnology for Agriculture,
Universiti Malaya, 50603 Kuala Lumpur, Malaysia
*Corresponding author:
norain012@uitm.edu.my
Received: 21 September 2022;
Accepted: 30 January 2023; Published: 22
February 2023
Abstract
The aggregation of silver nanoparticles (AgNPs) is a serious problem in
their applications. This article describes the synthesis of AgNPs using AgNO3 as a metal
precursor and Murdannia loriformis extract (MLE) as a reducing agent. The effect of MLE concentration, AgNO3
concentration, reaction time, and pH on the synthesis of AgNPs was studied
using the absorbance of the surface plasmon resonance (SPR) band. From the TEM
image, highly scattered AgNPs with a spherical shape and an average particle
size of around 12.60 nm ± 2.83 nm were observed for synthesized AgNPs at
optimized conditions (pH 8, 100% MLE concentration, 2 mM of AgNO3 and
24 hr reaction time). The
stability of synthesized AgNPs was initially studied using a different initial
concentration (5 and 10 mM) of the metal precursor. The aggregation process was
evaluated by the zeta potential and UV-vis spectra measurements and finally
confirmed by TEM. For an antibacterial performance, the disk diffusion method
was applied. It was observed that the synthesized AgNPs showed enhanced
antibacterial activity depicting the inhibition zone between 18.27 and 22.09 mm
reported against Escherichia coli (E. coli) compared to Staphylococcus
aureus (S aureus), which has an inhibition zone between 9.11 and 10.99
mm. The significance of this study showed that the AgNPs synthesized
in this process were found to have efficient antibacterial activity against
bacteria E. coli. Additionally,
the increasing metal precursor concentrations exhibited a reduction in the stability
of AgNPs.
Keywords: Murdannia loriformis, silver nanoparticles, stability, Escherichia coli, Staphylococcus aureus
Abstrak
Penggumpalan
nanopartikel perak (AgNPs) adalah masalah serius dalam aplikasinya. Artikel ini
menerangkan sintesis AgNPs menggunakan AgNO3 sebagai prekursor logam
dan ekstrak Murdannia loriformis (MLE) sebagai agen penurunan. Kesan
kepekatan MLE, kepekatan AgNO3, masa tindak balas, dan pH ke atas
sintesis AgNPs telah dikaji menggunakan penyerapan jalur resonans plasmon
permukaan (SPR). Daripada imej TEM, AgNPs yang tersebar adalah dalam bentuk
sfera dan saiz zarah purata sekitar 12.60 nm ± 2.83 nm di sintesis pada keadaan
optimum (pH 8, 100% kepekatan MLE, 2 mM AgNO3 dan 24 jam masa tindak
balas). Kestabilan AgNPs pada mulanya dikaji menggunakan kepekatan awal
prekursor logam yang berbeza (5 dan 10 mM). Proses penggumpalan dinilai oleh
potensi Zeta dan ukuran spektrum UV/vis dan akhirnya disahkan oleh TEM. Untuk
prestasi antibakteria, penyebaran cakera dilaksanakan. Diperhatikan bahawa
AgNPs menunjukkan aktiviti antibakteria yang dipertingkatkan yang menggambarkan
zon perencatan antara 18.27 dan 22.09 mm yang dilaporkan terhadap Escherichia
coli (E. coli) berbanding Staphylococcus aureus (S aureus),
yang mempunyai zon perencatan antara 9.11 dan 10.99 mm. Kepentingan kajian ini
menunjukkan bahawa AgNPs yang disintesis dalam proses ini didapati mempunyai
aktiviti antibakteria yang cekap terhadap bakteria E. coli. Di samping
itu, didapati bahawa peningkatan kepekatan prekursor logam menunjukkan
pengurangan kestabilan AgNPs.
Kata kunci: Murdannia
loriformis, nanopartikel perak, kestabilan, Escherichia coli, Staphylococcus aureus
References
1. Royle, M., Bot, I., Mts, H. and Rafinesque, S. (2000). 8.
Murdannia Royle, Ill. Bot. Himal. Mts. 1: 403. 1840, nom. cons. 5–12. Flora
of China, 24: 25-31.
2. Soraya,
I., Sulaiman, C., Mohamad, A. and Ahmed, O. H. (2021). Murdannia loriformis :
A review of ethnomedicinal uses, phytochemistry, pharmacology, contemporary
application, and toxicology. Evidence-Based Complementary and Alternative
Medicine (eCAM), 2021: 9976202.
3. Poonthananiwatkul,
B., Lim, R. H. M., Howard, R. L., Pibanpaknitee, P. and Williamson, E. M.
(2015). Traditional medicine use by cancer patients in Thailand. Journal of
Ethnopharmacology, 168: 100-107.
4. Jiratchariyakul,
W. and Kummalue, T. (2011). Experimental therapeutics in breast cancer cells. Breast Cancer-Current and Alternative Therapeutic Modalities, 2011:
243-269.
5. Kunnaja, P., Wongpalee, S. P., & Panthong, A. (2014). Evaluation
of anti-inflammatory, analgesic, and antipyretic activities of the ethanol extract from Murdannia loriformis
(Hassk.) Rolla Rao et Kammathy. BioImpacts, 4(4): 183-189.
6. Mohamad,
N. N., Basir, M. R., Mahmood, A., Bakhari, N. A., Mydin, M. M., Arshad, N. M.,
Hamid, H. A., and Isa, N. (2022). Synthesis of silver nanoparticles using
beijing grass extract as reducing agent and the comparative study of AgNPs
toxicity. International Journal Electroactive Materials, 10: 1-11.
7. Mohamad,
N. N., Mahmood, A., Bakhari, N. A., Mydin, M. M., Arshad, N. M. and Isa, N.
(2021). Studies on surface plasmon resonance of Murdannia loriformis
silver nanoparticles. Journal of Physics: Conference Series, 2129(1):
12084.
8. Azhar,
A. S., Kamis, W. Z. W., Hamid, H. A., Kassim, N. F. A. and Isa, N. (2021).
Removal of tartrazine dye using Kyllinga Brevifolia Extract and silver
nanoparticles as catalysts. Journal of Physics: Conference Series,
2129(1): 12033.
9. Isa,
N., Kian, T. W., Kawamura, G., Matsuda, A. and Lockman, Z. (2018). Synthesis of
TiO2 nanotubes decorated with ag nanoparticles (TNTs/AgNPs) for
visible light degradation of methylene blue. Journal of Physics: Conference
Series, 1082(1): 12105.
10. Abdul Aziz, N. S., Isa, N., Osman, M. S., Wan Kamis, W. Z., So’aib, M. S. and Mohd Ariff, M. A. (2022). A mini review on the effects of synthesis conditions of bimetallic Ag/Si nanoparticles on their physicochemical properties. International Journal of Nanoscience and Nanotechnology, 18(4): 219-232.
11. Isa, N., Osman, M. S., Abdul Hamid, H., Inderan, V. and Lockman, Z. (2022). Studies of surface plasmon resonance of silver nanoparticles reduced by aqueous extract of shortleaf spikesedge and their catalytic activity. International Journal of Phytoremediation, 20:1-12.
12. Srikar,
S. K., Giri, D. D., Pal, D. B., Mishra, P. K. and Upadhyay, S. N. (2016). Green
synthesis of silver nanoparticles: a review. Green and Sustainable Chemistry,
6(1): 34-56.
13. Jamkhande,
P. G., Ghule, N. W., Bamer, A. H. and Kalaskar, M. G. (2019). Metal
nanoparticles synthesis: An overview on methods of preparation, advantages and
disadvantages, and applications. Journal of Drug Delivery Science and
Technology, 53: 101174.
14. Isa,
N., Wan Kamis, W. Z., Inderan, V., Husin, N. I., Ahmad, F. N., Bashirom, N. H.
and Lockman, Z. (2019). Shape, size and dispersion of plant-driven silver
nanoparticles for removal of methylene blue dyes. Journal of Physics:
Conference Series, 1349(1): 012115.
15. Usman,
H., Abdulrahman, F. I. and Usman, A. (2009). Qualitative phytochemical
screening and in vitro antimicrobial effects of methanol stem bark extract of Ficus
thonningii (Moraceae). African Journal of Traditional, Complementary and
Alternative Medicines, 6(3): 289-295.
16. Ministry
of Health Malaysia. (2010). Guide to Nutrition Labelling and Claims (2010).
Food Safety and Quality Division, Ministry of Health Malaysia, Putrajaya.
17. Isa, N., Sarijo, S. H., Aziz, A. and Lockman, Z.
(2017). Synthesis colloidal Kyllinga brevifolia-mediated silver
nanoparticles at different temperature for methylene blue removal. In AIP
Conference Proceedings, 1877(1): 070001.
18. Muniandy,
S. S., Sasidharan, S. and Lee, H. L. (2019). Green synthesis of Ag
nanoparticles and their performance towards antimicrobial properties. Sains
Malaysiana, 48(4): 851-860.
20. Das,
M. P., Livingstone, J. R., Veluswamy, P. and Das, J. (2018). Exploration of Wedelia
chinensis leaf-assisted silver nanoparticles for antioxidant, antibacterial
and in vitro cytotoxic applications. Journal of Food and Drug Analysis,
26(2): 917-925.
21. Abdelghaffar,
F., Mahmoud, M. G., Asker, M. S. and Mohamed, S. S. (2021). Facile green silver
nanoparticles synthesis to promote the antibacterial activity of cellulosic
fabric. Journal of Industrial and Engineering Chemistry, 99: 224-234.
22. Mata, R., Nakkala, J. R. and Sadras, S. R. (2015). Biogenic
silver nanoparticles from Abutilon indicum: their antioxidant,
antibacterial and cytotoxic effects in vitro. Colloids and Surfaces B:
Biointerfaces, 128: 276-286.
23. Yin, Y., Li,
Z.-Y., Zhong, Z., Gates, B., Xia, Y. and Venkateswaran, S. (2002). Synthesis
and characterization of stable aqueous dispersions of silver nanoparticles
through the Tollens process. Journal of Materials Chemistry, 12(3):
522-527.
24. Stebounova, L. V,
Guio, E. and Grassian, V. H. (2011). Silver nanoparticles in simulated
biological media: a study of aggregation, sedimentation, and dissolution. Journal
of Nanoparticle Research, 13(1): 233-244.
25. Sosa, Y. D.,
Rabelero, M., Treviño, M. E., Saade, H. and López, R. G. (2010). High-yield
synthesis of silver nanoparticles by precipitation in a high-aqueous phase
content reverse microemulsion. Journal of Nanomaterials, 2010: 392572.
26. Perugu, S.,
Nagati, V. and Bhanoori, M. (2016). Green synthesis of silver nanoparticles
using leaf extract of medicinally potent plant Saraca indica: a novel study. Applied
Nanoscience, 6(5): 747-753.