Malaysian Journal of Analytical Sciences, Vol 27 No 1 (2023): 174 - 188

 

FACILE CHEMICAL SYNTHESIS OF PURE Zn DOPED CeO2 NANOPARTICLES WITH ENHANCED PHOTOCATALYTIC PERFORMANCE UNDER UV IRRADIATION

 

(Sintesis Kimia Mudah bagi Nanopartikel CeO2 Dop Zn Tulen dengan Prestasi

Fotokatalitik yang Dipertingkatkan di bawah Penyinaran UV)

 

Swathi Chidaraboyina1,3, Arputharaj Samson Nesaraj1,2*, Manasai Arunkumar1

 

1Department of Applied Chemistry, 

Karunya Institute of Technology and Sciences (Deemed to be University), 

Karunya Nagar, Coimbatore – 641 114, Tamil Nadu, India

2Department of Chemistry,

Kalasalingam Academy of Research and Education (Deemed to be University), Anand Nagar, 

Krishnankoil – 626 126, Tamil Nadu, India

3Department of Chemistry, Keshav Memorial Institute of Technology, 3-5-1026, Narayanaguda,

Hyderabad  – 500 029, Telengana, India

 

*Corresponding author: samson@klu.ac.in

 

 

Received: 5 August 2022; Accepted: 10 November 2022; Published:  22 February 2023

 

Abstract

Rhodamine B (RhB) is an organic dye which is generally used in paint, paper and textile industries as a tracer dye.  It is found to be highly toxic to living organisms and is expected of having carcinogenic effect. Therefore, the effluents containing RhB dye should be properly treated before releasing into water bodies, such as, rivers, ponds, etc.  In this research work, attempts were made to prepare and use zinc doped ceria (Ce1-xZnxO2-δ; x = 0, 0.1, 0.2, 0.3, 0.4, 0.5) nanoparticles as photocatalysts to remove RhB dye present in water.  These nanoparticles were synthesized by simple wet chemical technique using cheap chemicals. The prepared materials were analyzed by X-ray diffraction (XRD), Fourier transform infra-red (FTIR), Energy-dispersive X-ray spectroscopy (EDX), scanning electron microscope (SEM), ultra violet-visible (UV-Vis) and photo-luminescence (PL) spectroscopy methods.  The samples were indexed in face-centered cubic (FCC) crystalline structure. FTIR showed M-O bond in the samples. EDX notified the occurrence of appropriate elements. SEM exhibited smaller and bigger grains in the materials. The λmax was found to be 349 nm by UV-visible analysis. The band gap energy (Eg) was reported in the range of 1.5-3 eV. The photoluminescence spectra for all suspensions were obtained in the range of 390 to 550nm.  Then, the photocatalytic elimination of Rhodamine B (Rh B) with the help of Ce1-xZnxO2-δ nano-photocatalysts under UV light was studied. Among the several trials studied, highest photodegradation efficiency (58.71%) was found at pH=11 after 60 minutes irradiation in UV light at room temperature for Ce0.60Zn0.40O2-δ.

 

Keywords: Zn doped CeO2 nanoparticles, Rhodamine B, dye removal, photocatalytic degradation, UV irradiation

 

Abstrak

Rhodamine B (RhB) ialah pewarna organik yang biasanya digunakan dalam industri cat, kertas dan tekstil sebagai pewarna pengesan. Ia didapati sangat toksik kepada organisma hidup dan dijangka mempunyai kesan karsinogenik. Oleh itu, efluen yang mengandungi pewarna RhB hendaklah dirawat dengan betul sebelum dilepaskan ke dalam badan air, seperti sungai, kolam, dsb. Dalam kerja penyelidikan ini, percubaan telah dibuat untuk menyediakan dan menggunakan ceria terdop zink (Ce1-xZnxO2-δ; x = 0, 0.1, 0.2, 0.3, 0.4, 0.5) nanopartikel sebagai fotomangkin untuk menghilangkan pewarna RhB yang terdapat dalam air. Nanopartikel ini telah disintesis dengan teknik kimia basah mudah menggunakan bahan kimia murah. Bahan-bahan yang disediakan telah dianalisis dengan pembelauan sinar-X (XRD), infra merah transformasi Fourier  (FTIR), spektroskopi sinar-X penyebaran tenaga (EDX), mikroskop elektron pengimbasan (SEM), Ultra ungu-cahaya nampak (UV-Vis) dan kaedah spektroskopi foto-pendarcahaya (PL). Sampel telah diindeks dalam struktur hablur kubik berpusat muka (FCC). FTIR menunjukkan ikatan M-O dalam sampel. EDX memberitahu berlakunya elemen yang sesuai. SEM mempamerkan butiran yang lebih kecil dan lebih besar dalam bahan. λmaks didapati 349 nm oleh analisis UV-cahaya nampak. Tenaga jurang jalur (Eg) dilaporkan dalam julat 1.5-3 eV. Spektrum foto-pendarcahaya untuk semua suspensi diperoleh dalam julat 390 hingga 550nm. Kemudian, penghapusan fotomangkin Rhodamine B (Rh B) dengan bantuan fotomangkin nano Ce1-xZnxO2-δ di bawah cahaya UV telah dikaji. Antara beberapa ujian yang dikaji, kecekapan fotodegradasi tertinggi (58.71%) didapati pada pH=11 selepas 60 minit penyinaran dalam cahaya UV pada suhu bilik untuk Ce0.60Zn0.40O2-δ.

 

Kata kunci: nanopartikel CeO2 terdop Zn, Rhodamine B, penyingkiran pewarna, degradasi fotokatalitik, penyinaran UV

 

References

1.         Wasim, M., Ashraf, M., Tayyaba, S. and Nazir, A. (2019). Simulation and Synthesis of ZnO nanorods on AAO nano porous template for use in a MEMS device. Digest Journal of Nanomaterials and Biostructures, 14: 559-567.

2.         Liu, H., Liu, J., Xie, X. and Li, X. (2020). Development of photo-magnetic drug delivery system by facile-designed dual stimuli-responsive modified biopolymeric chitosan capped nano-vesicle to improve efficiency in the anesthetic effect and its biological investigations. Journal of Photochemistry and Photobiology B: Biology, 202: 111716.

3.         Andryukov, B. G., Besednova, N .N., Romashko, R. V., Zaporozhets, T. S. and Efimov, T. A. (2020). Label-free biosensors for laboratory-based diagnostics of infections: Current achievements and new trends. Biosensors, 10(2):11.

4.         Souza, J. M. T., de Araujo, A. R., de Carvalho, A. M. A., Amorim, A. d. G. N., Daboit, T. C., de Almeida, J. R. d. S., da Silva, D. A. and Eaton, P. (2020). Sustainably produced cashew gum-capped zinc oxide nanoparticles show antifungal activity against Candida parapsilosis. Journal of Cleaner Production, 247: 119085.

5.         Ilager, D., Shetti, N. P., Malladi, R. S., Shetty, N. S., Reddy, K. R. and Aminabhavi, T. M. (2020). Synthesis of Ca-doped ZnO nanoparticles and its application as highly efficient electrochemical sensor for the determination of anti-viral drug, Acyclovir. Journal of Molecular Liquids, 322:114552.

6.         Kulkarni, D. R., Malode, S. J., Prabhu, K. K., Ayachit, N. H., Kulkarni, R. M. and Shetti, N. P. (2020). Development of a novel nanosensor using ca-doped ZnO for antihistamine drug. Materials Chemistry and Physics, 246: 122791.

7.         Shanbhag, M. M., Shetti, N. P., Kulkarni, R. M. and Chandra, P. (2020). Nanostructured Ba/ZnO modified electrode as a sensor material for detection of organosulfur thiosalicylic acid. Microchemical Journal, 159: 105409.

8.         Gadisa, B. T., Appiah-Ntiamoah, R. and Kim, H. (2019). In-situ derived hierarchical ZnO/Zn-C nanofiber with high photocatalytic activity and recyclability under solar light. Applied Surface Science, 491: 350-359.

9.         He, J., Zhang, Y., Guo, Y., Rhodes, G., Yeom, J., Li, H. and Zhang, W. (2019). Photocatalytic degradation of cephalexin by ZnO nanowire under simulated sunlight: Kinetics, influencing factors, and mechanisms. Environment International, 132: 105105.

10.      Messih, M. A., Shalan, A. E., Sanad, M. F. and Ahmed, M. (2019). Facile approach to prepare ZnO@SiO2 nanomaterials for photocatalytic degradation of some organic pollutant models. Journal of Materials Science: Materials in Electronics, 30: 14291-14299.

11.      Vatchalan, L. and Pandiselvam, S. (2021). Carbon nano particles as better adsorbent against photocatalytic degrader for the rhodamine - B dye. Journal of Water and Environmental Nanotechnology, 6(3): 232-240.

12.      Deng, Y. and  Zhao, R. (2015). Advanced oxidation processes (AOPs) in wastewater treatment. Current Pollution Reports, 1: 167-176.

13.      Francis, M. H., Sarkar, R., Roy, S., Jaffar, S., Mohan, V. R., Kang, G. and Balraj, V. (2016). Effectiveness of membrane filtration to improve drinking water: A quasi-experimental study from rural Southern India. American Journal of Tropical Medicine and Hygiene, 95(5): 1192-1200.

14.      El Nemr, A., Hassaan, M. A. and Madkour, F. F. (2018). Advanced oxidation process (AOP) for detoxification of acid red 17 dye solution and degradation mechanism. Environmental Processes, 5: 95-113.

15.      Qi, K.,  Cheng, B., Yu, J. and Ho, W. (2017). Review on the improvement of the photocatalytic and antibacterial activities of ZnO.  Journal of Alloys and Compounds, 727: 792-820. 

16.      Liu, H., Li, L., Guo, C., Ning, J., Zhong, Y.  and Hu, Y. (2020). Thickness-dependent carrier separation in Bi2Fe4O9 nanoplates with enhanced photocatalytic water oxidation. Chemical Engineering Journal, 385:123929.

17.      Chong, M. N., Jin, B., Chow, C. W. K. and Saint, C. (2010). Recent developments in photocatalytic water treatment technology: A review. Water Research, 44 (10): 2997-3027.

18.      Joshi, N.C., Gururani, P. and Gairola, S.P. (2022). Metal oxide nanoparticles and their nanocomposite-based materials as photocatalysts in the degradation of dyes. Biointerface Research in Applied Chemistry, 12(5): 6557-6579.

19.      Zhang, H., He, X., Zhang, Z., Zhang, P., Li, Y., Ma, Y., Kuang, Y. and Chai, Z. (2011). Nano-CeO2 exhibits adverse effects at environmental relevant concentrations. Environmental Science & Technology, 45(8): 3725-3730.

20.      Majeed Khan, M. A., Khan, W., Ahamed, M. and Alhazaa, A. N. (2017). Microstructural properties and enhanced photocatalytic performance of Zn doped CeO2 nanocrystals. Scientific Reports, 7: 12560

21.      Habib, I. Y., Muhammad, M., Yakasai, M. Y. and Abdullahi, A. D. (2021). Structural, morphological and optical properties of Ni-doped CeO2 nanospheres prepared by surfactant free co-precipitation technique.  Open Journal of Science and Technology, 4(4): 165-177.

22.      Hou, X., Lu, Q. and Wang, X. (2017). Enhanced catalytic properties of La-doped CeO2 nanopowders synthesized by hydrolyzing and oxidizing Ce46La5C49 alloys. Journal of Science: Advanced Materials and Devices, 2(1): 41-44.

23.      Kumar, S., Al Omar, S. Y., Kumari, K., Albalwi, F., Kumar, R., Ahmed, F., Ahmed, N., Dwivedi, S. and Alvi, P.A. (2021). Electrical and antibacterial properties of Fe-doped CeO2 nanoparticles. Crystals, 11: 1594.

24.      Nurhasanah, I., Sutanto, H. and Futikhaningtyas, R. (2014). Optical properties of Zn-doped CeO2 nanoparticles as function of Zn content. Advanced Materials Research, 896: 108-111.

25.      Prabaharan, D. M. D. M.,  Sadaiyandi, K.,  Mahendran M. and Sagadevan, S. (2016). Structural, optical, morphological and dielectric properties of cerium oxide nanoparticles. Materials Research, 19(2): 478-482.

26.      Wang, Z., Quan, Z. and  Lin, J. (2007). Remarkable changes in the optical properties of CeO2 nanocrystals induced by lanthanide ions doping. Inorganic Chemistry, 46(13): 5237-5242.

27.      Jasmine Ketzial, J. and Samson Nesaraj, A. (2011). Synthesis of CeO2 nanoparticles by chemical precipitation and the effect of a surfactant on the distribution of particle sizes. Journal of Ceramic Processing Research, 12(1): 74-79.

28.      Thavarani, M., Charles Robert, M., Pavithra, N., Saravanan, R., Kannan, Y.B. and Balaji Prasath, S. (2022). Effect of Ca2+ doping on the electronic charge density and magnetic properties of ZnFe2O4 spinel ferrites. Journal of Materials Science: Materials in Electronics, 33: 4116-4131.

29.      Udayakumar, S., Renuga, V. and Kavitha, K. (2012).  Synthesis and characterization of Ni - doped ZnO by chemical precipitation method.  International Journal of Recent Scientific Research, 3: 118-122. 

30.      Nandiyanto, A. B. D., Oktiani, R. and Ragadhita, R. (2019). How to read and interpret FTIR spectroscope of organic material. Indonesian Journal of Science  & Technology, 4(1): 97-118.

31.      Napitupulu, R. A. M. (2017). Influence of heating rate and temperature on austenite grain size during reheating steel. IOP Conference Series: Materials Science and Engineering, 237: 012038.

32.      Arunkumar, M. and Samson Nesaraj, A. (2021). One pot chemical synthesis of ultrafine NiAl2O4 nanoparticles: Physico-chemical properties and photocatalytic degradation of organic dyes under visible light irradiation. Inorganic and Nano-Metal Chemistry, 51(6): 910-917.

33.      Balogun, S.W., Sansui, Y. K. and Aina, A.O. (2018). Structural and optical properties of titanium dioxide thin film deposited by spin-coating technique. International Journal of Development Research, 8(1): 18486-18490.

34.      Bhatia, S. and Verma, N. (2017). Photocatalytic activity of ZnO nanoparticles with optimization of defects. Materials Research Bulletin, 95: 468-476.

35.      Amiri Gharaghani, M. and Malakootian, M. (2017). Photocatalytic degradation of the antibiotic ciprofloxacin by ZnO nanoparticles immobilized on a glass plate. Desalination and Water Treatment,  89: 304-314.

36.      Chen, X. and Mao, S. S. (2007). Titanium dioxide nanomaterials: Synthesis, properties, modifications, and applications. Chemical Reviews, 107(7): 2891-959.

37.      Sadiq, M. M. J. and Samson Nesaraj, A. (2013). Effect of surfactants in the synthesis of NiO nanoparticles by colloidal thermal assisted reflux condensation method. Journal of New Technology Materials, 3(2): 14-28.

38.      Chandraboss, V. L., Natanapatham, L., Karthikeyan, B., Kamalakkannan. J., Prabha, S. and Senthilvelan, S. (2013). Effect of bismuth doping on the ZnO nanocomposite material and study of its photocatalytic activity under UV-light. Materials Research Bulletin, 48(10): 3707-3712

39.      Akpan U. G. and  Hameed, B. H. (2009). Parameters affecting the photocatalytic degradation of dyes using TiO2-based photocatalysts: A review. Journal of Hazardous Materials, 170(2-3): 520-529.

40.      Anju Chanu, L.,  Joychandra Singh, W.,  Jugeshwar Singh K. and Nomita Devi, K. (2019). Effect of operational parameters on the photocatalytic degradation of methylene blue dye solution using manganese doped ZnO nanoparticles. Results in Physics, 12: 1230-1237.  

41.      Jantawasu, P., Sreethawong, T. and Chavadej, S. (2009). Photocatalytic activity of nanocrystalline mesoporous-assembled TiO2 photocatalyst for degradation of methyl orange mono azo dye in aqueous wastewater. Chemical Engineering Journal, 155 (1-2):223-233.