Malaysian
Journal of Analytical Sciences, Vol 27 No 1 (2023): 174 - 188
FACILE CHEMICAL SYNTHESIS OF PURE Zn DOPED CeO2 NANOPARTICLES
WITH ENHANCED PHOTOCATALYTIC PERFORMANCE UNDER UV IRRADIATION
(Sintesis
Kimia Mudah bagi Nanopartikel CeO2 Dop Zn Tulen dengan Prestasi
Fotokatalitik
yang Dipertingkatkan di bawah Penyinaran UV)
Swathi Chidaraboyina1,3, Arputharaj Samson Nesaraj1,2*,
Manasai Arunkumar1
1Department of Applied Chemistry,
Karunya Institute of Technology
and Sciences (Deemed to be University),
Karunya Nagar, Coimbatore – 641
114, Tamil Nadu, India
2Department of Chemistry,
Kalasalingam Academy of Research
and Education (Deemed to be University), Anand Nagar,
Krishnankoil – 626 126, Tamil
Nadu, India
3Department of Chemistry, Keshav Memorial Institute of
Technology, 3-5-1026, Narayanaguda,
Hyderabad – 500 029, Telengana, India
*Corresponding
author: samson@klu.ac.in
Received: 5 August 2022; Accepted: 10
November 2022; Published: 22 February
2023
Abstract
Rhodamine B
(RhB) is an organic dye which is generally used in
paint, paper and textile industries as a tracer dye. It is found to be highly toxic to living
organisms and is expected of having carcinogenic effect. Therefore, the effluents
containing RhB dye should be properly treated before
releasing into water bodies, such as, rivers, ponds, etc. In this research work, attempts were made to
prepare and use zinc doped ceria (Ce1-xZnxO2-δ;
x = 0, 0.1, 0.2, 0.3, 0.4, 0.5) nanoparticles as photocatalysts to remove RhB dye present in water.
These nanoparticles were synthesized by simple wet chemical technique
using cheap chemicals. The prepared materials were analyzed by X-ray
diffraction (XRD), Fourier transform infra-red (FTIR), Energy-dispersive X-ray spectroscopy (EDX), scanning electron microscope (SEM), ultra
violet-visible (UV-Vis) and photo-luminescence (PL) spectroscopy methods. The samples were indexed in face-centered
cubic (FCC) crystalline structure. FTIR showed M-O bond in the samples. EDX
notified the occurrence of appropriate elements. SEM exhibited smaller and
bigger grains in the materials. The λmax
was found to be 349 nm by UV-visible analysis. The band gap energy (Eg)
was reported in the range of 1.5-3 eV. The photoluminescence spectra for all
suspensions were obtained in the range of 390 to 550nm. Then, the photocatalytic elimination of
Rhodamine B (Rh B) with the help of Ce1-xZnxO2-δ
nano-photocatalysts under UV light was studied. Among the several trials
studied, highest photodegradation efficiency (58.71%) was found at pH=11 after
60 minutes irradiation in UV light at room temperature for Ce0.60Zn0.40O2-δ.
Keywords: Zn doped CeO2
nanoparticles, Rhodamine B, dye removal, photocatalytic degradation, UV
irradiation
Abstrak
Rhodamine
B (RhB) ialah pewarna organik yang biasanya digunakan dalam industri cat,
kertas dan tekstil sebagai pewarna pengesan. Ia didapati sangat toksik kepada
organisma hidup dan dijangka mempunyai kesan karsinogenik. Oleh itu, efluen
yang mengandungi pewarna RhB hendaklah dirawat dengan betul sebelum dilepaskan
ke dalam badan air, seperti sungai, kolam, dsb. Dalam kerja penyelidikan ini,
percubaan telah dibuat untuk menyediakan dan menggunakan ceria terdop zink (Ce1-xZnxO2-δ;
x = 0, 0.1, 0.2, 0.3, 0.4, 0.5) nanopartikel sebagai fotomangkin untuk
menghilangkan pewarna RhB yang terdapat dalam air. Nanopartikel ini telah
disintesis dengan teknik kimia basah mudah menggunakan bahan kimia murah.
Bahan-bahan yang disediakan telah dianalisis dengan pembelauan sinar-X (XRD),
infra merah transformasi Fourier (FTIR),
spektroskopi sinar-X penyebaran tenaga (EDX), mikroskop elektron pengimbasan
(SEM), Ultra ungu-cahaya nampak (UV-Vis) dan kaedah spektroskopi
foto-pendarcahaya (PL). Sampel telah diindeks dalam struktur hablur kubik
berpusat muka (FCC). FTIR menunjukkan ikatan M-O dalam sampel. EDX memberitahu
berlakunya elemen yang sesuai. SEM mempamerkan butiran yang lebih kecil dan
lebih besar dalam bahan. λmaks didapati 349 nm oleh analisis
UV-cahaya nampak. Tenaga jurang jalur (Eg) dilaporkan dalam julat 1.5-3 eV.
Spektrum foto-pendarcahaya untuk semua suspensi diperoleh dalam julat 390
hingga 550nm. Kemudian, penghapusan fotomangkin Rhodamine B (Rh B) dengan
bantuan fotomangkin nano Ce1-xZnxO2-δ di
bawah cahaya UV telah dikaji. Antara beberapa ujian yang dikaji, kecekapan
fotodegradasi tertinggi (58.71%) didapati pada pH=11 selepas 60 minit
penyinaran dalam cahaya UV pada suhu bilik untuk Ce0.60Zn0.40O2-δ.
Kata
kunci: nanopartikel CeO2
terdop Zn, Rhodamine B, penyingkiran pewarna, degradasi fotokatalitik,
penyinaran UV
References
1.
Wasim, M.,
Ashraf, M., Tayyaba, S. and Nazir, A. (2019). Simulation and Synthesis of ZnO nanorods on AAO nano porous template for use in a MEMS
device. Digest Journal of Nanomaterials and Biostructures, 14: 559-567.
2.
Liu, H.,
Liu, J., Xie, X. and Li, X. (2020). Development of
photo-magnetic drug delivery system by facile-designed dual stimuli-responsive
modified biopolymeric chitosan capped nano-vesicle to improve efficiency in the
anesthetic effect and its biological investigations. Journal of Photochemistry
and Photobiology B: Biology,
202: 111716.
3.
Andryukov, B. G., Besednova, N .N., Romashko, R.
V., Zaporozhets, T. S. and Efimov, T. A. (2020).
Label-free biosensors for laboratory-based diagnostics of infections: Current
achievements and new trends. Biosensors,
10(2):11.
4.
Souza, J. M. T., de Araujo, A. R., de Carvalho, A. M. A., Amorim, A. d. G. N., Daboit, T.
C., de Almeida, J. R. d. S., da Silva, D. A. and Eaton, P. (2020). Sustainably produced cashew gum-capped zinc oxide nanoparticles show
antifungal activity against Candida parapsilosis.
Journal of Cleaner Production, 247:
119085.
5.
Ilager, D., Shetti, N. P., Malladi, R. S.,
Shetty, N. S., Reddy, K. R. and Aminabhavi, T. M.
(2020). Synthesis of Ca-doped ZnO nanoparticles and
its application as highly efficient electrochemical sensor for the
determination of anti-viral drug, Acyclovir. Journal of Molecular
Liquids, 322:114552.
6.
Kulkarni,
D. R., Malode, S. J., Prabhu, K. K., Ayachit, N. H., Kulkarni, R. M. and Shetti,
N. P. (2020). Development of a novel nanosensor using
ca-doped ZnO for antihistamine drug. Materials Chemistry and Physics, 246:
122791.
7.
Shanbhag, M. M., Shetti, N. P., Kulkarni, R. M. and Chandra, P. (2020).
Nanostructured Ba/ZnO modified electrode as a sensor
material for detection of organosulfur thiosalicylic
acid. Microchemical Journal, 159:
105409.
8.
Gadisa, B. T., Appiah-Ntiamoah, R. and Kim, H. (2019). In-situ derived
hierarchical ZnO/Zn-C nanofiber with high
photocatalytic activity and recyclability under solar light. Applied Surface
Science, 491:
350-359.
9.
He, J.,
Zhang, Y., Guo, Y., Rhodes, G., Yeom, J., Li, H. and
Zhang, W. (2019). Photocatalytic degradation of cephalexin by ZnO nanowire under simulated sunlight: Kinetics,
influencing factors, and mechanisms. Environment International, 132:
105105.
10. Messih, M. A., Shalan, A. E., Sanad, M. F. and Ahmed,
M. (2019). Facile approach to prepare ZnO@SiO2 nanomaterials for
photocatalytic degradation of some organic pollutant models. Journal of Materials Science: Materials in Electronics,
30: 14291-14299.
11. Vatchalan, L. and Pandiselvam, S. (2021). Carbon nano
particles as better adsorbent against photocatalytic degrader for the rhodamine
- B dye. Journal of Water and
Environmental Nanotechnology, 6(3): 232-240.
12. Deng, Y. and Zhao, R. (2015).
Advanced oxidation processes (AOPs) in wastewater treatment. Current
Pollution Reports, 1:
167-176.
13. Francis, M. H., Sarkar, R., Roy, S., Jaffar, S., Mohan, V. R., Kang, G.
and Balraj, V. (2016). Effectiveness of membrane filtration to improve drinking water: A quasi-experimental
study from rural Southern India. American
Journal of Tropical Medicine
and Hygiene, 95(5): 1192-1200.
14. El Nemr, A., Hassaan, M. A. and Madkour, F. F. (2018). Advanced oxidation process (AOP) for
detoxification of acid red 17 dye solution and degradation mechanism. Environmental
Processes, 5: 95-113.
15. Qi, K., Cheng,
B., Yu, J. and Ho, W. (2017). Review on the improvement of the photocatalytic
and antibacterial activities of ZnO. Journal
of Alloys and Compounds, 727: 792-820.
16. Liu, H., Li, L., Guo, C., Ning, J., Zhong, Y. and Hu, Y. (2020). Thickness-dependent
carrier separation in Bi2Fe4O9 nanoplates with
enhanced photocatalytic water oxidation. Chemical Engineering Journal,
385:123929.
17. Chong, M. N., Jin, B., Chow,
C. W. K. and Saint, C. (2010). Recent
developments in photocatalytic water treatment technology: A review. Water Research, 44 (10): 2997-3027.
18. Joshi, N.C., Gururani, P.
and Gairola, S.P. (2022). Metal
oxide nanoparticles and their nanocomposite-based materials as photocatalysts
in the degradation of dyes. Biointerface Research
in Applied Chemistry, 12(5): 6557-6579.
19. Zhang, H.,
He, X., Zhang, Z., Zhang, P., Li, Y., Ma, Y., Kuang,
Y. and Chai, Z. (2011). Nano-CeO2 exhibits adverse effects at
environmental relevant concentrations. Environmental
Science & Technology, 45(8): 3725-3730.
20. Majeed Khan, M. A., Khan, W., Ahamed, M. and Alhazaa,
A. N. (2017). Microstructural properties and enhanced photocatalytic
performance of Zn doped CeO2 nanocrystals. Scientific Reports, 7: 12560
21. Habib, I. Y., Muhammad, M., Yakasai, M. Y. and
Abdullahi, A. D. (2021). Structural, morphological and optical properties of
Ni-doped CeO2 nanospheres prepared by surfactant free
co-precipitation technique. Open Journal of Science and Technology,
4(4): 165-177.
22. Hou, X., Lu, Q. and Wang, X. (2017). Enhanced catalytic properties of
La-doped CeO2 nanopowders synthesized by
hydrolyzing and oxidizing Ce46La5C49 alloys. Journal of Science: Advanced Materials and
Devices, 2(1): 41-44.
23. Kumar, S., Al Omar, S. Y., Kumari, K., Albalwi,
F., Kumar, R., Ahmed, F., Ahmed, N., Dwivedi, S. and Alvi,
P.A. (2021). Electrical and antibacterial properties of Fe-doped CeO2
nanoparticles. Crystals, 11: 1594.
24. Nurhasanah, I., Sutanto, H. and Futikhaningtyas,
R. (2014). Optical properties of Zn-doped CeO2 nanoparticles as
function of Zn content. Advanced
Materials Research, 896: 108-111.
25. Prabaharan, D. M. D.
M., Sadaiyandi,
K., Mahendran M. and Sagadevan,
S. (2016). Structural,
optical, morphological and dielectric properties of cerium oxide nanoparticles.
Materials Research, 19(2): 478-482.
26. Wang, Z., Quan, Z. and
Lin, J. (2007). Remarkable changes in the optical properties of CeO2 nanocrystals
induced by lanthanide ions doping. Inorganic Chemistry, 46(13): 5237-5242.
27. Jasmine Ketzial, J. and Samson Nesaraj, A. (2011). Synthesis of CeO2
nanoparticles by chemical precipitation and the effect of a surfactant on the
distribution of particle sizes. Journal
of Ceramic Processing Research, 12(1): 74-79.
28. Thavarani, M., Charles Robert, M., Pavithra, N., Saravanan, R., Kannan, Y.B. and
Balaji Prasath, S. (2022). Effect of Ca2+ doping on the electronic
charge density and magnetic properties of ZnFe2O4 spinel
ferrites. Journal of Materials Science:
Materials in Electronics, 33: 4116-4131.
29. Udayakumar, S., Renuga, V. and
Kavitha, K. (2012). Synthesis and
characterization of Ni - doped ZnO by chemical
precipitation method. International Journal of Recent Scientific
Research, 3:
118-122.
30. Nandiyanto, A. B. D., Oktiani, R. and Ragadhita, R.
(2019). How to read and interpret FTIR
spectroscope of organic material. Indonesian
Journal of Science & Technology,
4(1): 97-118.
31. Napitupulu, R. A. M. (2017). Influence of heating rate and temperature on
austenite grain size during reheating steel. IOP
Conference Series: Materials Science and Engineering, 237: 012038.
32. Arunkumar, M. and Samson Nesaraj, A. (2021). One pot
chemical synthesis of ultrafine NiAl2O4 nanoparticles:
Physico-chemical properties and photocatalytic
degradation of organic dyes under visible light irradiation. Inorganic and Nano-Metal Chemistry,
51(6): 910-917.
33. Balogun, S.W., Sansui, Y. K. and Aina, A.O.
(2018). Structural and optical properties of titanium dioxide thin film
deposited by spin-coating technique. International
Journal of Development Research, 8(1): 18486-18490.
34. Bhatia, S. and Verma, N. (2017). Photocatalytic activity of ZnO nanoparticles with optimization of defects. Materials Research Bulletin, 95:
468-476.
35. Amiri Gharaghani, M. and Malakootian,
M. (2017). Photocatalytic degradation of the antibiotic ciprofloxacin by ZnO nanoparticles immobilized on a glass plate. Desalination and Water Treatment, 89: 304-314.
36. Chen, X. and Mao, S. S. (2007). Titanium dioxide nanomaterials:
Synthesis, properties, modifications, and applications. Chemical Reviews, 107(7): 2891-959.
37. Sadiq, M. M. J. and Samson Nesaraj, A. (2013).
Effect of surfactants in the synthesis
of NiO nanoparticles by colloidal thermal assisted
reflux condensation method. Journal
of New Technology Materials, 3(2): 14-28.
38.
Chandraboss, V. L., Natanapatham, L., Karthikeyan, B., Kamalakkannan.
J., Prabha, S. and Senthilvelan, S. (2013). Effect of bismuth doping on the ZnO
nanocomposite material and study of its photocatalytic activity under UV-light.
Materials Research Bulletin, 48(10):
3707-3712
39.
Akpan U. G. and Hameed, B.
H. (2009). Parameters affecting the photocatalytic degradation of
dyes using TiO2-based photocatalysts: A review. Journal of Hazardous Materials, 170(2-3): 520-529.
40. Anju Chanu, L., Joychandra Singh, W.,
Jugeshwar Singh K. and Nomita
Devi, K. (2019). Effect of operational parameters on the photocatalytic
degradation of methylene blue dye solution using manganese doped ZnO nanoparticles. Results
in Physics, 12: 1230-1237.
41. Jantawasu, P., Sreethawong, T. and Chavadej, S.
(2009). Photocatalytic activity of nanocrystalline mesoporous-assembled TiO2
photocatalyst for degradation of methyl orange mono azo dye in aqueous
wastewater. Chemical Engineering Journal,
155 (1-2):223-233.