Malaysian Journal of Analytical Sciences, Vol 27 No 1 (2023): 160 - 173

 

In Silico MODELLING OF DRUG ADSORPTION USING AMINE-FUNCTIONALIZED IRMOF-74-III METAL-ORGANIC FRAMEWORKS

 

(Pemodelan Penjerapan Ubat menggunakan Rangkaian Logam-Organik IRMOF-74-III Terfungsi-Amina Secara In Silico)

 

Mostafa Yousefzadeh Borzehandani1,2, Emilia Abdulmalek1,2, Mohd Basyaruddin Abdul Rahman1,2,4,

and Muhammad Alif Mohammad Latif1,3,4*

 

1Integrated Chemical BioPhysics Research,

Faculty of Science,

Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia

2School Department of Chemistry,

Faculty of Science,

Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia

3Centre of Foundation Studies for Agricultural Science,

Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia

4Institute of Nanoscience and Nanotechnology,

Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia

 

*Corresponding author: aliflatif@upm.edu.my

 

 

Received: 21 September 2022; Accepted: 30 January 2023; Published:  22 February 2023

 

 

Abstract

Metal-organic frameworks (MOFs) have been touted as prospective materials for drug storage and delivery. Functionalizing MOFs with an amine group has proven to be a successful strategy to achieve enhanced drug adsorption. To the best of our knowledge, however, there no report has been published showing the impact of increasing a common functional group such as amine on MOF’s performance for drug adsorption. With the aim of exploring this possibility, IRMOF-74-III (IRM3) was functionalized with the amine group in various numbers and positions on the phenyl ring of the organic linker. The ability to adsorb several candidate drugs, including aspirin (Asp), fenbufen (Fen), ibuprofen (Ibu) and naproxen (Nap), were tested using density functional theory calculations and molecular docking. When the number of the amines increased, the MOF’s pore polar surface area increased, but the energy gap between the HOMO and LUMO orbitals was reduced. Different pockets on the amine-functionalized IRM3’s pore wall were analyzed by electrostatic potential contours, and then further investigated by a docking simulation. Fen@MOF was shown to be the most stable drug@MOF complex system, as demonstrated by the highest binding affinity. Coordinatively unsaturated magnesium sites in the frameworks, as well as hydroxyl and carbonyl groups on the drugs, are crucial for the interactions and charge transfer. This work successfully highlighted that having different numbers and positions of the amine group on the organic linker can affect the drug adsorption behavior of IRM3 MOF.

 

Keywords: amine-functionalized, anti-inflammatory drug adsorption, IRMOF-74-III, metal-organic frameworks, molecular docking

 

Abstrak

Rangkaian logam-organik (MOF) telah diketengahkan sebagai bahan prospektif bagi penyimpanan dan penghantaran ubatan. Berkenaan ini, memfungsikan MOFs dengan kumpulan amina adalah strategi yang berjaya bagi menambah baik jerapan ubatan. Walaubagaimanapun, mengikut pengetahuan kami, buat masa kini masih tiada laporan menunjukkan impak penambahan kumpulan berfungsi umum seperti amina terhadap prestasi MOF bagi jerapan ubatan. Dengan tujuan menerokai kemungkinan ini, IRMOF-74-III (IRM3) telah difungsikan dengan kumpulan amina dengan jumlah dan kedudukan yang berbeza pada cincin fenil penyambung organik. Kemampuan untuk menjerap beberapa calon ubat termasuklah aspirin (Asp), fenbufen (Fen), ibuprofen (Ibu) dan naproxen (Nap) telah diuji menggunakan pengiraan teori berfungsi ketumpatan dan pendokkan molekul. Adalah didapati bahawa jika jumlah kumpulan amina meningkat, permukaan berkutub MOF juga meningkat tetapi jurang tenaga di antara orbital HOMO dan LUMO adalah berkurang. Saku berbeza pada dinding rongga IRM3 terfungsi-amina dianalisa menggunakan kontur keupayaan elektrostatik dan disiasat lebih lanjut oleh simulasi pendokkan. Fen@MOF mempamerkan sistem kompleks drug@MOF yang paling stabil dan disahihkan oleh afiniti pengikat tertinggi. Tapak magnesium tak tepu yang terselaras di dalam rangkaian, dan juga kumpulan hidroksil dan karbonil pada ubat adalah penting bagi saling tindakan dan pemindahan cas. Kerja ini berjaya mengetengahkan yang memiliki kumpulan amina pada jumlah dan posisi berbeza pada penyambung organik boleh memberi kesan kepada sifat penjerapan ubatan MOF IRM3.

 

Kata kunci: terfungsi-amina, penjerapan ubat anti-inflamasi, IRMOF-74-III, rangka logam-organik, pendokkan molekul

 

References

1.         Kitagawa, S. (2014). Metal–organic frameworks (MOFs). Chemical Society Reviews, 43(16): 5415-5418.

2.         Zhu, L., Liu, X. Q., Jiang, H. L. and Sun, L. B. (2017). Metal–organic frameworks for heterogeneous basic catalysis. Chemical reviews, 117(12): 8129-8176.

3.         Li, J. R., Ma, Y., McCarthy, M. C., Sculley, J., Yu, J., Jeong, H. K. and Zhou, H. C. (2011). Carbon dioxide capture-related gas adsorption and separation in metal-organic frameworks. Coordination Chemistry Reviews, 255(15-16): 1791-1823.

4.         Wang, H. S. (2017). Metal–organic frameworks for biosensing and bioimaging applications. Coordination Chemistry Reviews, 349: 139-155.

5.         Feng, M., Zhang, P., Zhou, H. C. and Sharma, V. K. (2018). Water-stable metal-organic frameworks for aqueous removal of heavy metals and radionuclides: A review. Chemosphere, 209: 783-800.

6.         Lázaro, I. A. and Forgan, R. S. (2019). Application of zirconium MOFs in drug delivery and biomedicine. Coordination chemistry reviews, 380: 230-259.

7.         Zhang, X., Wang, J., Dong, X. X. and Lv, Y. K. (2020). Functionalized metal-organic frameworks for photocatalytic degradation of organic pollutants in environment. Chemosphere, 242: 125144.

8.         Zheng, X., Zhang, L., Fan, Z., Cao, Y., Shen, L., Au, C. and Jiang, L. (2019). Enhanced catalytic activity over MIL-100 (Fe) with coordinatively unsaturated Fe2+/Fe3+ sites for selective oxidation of H2S to sulfur. Chemical Engineering Journal, 374: 793-801.

9.         Deng, H., Grunder, S., Cordova, K. E., Valente, C., Furukawa, H., Hmadeh, M. and Yaghi, O. M. (2012). Large-pore apertures in a series of metal-organic frameworks. Science, 336(6084): 1018-1023.

10.      Kotzabasaki, M., Galdadas, I., Tylianakis, E., Klontzas, E., Cournia, Z. and Froudakis, G. E. (2017). Multiscale simulations reveal IRMOF-74-III as a potent drug carrier for gemcitabine delivery. Journal of Materials Chemistry B, 5(18): 3277-3282.

11.      Erucar, I. and Keskin, S. (2017). Computational investigation of metal organic frameworks for storage and delivery of anticancer drugs. Journal of Materials Chemistry B, 5(35): 7342-7351.

12.      Bernini, M. C., Fairen-Jimenez, D., Pasinetti, M., Ramirez-Pastor, A. J. and Snurr, R. Q. (2014). Screening of bio-compatible metal–organic frameworks as potential drug carriers using Monte Carlo simulations. Journal of Materials Chemistry B, 2(7): 766-774.

13.      Fracaroli, A. M., Furukawa, H., Suzuki, M., Dodd, M., Okajima, S., Gándara, F. and Yaghi, O. M. (2014). Metal–organic frameworks with precisely designed interior for carbon dioxide capture in the presence of water. Journal of the American Chemical Society, 136(25): 8863-8866.

14.      Fracaroli, A. M., Siman, P., Nagib, D. A., Suzuki, M., Furukawa, H., Toste, F. D. and Yaghi, O. M. (2016). Seven post-synthetic covalent reactions in tandem leading to enzyme-like complexity within metal–organic framework crystals. Journal of the American Chemical Society, 138(27): 8352-8355.

15.      Van Tran, T., Nguyen, D. T. C., Le, H. T. N., Vo, D. V. N., Doan, V. D., Dinh, V. P. and Bach, L. G. (2019). Amino-functionalized MIL-88B (Fe)-based porous carbon for enhanced adsorption toward ciprofloxacin pharmaceutical from aquatic solutions. Comptes Rendus Chimie, 22(11-12): 804-812.

16.      Xu, X. Y. and Yan, B. (2016). Selective detection and controlled release of Aspirin over fluorescent amino-functionalized metal–organic framework in aqueous solution. Sensors and Actuators B: Chemical, 230: 463-469.

17.      Almáši, M., Zeleňák, V., Palotai, P., Beňová, E. and Zeleňáková, A. (2018). Metal-organic framework MIL-101 (Fe)-NH2 functionalized with different long-chain polyamines as drug delivery system. Inorganic Chemistry Communications, 93: 115-120.

18.      Smith, S. R., Deshpande, B. R., Collins, J. E., Katz, J. N. and Losina, E. (2016). Comparative pain reduction of oral non-steroidal anti-inflammatory drugs and opioids for knee osteoarthritis: systematic analytic review. Osteoarthritis and cartilage, 24(6): 962-972.

19.      Juère, E., Florek, J., Bouchoucha, M., Jambhrunkar, S., Wong, K. Y., Popat, A. and Kleitz, F. (2017). In vitro dissolution, cellular membrane permeability, and anti-inflammatory response of resveratrol-encapsulated mesoporous silica nanoparticles. Molecular Pharmaceutics, 14(12): 4431-4441.

20.      Koç, F. E. and Şenel, M. (2013). Solubility enhancement of non-steroidal anti-inflammatory drugs (NSAIDs) using polypolypropylene oxide core PAMAM dendrimers. International journal of pharmaceutics, 451(1-2): 18-22.

21.      Rivas, C. J. M., Tarhini, M., Badri, W., Miladi, K., Greige-Gerges, H., Nazari, Q. A. and Elaissari, A. (2017). Nanoprecipitation process: From encapsulation to drug delivery. International journal of pharmaceutics, 532(1): 66-81.

22.      Shishir, M. R. I., Xie, L., Sun, C., Zheng, X. and Chen, W. (2018). Advances in micro and nano-encapsulation of bioactive compounds using biopolymer and lipid-based transporters. Trends in Food Science & Technology, 78: 34-60.

23.      Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R. and Fox, D. J. (2009). Gaussian 09 Program; Gaussian, Inc. Wallingford, CT.

24.      Trott, O. and Olson, A. J. (2010). AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. Journal of Computational Chemistry, 31(2): 455-461.

25.      Liu, J. Q., Li, X. F., Gu, C. Y., da Silva, J. C., Barros, A. L., Alves-Jr, S. and Soares, T. A. (2015). A combined experimental and computational study of novel nanocage-based metal–organic frameworks for drug delivery. Dalton Transactions, 44(44): 19370-19382.

26.      Weinhold, F. and Glendening, E. D. (2001). NBO 5.0 program manual: natural bond orbital analysis programs. Theoretical Chemistry Institute and Department of Chemistry, University of Wisconsin, Madison, WI, 53706.

27.      Suksaengrat, P., Amornkitbamrung, V. and Srepusharawoot, P. (2020). Enhancements of hydrogen adsorption energy in M-MOF-525 (M= Ti, V, Zr and Hf): A DFT study. Chinese Journal of Physics, 64: 326-332.

28.      Rodrigues, M. O., de Paula, M. V., Wanderley, K. A., Vasconcelos, I. B., Alves Jr, S. and Soares, T. A. (2012). Metal organic frameworks for drug delivery and environmental remediation: A molecular docking approach. International Journal of Quantum Chemistry, 112(20): 3346-3355.

29.      Pham, T., Forrest, K. A., Nugent, P., Belmabkhout, Y., Luebke, R., Eddaoudi, M. and Space, B. (2013). Understanding hydrogen sorption in a metal–organic framework with open-metal sites and amide functional groups. The Journal of Physical Chemistry C, 117(18): 9340-9354.

30.      Sun, K., Li, L., Yu, X., Liu, L., Meng, Q., Wang, F. and Zhang, R. (2017). Functionalization of mixed ligand metal-organic frameworks as the transport vehicles for drugs. Journal of colloid and interface science, 486: 128-135.

31.      Hai, T., Wan, X., Yu, D. G., Wang, K., Yang, Y. and Liu, Z. P. (2019). Electrospun lipid-coated medicated nanocomposites for an improved drug sustained-release profile. Materials & Design, 162: 70-79.

32.      Hate, S. S., Reutzel-Edens, S. M. and Taylor, L. S. (2020). Influence of drug–silica electrostatic interactions on drug release from mesoporous silica-based oral delivery systems. Molecular Pharmaceutics, 17(9): 3435-3446.