Malaysian
Journal of Analytical Sciences, Vol 27 No 1 (2023): 160 - 173
In Silico MODELLING OF DRUG ADSORPTION USING
AMINE-FUNCTIONALIZED IRMOF-74-III METAL-ORGANIC FRAMEWORKS
(Pemodelan Penjerapan Ubat menggunakan Rangkaian Logam-Organik IRMOF-74-III Terfungsi-Amina
Secara In Silico)
Mostafa
Yousefzadeh Borzehandani1,2, Emilia
Abdulmalek1,2, Mohd Basyaruddin Abdul
Rahman1,2,4,
and
Muhammad Alif Mohammad Latif1,3,4*
1Integrated Chemical BioPhysics Research,
Faculty of Science,
Universiti Putra Malaysia, 43400 UPM
Serdang, Selangor, Malaysia
2School Department of
Chemistry,
Faculty of Science,
Universiti Putra Malaysia, 43400 UPM
Serdang, Selangor, Malaysia
3Centre of Foundation Studies
for Agricultural Science,
Universiti Putra Malaysia, 43400 UPM
Serdang, Selangor, Malaysia
4Institute of Nanoscience and
Nanotechnology,
Universiti Putra Malaysia, 43400 UPM
Serdang, Selangor, Malaysia
*Corresponding
author: aliflatif@upm.edu.my
Received: 21 September 2022; Accepted:
30 January 2023; Published: 22 February
2023
Abstract
Metal-organic frameworks
(MOFs) have been touted as prospective materials for drug storage and delivery.
Functionalizing MOFs with an amine group has proven to be a successful strategy
to achieve enhanced drug adsorption. To the best of our knowledge, however,
there no report has been published showing the impact of increasing a common
functional group such as amine on MOF’s performance for drug adsorption. With
the aim of exploring this possibility, IRMOF-74-III (IRM3) was functionalized
with the amine group in various numbers and positions on the phenyl ring of the
organic linker. The ability to adsorb several candidate drugs, including
aspirin (Asp), fenbufen (Fen), ibuprofen (Ibu) and
naproxen (Nap), were tested using density functional theory calculations and
molecular docking. When the number of the amines increased, the MOF’s pore
polar surface area increased, but the energy gap between the HOMO and LUMO
orbitals was reduced. Different pockets on the amine-functionalized IRM3’s pore
wall were analyzed by electrostatic potential contours, and then further
investigated by a docking simulation. Fen@MOF was
shown to be the most stable drug@MOF complex system,
as demonstrated by the highest binding affinity. Coordinatively unsaturated
magnesium sites in the frameworks, as well as hydroxyl and carbonyl groups on
the drugs, are crucial for the interactions and charge transfer. This work
successfully highlighted that having different numbers and positions of the
amine group on the organic linker can affect the drug adsorption behavior of
IRM3 MOF.
Keywords: amine-functionalized,
anti-inflammatory drug adsorption, IRMOF-74-III, metal-organic frameworks,
molecular docking
Abstrak
Rangkaian logam-organik (MOF) telah diketengahkan sebagai bahan prospektif bagi penyimpanan dan penghantaran ubatan. Berkenaan ini, memfungsikan MOFs dengan kumpulan amina adalah strategi yang berjaya bagi menambah baik
jerapan ubatan. Walaubagaimanapun, mengikut pengetahuan kami, buat masa kini masih tiada
laporan menunjukkan impak penambahan kumpulan berfungsi umum seperti amina
terhadap prestasi MOF bagi jerapan ubatan.
Dengan tujuan menerokai kemungkinan ini, IRMOF-74-III (IRM3) telah difungsikan dengan kumpulan amina dengan jumlah dan kedudukan yang berbeza pada cincin fenil penyambung
organik. Kemampuan untuk menjerap beberapa calon ubat termasuklah aspirin (Asp), fenbufen (Fen), ibuprofen (Ibu) dan naproxen (Nap) telah diuji menggunakan
pengiraan teori berfungsi ketumpatan dan pendokkan molekul. Adalah didapati bahawa jika jumlah
kumpulan amina meningkat, permukaan berkutub MOF juga meningkat tetapi jurang tenaga
di antara orbital HOMO dan LUMO adalah
berkurang. Saku berbeza pada dinding rongga IRM3 terfungsi-amina dianalisa menggunakan kontur keupayaan elektrostatik dan disiasat lebih lanjut oleh simulasi pendokkan. Fen@MOF mempamerkan sistem kompleks drug@MOF yang paling stabil dan disahihkan oleh afiniti pengikat tertinggi. Tapak magnesium tak tepu yang terselaras di dalam rangkaian, dan juga kumpulan hidroksil dan karbonil pada ubat adalah penting bagi saling tindakan
dan pemindahan cas. Kerja ini berjaya
mengetengahkan yang memiliki
kumpulan amina pada jumlah dan posisi berbeza pada penyambung organik boleh memberi
kesan kepada sifat penjerapan ubatan MOF IRM3.
Kata kunci: terfungsi-amina, penjerapan ubat anti-inflamasi,
IRMOF-74-III, rangka logam-organik,
pendokkan molekul
References
1.
Kitagawa,
S. (2014). Metal–organic frameworks (MOFs). Chemical Society Reviews, 43(16):
5415-5418.
2.
Zhu,
L., Liu, X. Q., Jiang, H. L. and Sun, L. B. (2017). Metal–organic frameworks
for heterogeneous basic catalysis. Chemical reviews, 117(12):
8129-8176.
3.
Li,
J. R., Ma, Y., McCarthy, M. C., Sculley, J., Yu, J., Jeong,
H. K. and Zhou, H. C. (2011). Carbon dioxide capture-related gas adsorption and
separation in metal-organic frameworks. Coordination Chemistry Reviews, 255(15-16):
1791-1823.
4.
Wang,
H. S. (2017). Metal–organic frameworks for biosensing and bioimaging
applications. Coordination Chemistry Reviews, 349: 139-155.
5.
Feng,
M., Zhang, P., Zhou, H. C. and Sharma, V. K. (2018). Water-stable metal-organic
frameworks for aqueous removal of heavy metals and radionuclides: A
review. Chemosphere, 209: 783-800.
6.
Lázaro, I. A. and Forgan, R. S. (2019). Application of
zirconium MOFs in drug delivery and biomedicine. Coordination chemistry
reviews, 380: 230-259.
7.
Zhang,
X., Wang, J., Dong, X. X. and Lv, Y. K. (2020).
Functionalized metal-organic frameworks for photocatalytic degradation of
organic pollutants in environment. Chemosphere, 242: 125144.
8.
Zheng,
X., Zhang, L., Fan, Z., Cao, Y., Shen, L., Au, C. and Jiang, L. (2019).
Enhanced catalytic activity over MIL-100 (Fe) with coordinatively unsaturated
Fe2+/Fe3+ sites for selective oxidation of H2S
to sulfur. Chemical Engineering Journal, 374: 793-801.
9.
Deng,
H., Grunder, S., Cordova, K. E., Valente, C.,
Furukawa, H., Hmadeh, M. and Yaghi,
O. M. (2012). Large-pore apertures in a series of metal-organic frameworks. Science, 336(6084):
1018-1023.
10.
Kotzabasaki, M., Galdadas, I., Tylianakis, E., Klontzas, E., Cournia, Z. and Froudakis, G. E.
(2017). Multiscale simulations reveal IRMOF-74-III as a potent drug carrier for
gemcitabine delivery. Journal of Materials Chemistry B, 5(18):
3277-3282.
11.
Erucar, I. and Keskin, S.
(2017). Computational investigation of metal organic frameworks for storage and
delivery of anticancer drugs. Journal of Materials Chemistry B, 5(35):
7342-7351.
12.
Bernini, M. C., Fairen-Jimenez, D., Pasinetti, M.,
Ramirez-Pastor, A. J. and Snurr, R. Q. (2014). Screening of bio-compatible metal–organic
frameworks as potential drug carriers using Monte Carlo simulations. Journal
of Materials Chemistry B, 2(7): 766-774.
13.
Fracaroli, A. M., Furukawa, H., Suzuki, M., Dodd, M., Okajima, S., Gándara, F.
and Yaghi, O. M. (2014). Metal–organic frameworks
with precisely designed interior for carbon dioxide capture in the presence of
water. Journal of the American Chemical Society, 136(25):
8863-8866.
14.
Fracaroli, A. M., Siman, P., Nagib, D. A., Suzuki, M., Furukawa, H., Toste, F. D. and Yaghi, O. M. (2016). Seven post-synthetic covalent
reactions in tandem leading to enzyme-like complexity within metal–organic
framework crystals. Journal of the American Chemical Society, 138(27):
8352-8355.
15.
Van
Tran, T., Nguyen, D. T. C., Le, H. T. N., Vo, D. V. N., Doan, V. D., Dinh, V. P. and Bach, L. G. (2019). Amino-functionalized
MIL-88B (Fe)-based porous carbon for enhanced adsorption toward ciprofloxacin
pharmaceutical from aquatic solutions. Comptes
Rendus Chimie, 22(11-12):
804-812.
16.
Xu,
X. Y. and Yan, B. (2016). Selective detection and controlled release of Aspirin
over fluorescent amino-functionalized metal–organic framework in aqueous solution. Sensors
and Actuators B: Chemical, 230: 463-469.
17.
Almáši, M., Zeleňák, V., Palotai, P., Beňová, E. and Zeleňáková, A. (2018). Metal-organic framework MIL-101
(Fe)-NH2 functionalized with different long-chain polyamines as drug delivery
system. Inorganic Chemistry Communications, 93: 115-120.
18.
Smith,
S. R., Deshpande, B. R., Collins, J. E., Katz, J. N. and Losina,
E. (2016). Comparative pain reduction of oral non-steroidal anti-inflammatory
drugs and opioids for knee osteoarthritis: systematic analytic review. Osteoarthritis
and cartilage, 24(6): 962-972.
19.
Juère, E., Florek, J., Bouchoucha, M., Jambhrunkar, S.,
Wong, K. Y., Popat, A. and Kleitz,
F. (2017). In vitro dissolution, cellular membrane permeability, and
anti-inflammatory response of resveratrol-encapsulated mesoporous silica
nanoparticles. Molecular Pharmaceutics, 14(12): 4431-4441.
20.
Koç, F. E. and Şenel, M. (2013). Solubility
enhancement of non-steroidal anti-inflammatory drugs (NSAIDs) using polypolypropylene oxide core PAMAM dendrimers. International
journal of pharmaceutics, 451(1-2): 18-22.
21.
Rivas,
C. J. M., Tarhini, M., Badri, W., Miladi,
K., Greige-Gerges, H., Nazari, Q. A. and Elaissari,
A. (2017). Nanoprecipitation process: From encapsulation to drug
delivery. International journal of pharmaceutics, 532(1):
66-81.
22.
Shishir,
M. R. I., Xie, L., Sun, C., Zheng, X. and Chen, W.
(2018). Advances in micro and nano-encapsulation of bioactive compounds using
biopolymer and lipid-based transporters. Trends in Food Science &
Technology, 78: 34-60.
23.
Frisch,
M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G.
E., Robb, M. A., Cheeseman, J. R. and Fox, D. J. (2009). Gaussian 09 Program;
Gaussian, Inc. Wallingford, CT.
24.
Trott,
O. and Olson, A. J. (2010). AutoDock Vina: improving
the speed and accuracy of docking with a new scoring function, efficient
optimization, and multithreading. Journal of Computational Chemistry, 31(2):
455-461.
25.
Liu,
J. Q., Li, X. F., Gu, C. Y., da Silva, J. C., Barros, A. L., Alves-Jr, S. and
Soares, T. A. (2015). A combined experimental and computational study of novel
nanocage-based metal–organic frameworks for drug delivery. Dalton
Transactions, 44(44): 19370-19382.
26.
Weinhold, F. and Glendening, E. D. (2001). NBO 5.0 program
manual: natural bond orbital analysis programs. Theoretical Chemistry
Institute and Department of Chemistry, University of Wisconsin, Madison, WI, 53706.
27.
Suksaengrat, P., Amornkitbamrung, V.
and Srepusharawoot, P. (2020). Enhancements of
hydrogen adsorption energy in M-MOF-525 (M= Ti, V, Zr
and Hf): A DFT study. Chinese Journal of Physics, 64: 326-332.
28.
Rodrigues,
M. O., de Paula, M. V., Wanderley, K. A., Vasconcelos, I. B., Alves Jr, S. and
Soares, T. A. (2012). Metal organic frameworks for drug delivery and
environmental remediation: A molecular docking approach. International
Journal of Quantum Chemistry, 112(20): 3346-3355.
29.
Pham,
T., Forrest, K. A., Nugent, P., Belmabkhout, Y., Luebke, R., Eddaoudi, M. and
Space, B. (2013). Understanding hydrogen sorption in a metal–organic framework
with open-metal sites and amide functional groups. The Journal of
Physical Chemistry C, 117(18): 9340-9354.
30.
Sun,
K., Li, L., Yu, X., Liu, L., Meng, Q., Wang, F. and Zhang, R. (2017).
Functionalization of mixed ligand metal-organic frameworks as the transport
vehicles for drugs. Journal of colloid and interface science, 486:
128-135.
31.
Hai,
T., Wan, X., Yu, D. G., Wang, K., Yang, Y. and Liu, Z. P. (2019). Electrospun lipid-coated medicated nanocomposites for an
improved drug sustained-release profile. Materials & Design, 162:
70-79.
32.
Hate,
S. S., Reutzel-Edens, S. M. and Taylor, L. S. (2020).
Influence of drug–silica electrostatic interactions on drug release from
mesoporous silica-based oral delivery systems. Molecular Pharmaceutics, 17(9):
3435-3446.