Malaysian
Journal of Analytical Sciences, Vol 27 No 1 (2023): 147 - 159
SYNTHESIS
AND CHARACTERISATION OF COMPOSITE SILICA, POLY(METHYL METHACRYLATE) (PMMA) AND
GOLD-SILVER
(Au-Ag) ALLOY VIA CO-CRYSTALLISATION FOR LIGHT MANIPULATION APPLICATIONS
(Sintesis dan Pencirian
Komposit Silika, Poli(metil metakrilat) (PMMA) dan Aloi Emas-Perak (Au-Ag)
Melalui Penghabluran Bersama Untuk Aplikasi Manipulasi Cahaya)
Rozaitunmas Jamal1, Rabiatul Addawiyah Azwa Tahrin1,
Mohd Sabri Mohd Ghazali2,
Sibu C. Padmanabhan3,4,
Chan Kiki1, and Syara Kassim2*
1Faculty of Science and Marine
Environment,
Universiti Malaysia Terengganu,
21030 Kuala Nerus, Terengganu, Malaysia
2Advanced Nano Materials
(ANoMa) Research Group,
Faculty of Science and Marine
Environment,
Universiti Malaysia Terengganu,
21030 Kuala Nerus, Terengganu, Malaysia
3Advanced Materials and
BioEngineering Research (AMBER) Centre,
Trinity College Dublin, Dublin
2, Ireland
4School of Chemistry,
Trinity College Dublin, College
Green, Dublin 2, Ireland
*Corresponding author: syara.kassim@umt.edu.my
Received: 28 June 2022; Accepted: 23
November 2022; Published: 22 February
2023
Abstract
Metallodielectric
photonic crystal has emerged as a formidable asset in the realms of light
trapping materials. Inverted silica, and alloy noble metal nanoparticles of
gold-silver alloy(Au-Ag) exhibited promising light trapping capabilities that
have the potential of applications across many fields including solar cell, and
biomedical device production. This composite was prepared via self-assembly; a
fast, simple, and low-cost method capable of generating photonic crystals of
greater surface area. Poly(methyl methacrylate) (PMMA) was used as the crystal
template, and hydrolysed tetraethyl orthosilicate (TEOS) as the cementing
component. In this study, methyl methacrylate monomer underwent a complete
polymerisation reaction to form PMMA due to the absent of C=C bond around 1639.83
cm-1 as characterised by IR spectroscopy. Alloy(Au-Ag) nanoparticles
displayed good light absorption ability as shown from UV-Vis
analysis of the nanoparticles at wavelength of 437nm. SEM imaging revealed that
after the removal of PMMA template from Si-Alloy(Au-Ag)-PMMA composite, an
inverted structure that possessed a hole skeleton structure was produced. The
performance of the inverted Si-alloy(Au-Ag) composite was tested via a dye
sensitive solar cell (DSSC) that showed an amplification in voltage reading.
Keywords: nanostructure, photonics, metallo-dielectric,
alloy nanoparticles, inverse opal
Abstrak
Kristal fotonik metallodielektrik telah muncul sebagai aset
yang menggerunkan dalam bidang bahan perangkap cahaya. Silika songsang, dan
aloi nanopartikel logam adi daripada Aloi emas-perak (Au-Ag) mempamerkan
keupayaan memerangkap cahaya yang mempunyai potensi aplikasi merentasi banyak
bidang termasuk sel solar, dan pengeluaran peranti bioperubatan. Komposit ini
disediakan melalui pemasangan sendiri; kaedah yang cepat, mudah dan kos rendah
yang mampu menghasilkan kristal fotonik dengan luas permukaan yang lebih besar.
Poli(metil metakrilat) (PMMA) digunakan sebagai templat kristal, dan tetraetil
orthosilikat terhidrolisis (TEOS) sebagai komponen penyimenan. Dalam kajian
ini, monomer metil metakrilat menjalani tindak balas pempolimeran lengkap untuk
membentuk PMMA kerana ketiadaan ikatan C=C sekitar 1639.83 cm-1
seperti yang dicirikan oleh spektroskopi IR. Nanozarah aloi (Au-Ag) menunjukkan
keupayaan penyerapan cahaya yang baik seperti yang ditunjukkan daripada
analisis UV-Vis bagi nanozarah pada panjang gelombang 437nm. Pengimejan SEM
mendedahkan bahawa selepas penyingkiran templat PMMA daripada komposit
Si-Alloy(Au-Ag)-PMMA, struktur songsang yang mempunyai struktur rangka lubang
dihasilkan. Prestasi komposit Si-aloi(Au-Ag) songsang telah diuji melalui sel suria sensitif pewarna
(DSSC) yang menunjukkan penguatan dalam bacaan voltan.
Kata kunci: struktur
nano, fotonik, metalo-dielektrik, zarah nano aloi, opal songsang,
References
1.
Shakeel Ahmad, M., Pandey,
A. K. and Abd Rahim, N. (2017). Advancements in the development of TiO2
photoanodes and its fabrication methods for dye sensitized solar cell (DSSC)
applications. A review. Renewable and
Sustainable Energy Reviews, 77:
89-108.
2.
Wang, Z., Tang, Y., Li, M.,
Zhu, Y., Li, M., Bai, L., Luoshan, M., Lei, W. and
Zhao, X. (2017). Plasmonic enhancement of the performance of dye-sensitized
solar cells by incorporating TiO2 nanotubes decorated with Au
nanoparticles. Journal of Alloys and Compounds,
C (714): 89-95.
3.
Aberle, A. G. (2009). Thin-film solar cells. Thin Solid Films, 517(17):
4706-4710.
4.
Andreani, L. C., Bozzola, A., Kowalczewski,
P. and Liscidini, M. (2015). Photonic light trapping
and electrical transport in thin-film silicon solar cells. Solar Energy Materials and Solar Cells, 135: 78-92.
5.
Zanotto, S., Liscidini, M. and Claudio Andreani, L. (2010). Light trapping regimes in thin-film
silicon solar cells with a photonic pattern. Optics Express, 18(5):
4260-4272.
6.
Werner, J., Weng, C.-H.,
Walter, A., Fesquet, L., Seif, J. P., De Wolf, S., Niesen, B. and Ballif, C. (2016).
Efficient monolithic perovskite/silicon tandem solar cell with cell area >1
cm2. The Journal of Physical
Chemistry Letters, 7(1): 161-166.
7.
Eisenlohr, J. (2017). Light trapping in
high-efficiency crystalline silicon solar cells. Doctoral dissertation,
University of Konstanz, Germany.
8.
Cao, D. H., Stoumpos, C. C., Farha, O. K., Hupp, J. T. and Kanatzidis, M. G. (2015). 2D homologous perovskites as
light-absorbing materials for solar cell applications. Journal of the American Chemical Society, 137(24): 7843-7850.
9.
Ouanoughi, A., Hocini, A. and Khedrouche,
D. (2016). Enhanced absorption of solar cell made of photonic crystal by
geometrical design. Frontiers of
Optoelectronics, 9(1): 93-98.
10.
Li, Y., Chen, Y., Ouyang,
Z. and Lennon, A. (2015). Angular matrix framework for light trapping analysis
of solar cells. Optics Express, 23(24): A1707-A1719.
11.
Kassim, S., Mcgrath, J. and Padmanabhan, S. (2015).
Preparation and properties of silica inverse opal via self-assembly. Applied Mechanics and Materials, 699:
318-324.
12.
Chen, W., Meng, Z., Xue, M. and Shea, K. (2016). Molecular imprinted photonic
crystal for sensing of biomolecules. Molecular
Imprinting, 4: 1-12.
13.
Lonergan, A., McNulty, D.
and O’Dwyer, C. (2018). Tetrahedral framework of
inverse opal photonic crystals defines the optical response and photonic band
gap. Journal of Applied Physics, 124(9): 095106.
14.
Armstrong, E. and O’Dwyer, C. (2015). Artificial opal photonic crystals and
inverse opal structures – fundamentals and applications from optics to energy
storage. Journal of Materials Chemistry C,
3(24): 6109-6143.
15.
Garín Escrivá, M., Hernández, D., Trifonov, T. and Alcubilla, R. (2014). Three-dimensional metallo-dielectric
selective thermal emitters with high-temperature stability for
thermophotovoltaic applications. Solar
Energy Materials and Solar Cells, 134:
22-28.
16.
Rout, D. and Vijaya, R.
(2017). Role of stopband and localized surface plasmon resonance in raman scattering from metallo-dielectric
photonic crystals. Plasmonics,
12(5): 1409-1416.
17.
Kassim, S. (2014). Polymer and metallodielectric based photonic crystals. Doctoral
thesis, University College Cork, Ireland.
18.
Kassim, S., Mukhtar, N. A. and Tahrin, R. A. A.
(2020). Synthesis and characterization of plasmon-enhanced SERS substrate based
on Au-Ag alloy-coated, large-area photonic (methyl methacrylate+styrene)
co-polymer. Materials Science Forum, 982: 14-19.
19.
Kassim, S., Padmanabhan, S. C. and Pemble, M. E.
(2021). Bottom-up colloidal synthesis of PMMA@Au
core–shell based metallodielectric photonic crystals
as substrates for surface-enhanced Raman spectroscopy. Applied Surface Science, 569:
151014.
20.
Padmanabhan, S.C., Kassim, S. and Pemble, M. (2018). Colloidal
co-crystallization: A new route for production of three-dimensional metallodielectric photonic crystals. Asian
Journal of Chemistry, 30(7): 1613-1616.
21.
Gałka, P., Kowalonek, J. and Kaczmarek, H. (2014).
Thermogravimetric analysis of thermal stability of poly(methyl methacrylate)
films modified with photoinitiators. Journal of Thermal Analysis and Calorimetry,
115(2): 1387-1394.
22.
Al-Azawi,
M. A., Bidin, N., Bououdina,
M. and Mohammad, S. M. (2016). Preparation of gold and gold–silver alloy
nanoparticles for enhancement of plasmonic dye-sensitized solar cells
performance. Solar Energy, 126: 93-104.
23. Marichy,
C., Muller, N., Froufe-Pérez, L. S. and Scheffold, F. (2016). High-quality photonic crystals with a
nearly complete band gap obtained by direct inversion of woodpile templates
with titanium dioxide. Scientific Reports, 6(1): 21818.
24. Shishkin,
I. I., Rybin, M. V., Samusev,
K. B., Golubev, V. G. and Limonov, M. F. (2014).
Multiple Bragg diffraction in opal-based photonic crystals: Spectral and
spatial dispersion. Physical Review B, 89(3): 035124.
25. Wang, Z. and Yu, B. (2018). Plasmonic control of
refractive index without absorption in metallic photonic crystals doped with
quantum dots. Plasmonics, 13(2): 567-574.
26. Van Lare, C., Lenzmann, F., Verschuuren, M. A.
and Polman, A. (2015). Dielectric scattering patterns for efficient light
trapping in thin-film solar cells. Nano Letters, 15(8): 4846-4852.
27. Byrne, H. J., Baranska, M., Puppels, G. J., Stone, N., Wood, B., Gough, K. M., Lasch, P., Heraud, P., Sulé-Suso, J. and Sockalingum, G.
D. (2015). Spectropathology for the next generation:
Quo vadis? Analyst,
140(7): 2066-2073.
28. Yang, S., Dai, X., Stogin, B. B. and Wong,
T.-S. (2016). Ultrasensitive surface-enhanced Raman scattering detection in
common fluids. Proceedings of the
National Academy of Sciences, 113(2):
268-273.
29. Shukla, R., Bansal, V., Chaudhary, M., Basu,
A., Bhonde, R. R. and Sastry, M. (2005).
Biocompatibility of gold nanoparticles and their endocytotic
fate inside the cellular compartment: A microscopic overview. Langmuir, 21(23): 10644-10654.
30. Du, Z., Qi, Y., He, J., Zhong, D. and Zhou, M. (2021). Recent advances
in applications of nanoparticles in SERS in vivo imaging. WIREs Nanomedicine and Nanobiotechnology, 13(2): e1672.
31. Samanta, A., Maiti, K. K., Soh, K.-S., Liao, X., Vendrell, M., Dinish, U. S., Yun,
S.-W., Bhuvaneswari, R., Kim, H., Rautela,
S., Chung, J., Olivo, M. and Chang, Y.-T. (2011). Ultrasensitive Near-Infrared
Raman Reporters for SERS-Based In Vivo Cancer Detection. Angewandte Chemie, 123(27): 6213-6216.
32.
Götz, S. and Karst, U. (2007).
Recent developments in optical detection methods for microchip separations. Analytical and Bioanalytical Chemistry, 387(1): 183-192.
33. Kumar, V. V. R. K., George, A. K., Knight, J. C. and Russell, P. S. J.
(2003). Tellurite photonic crystal fiber. Optics Express, 11(20): 2641-2645.