Malaysian Journal of Analytical Sciences, Vol 27 No 1 (2023): 147 - 159

 

SYNTHESIS AND CHARACTERISATION OF COMPOSITE SILICA, POLY(METHYL METHACRYLATE) (PMMA) AND GOLD-SILVER

(Au-Ag) ALLOY VIA CO-CRYSTALLISATION FOR LIGHT MANIPULATION APPLICATIONS

 

(Sintesis dan Pencirian Komposit Silika, Poli(metil metakrilat) (PMMA) dan Aloi Emas-Perak (Au-Ag) Melalui Penghabluran Bersama Untuk Aplikasi Manipulasi Cahaya)

 

Rozaitunmas Jamal1, Rabiatul Addawiyah Azwa Tahrin1, Mohd Sabri Mohd Ghazali2,

Sibu C. Padmanabhan3,4, Chan Kiki1, and Syara Kassim2*

 

1Faculty of Science and Marine Environment,

Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia

2Advanced Nano Materials (ANoMa) Research Group,

Faculty of Science and Marine Environment,

Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia

3Advanced Materials and BioEngineering Research (AMBER) Centre,

Trinity College Dublin, Dublin 2, Ireland

4School of Chemistry,

Trinity College Dublin, College Green, Dublin 2, Ireland

 

*Corresponding author: syara.kassim@umt.edu.my

 

 

Received: 28 June 2022; Accepted: 23 November 2022; Published:  22 February 2023

 

 

Abstract

Metallodielectric photonic crystal has emerged as a formidable asset in the realms of light trapping materials. Inverted silica, and alloy noble metal nanoparticles of gold-silver alloy(Au-Ag) exhibited promising light trapping capabilities that have the potential of applications across many fields including solar cell, and biomedical device production. This composite was prepared via self-assembly; a fast, simple, and low-cost method capable of generating photonic crystals of greater surface area. Poly(methyl methacrylate) (PMMA) was used as the crystal template, and hydrolysed tetraethyl orthosilicate (TEOS) as the cementing component. In this study, methyl methacrylate monomer underwent a complete polymerisation reaction to form PMMA due to the absent of C=C bond around 1639.83 cm-1 as characterised by IR spectroscopy. Alloy(Au-Ag) nanoparticles displayed good light absorption ability as shown from UV-Vis analysis of the nanoparticles at wavelength of 437nm. SEM imaging revealed that after the removal of PMMA template from Si-Alloy(Au-Ag)-PMMA composite, an inverted structure that possessed a hole skeleton structure was produced. The performance of the inverted Si-alloy(Au-Ag) composite was tested via a dye sensitive solar cell (DSSC) that showed an amplification in voltage reading.

 

Keywords: nanostructure, photonics, metallo-dielectric, alloy nanoparticles, inverse opal

 

 

Abstrak

Kristal fotonik metallodielektrik telah muncul sebagai aset yang menggerunkan dalam bidang bahan perangkap cahaya. Silika songsang, dan aloi nanopartikel logam adi daripada Aloi emas-perak (Au-Ag) mempamerkan keupayaan memerangkap cahaya yang mempunyai potensi aplikasi merentasi banyak bidang termasuk sel solar, dan pengeluaran peranti bioperubatan. Komposit ini disediakan melalui pemasangan sendiri; kaedah yang cepat, mudah dan kos rendah yang mampu menghasilkan kristal fotonik dengan luas permukaan yang lebih besar. Poli(metil metakrilat) (PMMA) digunakan sebagai templat kristal, dan tetraetil orthosilikat terhidrolisis (TEOS) sebagai komponen penyimenan. Dalam kajian ini, monomer metil metakrilat menjalani tindak balas pempolimeran lengkap untuk membentuk PMMA kerana ketiadaan ikatan C=C sekitar 1639.83 cm-1 seperti yang dicirikan oleh spektroskopi IR. Nanozarah aloi (Au-Ag) menunjukkan keupayaan penyerapan cahaya yang baik seperti yang ditunjukkan daripada analisis UV-Vis bagi nanozarah pada panjang gelombang 437nm. Pengimejan SEM mendedahkan bahawa selepas penyingkiran templat PMMA daripada komposit Si-Alloy(Au-Ag)-PMMA, struktur songsang yang mempunyai struktur rangka lubang dihasilkan. Prestasi komposit Si-aloi(Au-Ag) songsang  telah diuji melalui sel suria sensitif pewarna (DSSC) yang menunjukkan penguatan dalam bacaan voltan.

 

Kata kunci: struktur nano, fotonik, metalo-dielektrik, zarah nano aloi, opal songsang,

 

References

1.         Shakeel Ahmad, M., Pandey, A. K. and Abd Rahim, N. (2017). Advancements in the development of TiO2 photoanodes and its fabrication methods for dye sensitized solar cell (DSSC) applications. A review. Renewable and Sustainable Energy Reviews, 77: 89-108.

2.         Wang, Z., Tang, Y., Li, M., Zhu, Y., Li, M., Bai, L., Luoshan, M., Lei, W. and Zhao, X. (2017). Plasmonic enhancement of the performance of dye-sensitized solar cells by incorporating TiO2 nanotubes decorated with Au nanoparticles. Journal of Alloys and Compounds, C (714): 89-95.

3.         Aberle, A. G. (2009). Thin-film solar cells. Thin Solid Films, 517(17): 4706-4710.

4.         Andreani, L. C., Bozzola, A., Kowalczewski, P. and Liscidini, M. (2015). Photonic light trapping and electrical transport in thin-film silicon solar cells. Solar Energy Materials and Solar Cells, 135: 78-92.

5.         Zanotto, S., Liscidini, M. and Claudio Andreani, L. (2010). Light trapping regimes in thin-film silicon solar cells with a photonic pattern. Optics Express, 18(5): 4260-4272.

6.         Werner, J., Weng, C.-H., Walter, A., Fesquet, L., Seif, J. P., De Wolf, S., Niesen, B. and Ballif, C. (2016). Efficient monolithic perovskite/silicon tandem solar cell with cell area >1 cm2. The Journal of Physical Chemistry Letters, 7(1): 161-166.

7.         Eisenlohr, J. (2017). Light trapping in high-efficiency crystalline silicon solar cells. Doctoral dissertation, University of Konstanz, Germany.

8.         Cao, D. H., Stoumpos, C. C., Farha, O. K., Hupp, J. T. and Kanatzidis, M. G. (2015). 2D homologous perovskites as light-absorbing materials for solar cell applications. Journal of the American Chemical Society, 137(24): 7843-7850.

9.         Ouanoughi, A., Hocini, A. and Khedrouche, D. (2016). Enhanced absorption of solar cell made of photonic crystal by geometrical design. Frontiers of Optoelectronics, 9(1): 93-98.

10.      Li, Y., Chen, Y., Ouyang, Z. and Lennon, A. (2015). Angular matrix framework for light trapping analysis of solar cells. Optics Express, 23(24): A1707-A1719.

11.      Kassim, S., Mcgrath, J. and Padmanabhan, S. (2015). Preparation and properties of silica inverse opal via self-assembly. Applied Mechanics and Materials, 699:  318-324.

12.      Chen, W., Meng, Z., Xue, M. and Shea, K. (2016). Molecular imprinted photonic crystal for sensing of biomolecules. Molecular Imprinting, 4: 1-12.

13.      Lonergan, A., McNulty, D. and O’Dwyer, C. (2018). Tetrahedral framework of inverse opal photonic crystals defines the optical response and photonic band gap. Journal of Applied Physics, 124(9): 095106.

14.      Armstrong, E. and O’Dwyer, C. (2015). Artificial opal photonic crystals and inverse opal structures – fundamentals and applications from optics to energy storage. Journal of Materials Chemistry C, 3(24): 6109-6143.

15.      Garín Escrivá, M., Hernández, D., Trifonov, T. and Alcubilla, R. (2014). Three-dimensional metallo-dielectric selective thermal emitters with high-temperature stability for thermophotovoltaic applications. Solar Energy Materials and Solar Cells, 134: 22-28.

16.      Rout, D. and Vijaya, R. (2017). Role of stopband and localized surface plasmon resonance in raman scattering from metallo-dielectric photonic crystals. Plasmonics, 12(5): 1409-1416.

17.      Kassim, S. (2014). Polymer and metallodielectric based photonic crystals. Doctoral thesis, University College Cork, Ireland.

18.      Kassim, S., Mukhtar, N. A. and Tahrin, R. A. A. (2020). Synthesis and characterization of plasmon-enhanced SERS substrate based on Au-Ag alloy-coated, large-area photonic (methyl methacrylate+styrene) co-polymer. Materials Science Forum, 982: 14-19.

19.      Kassim, S., Padmanabhan, S. C. and Pemble, M. E. (2021). Bottom-up colloidal synthesis of PMMA@Au core–shell based metallodielectric photonic crystals as substrates for surface-enhanced Raman spectroscopy. Applied Surface Science, 569: 151014.

20.      Padmanabhan, S.C., Kassim, S. and Pemble, M. (2018). Colloidal co-crystallization: A new route for production of three-dimensional metallodielectric photonic crystals. Asian Journal of Chemistry, 30(7): 1613-1616.

21.      Gałka, P., Kowalonek, J. and Kaczmarek, H. (2014). Thermogravimetric analysis of thermal stability of poly(methyl methacrylate) films modified with photoinitiators. Journal of Thermal Analysis and Calorimetry, 115(2): 1387-1394.

22.      Al-Azawi, M. A., Bidin, N., Bououdina, M. and Mohammad, S. M. (2016). Preparation of gold and gold–silver alloy nanoparticles for enhancement of plasmonic dye-sensitized solar cells performance. Solar Energy, 126: 93-104.

23.      Marichy, C., Muller, N., Froufe-Pérez, L. S. and Scheffold, F. (2016). High-quality photonic crystals with a nearly complete band gap obtained by direct inversion of woodpile templates with titanium dioxide. Scientific Reports, 6(1): 21818.

24.      Shishkin, I. I., Rybin, M. V., Samusev, K. B., Golubev, V. G. and Limonov, M. F. (2014). Multiple Bragg diffraction in opal-based photonic crystals: Spectral and spatial dispersion. Physical Review B, 89(3): 035124.

25.      Wang, Z. and Yu, B. (2018). Plasmonic control of refractive index without absorption in metallic photonic crystals doped with quantum dots. Plasmonics, 13(2): 567-574.

26.      Van Lare, C., Lenzmann, F., Verschuuren, M. A. and Polman, A. (2015). Dielectric scattering patterns for efficient light trapping in thin-film solar cells. Nano Letters, 15(8): 4846-4852.

27.      Byrne, H. J., Baranska, M., Puppels, G. J., Stone, N., Wood, B., Gough, K. M., Lasch, P., Heraud, P., Sulé-Suso, J. and Sockalingum, G. D. (2015). Spectropathology for the next generation: Quo vadis? Analyst, 140(7): 2066-2073.

28.      Yang, S., Dai, X., Stogin, B. B. and Wong, T.-S. (2016). Ultrasensitive surface-enhanced Raman scattering detection in common fluids. Proceedings of the National Academy of Sciences, 113(2): 268-273.

29.      Shukla, R., Bansal, V., Chaudhary, M., Basu, A., Bhonde, R. R. and Sastry, M. (2005). Biocompatibility of gold nanoparticles and their endocytotic fate inside the cellular compartment: A microscopic overview. Langmuir, 21(23): 10644-10654.

30.      Du, Z., Qi, Y., He, J., Zhong, D. and Zhou, M. (2021). Recent advances in applications of nanoparticles in SERS in vivo imaging. WIREs Nanomedicine and Nanobiotechnology, 13(2): e1672.

31.      Samanta, A., Maiti, K. K., Soh, K.-S., Liao, X., Vendrell, M., Dinish, U. S., Yun, S.-W., Bhuvaneswari, R., Kim, H., Rautela, S., Chung, J., Olivo, M. and Chang, Y.-T. (2011). Ultrasensitive Near-Infrared Raman Reporters for SERS-Based In Vivo Cancer Detection. Angewandte Chemie, 123(27): 6213-6216.

32.      Götz, S. and Karst, U. (2007). Recent developments in optical detection methods for microchip separations. Analytical and Bioanalytical Chemistry, 387(1): 183-192.

33.      Kumar, V. V. R. K., George, A. K., Knight, J. C. and Russell, P. S. J. (2003). Tellurite photonic crystal fiber. Optics Express, 11(20): 2641-2645.