Malaysian Journal of Analytical Sciences, Vol 27 No 1 (2023): 108 - 118

 

Seasonal Variation in Concentration OF HEAVY METALS in Tropical River Sediment

 

(Variasi Bermusim dalam Kepekatan Logam Berat di Dalam Sedimen Sungai Tropikal)

 

Nur Amirah Hidayah Madzlan1, Suhaimi Suratman2, Khairul Nizam Mohamed3, Ong Meng Chuan1,2,4*

 

1Faculty of Science and Marine Environment,

University Malaysia Terengganu, 20130 Kuala Nerus, Terengganu, Malaysia

2Institute of Oceanography and Environment,

Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia

3Department of Environment,

Faculty of Forestry and Environment,

Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia

4Ocean Pollution and Ecotoxicology (OPEC) Research Group,

Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia

 

*Corresponding author: ong@umt.edu.my

 

 

Received: 23 October 2022; Accepted: 24 November 2022; Published:  22 February 2023

 

 

Abstract

Heavy metal contamination has a more significant impact than microbial and organic contaminations as the elements could remain in the aqueous and particulate phases for an extended period. Setiu River, Terengganu, is one of the crucial rivers utilised as sites for aquaculture by the local communities. Generally, the concentrations of lead (Pb), zinc (Zn), copper (Cu), and arsenic (As) were influenced by human activities around river systems. Consequently, the present study investigated the seasonal concentration variations of Pb, Zn, Cu, and As in the surficial sediment of the river. The sediment samples were collected between January and July 2017, corresponding to the wet and dry seasons, from 60 different sampling locations along the river. The samples were subjected to Teflon bomb closed digestion procedures with mixed acid before the concentrations of the metals were determined with inductively coupled plasma mass spectrometry (ICP-MS). Resultantly, the mean concentrations of Pb, Zn, Cu, and As were 19.9 ± 9.89, 68.4 ± 31.8, 1.30 ± 0.66, and 3.05 ± 0.53 µg/g dry weight (wt.), respectively, in the samples gathered in the wet season (January). Alternatively, the samples collected during the dry season (July) contained 16.7 ± 15.1, 68.9 ± 48.5, 14.7 ± 16.9, and 2.46 ± 2.78 µg/g dry wt. mean concentrations of Pb, Zn, Cu, and As, respectively. The sample sediment quality was assessed based on the geoaccumulation index (Igeo). Based on the Igeo, the area was considered uncontaminated to moderately contaminated as the average values acquired were within Classes 0 and 2. Nevertheless, the pollution load index (PLI) revealed elevated concentrations of the metals, thus indicating anthropogenic sources, particularly in the aquaculture area. Accordingly, the Setiu river was assumed to be slightly polluted as the PLI values were 1.25 ± 0.34 (wet season) and 1.00 ± 1.00 (dry season).

 

Keywords: heavy metals, tropical river, pollution, index of geoaccumulation, pollution load index

 

Abstrak

Pencemaran logam logam berat mempunyai kesan yang lebih signifikan berbanding dengan pencemaran mikrob atau organik kerana unsur–unsur ini dapat dikitar dalam fasa berair dan partikulat untuk jangka masa yang panjang. Sungai Setiu di Terengganu adalah salah satu sungai yang penting sebagai tempat akuakultur bagi masyarakat setempat. Secara amnya, kepekatan plumbum (Pb), zink (Zn), kuprum (Cu), dan arsenic (As) dipengaruhi oleh aktiviti manusia di sekitar system sungai. Oleh itu, kajian ini dilakukan untuk menyelidik variasi bermusim dalam kepekatan logam Pb, Zn, Cu dan As dalam sedimen permukaan sungai. Sampel sedimen dikumpulkan dari 60 lokasi persampelan yang berlainan di sepanjang sungai, di antara Januari dan Julai 2017, selaras dengan musim hujan dan musim kering. Setelah kaedah penghadaman tertutup bom Teflon dengan asid campuran, kepekatan logam ditentukan menggunakan spektrometri jisim plasma gandingan aruhan (ICPMS). Dari keputusan yang diperoleh, kepekatan purata Pb, Zn, Cu dan As adalah 19.9±9.89 μg/g berat kering, 68.4±31.8 µg/g berat kering, 1.30±0.66 µg/g berat kering dan 3.05±0.53 µg/g berat kering. untuk musim hujan (Januari), manakala, 16.7±15.1 µg/g berat kering; 68.9±48.5 µg/g berat kering, 14.7±16.9 µg/g berat kering dan 2.46±2.78 µg/g berat kering untuk musim kering (Julai). Penilaian kualiti sedimen menggunakan indeks geoakumulasi (Igeo) menunjukkan bahawa kawasan tersebut masih boleh dianggap tidak tercemar hingga sederhana tercemar kerana nilai purata Igeo dikategorikan dalam Kelas 0 hingga 2. Sementara itu, indeks beban pencemaran (PLI) mendedahkan peningkatan kepekatan logam yang dikaji, menunjukkan sumber antropogenik, terutama di kawasan akuakultur. Sungai Setiu boleh dianggap sedikit tercemar kerana nilai PLI lebih dari 1; 1.25±0.34 (musim hujan); 1.00±1.00 (musim kering). Secara amnya, kepekatan Pb, Zn, Cu dan As telah menunjukkan bahawa logam tersebut dipengaruhi oleh aktiviti manusia di sekitar sistem sungai tersebut.

 

Kata kunci: logam berat, sungai tropikam pencemaran, indeks geoakumulasi, indeks beban pencemaran

 

References

1.         Shanbehzadeh, S., Dastjerdi, M. V., Hassanzadeh, A. and Kiyanizadeh, T. J. (2014). Heavy metals in water and sediment: a case study of Tembi River. Journal of Environmental and Public Health, 2014: 858720.

2.         Liang, W. and Yang, M. (2019). Urbanization, economic growth and environmental pollution: Evidence from China. Sustainable Computing: Informatics and Systems, 21: 1-9.

3.         Rao, C. and Yan, B. (2020). Study on the interactive influence between economic growth and environmental pollution. Environmental Science and Pollution Research, 27: 39442-39465.

4.         Jia, Y., Wang, L., Qu, Z. and Yang, Z. (2017). Effects on heavy metal accumulation in freshwater fishes: Species, tissues, and sizes. Environmental Science and Pollution Research, 25: 7012-7020.

5.         Wang, Q., Chen, Q., Yang, D. and Xin, S. (2018). Distribution, ecological risk, and source analysis of heavy metals in sediments of Taizihe River, China. Environmental Earth Sciences, 77: 569.

6.         Shahmoradi, B., Hajimirzaei, S., Amanollahi, J., Wantalla, K., Maleki, A., Lee, S. M. and Shim, M. J. (2020). Influence of iron mining activity on heavy metal contamination in the sediments of the Aqyazi River, Iran. Environmental Monitoring Assessment, 192: 521.

7.         Khan, B., Ullah, H., Khan, S., Aamir, M., Khan, A. and Khan, W. (2016). Sources and contamination of heavy metals in sediments of Kabul River: The role of organic matter in metals retention and accumulation. Soil and Sediment Contamination, 25(8): 891-904.

8.         Li, Y., Chen, H. and Teng, Y. (2020). Source apportionment and source–oriented risk assessment of heavy metals in the sediments of an urban river–lake system. Science of The Total Environment, 737: 140310.

9.         Suratman, S., Mohd Tahir, N., Lee, C.Y. and Abdul Rashid, S.R. (2006). Monsoon effects on water quality at Besut River Basin, Terengganu. Malaysian Journal of Analytical Sciences, 10: 143-148.

10.      Suratman, S., Hussein, A. N. A. R., Latif, M. T. and Weston, K. (2014). Reassessment of physico–chemical water quality in Setiu Wetland, Malaysia. Sains Malaysiana, 43(8): 1127-1131.

11.      Suratman, S. and Talib, M.T. (2015). Reassessment of nutrient status in Setiu Wetland, Terengganu, Malaysia. Asian Journal of Chemistry, 27(1): 239-242.

12.      Lin, J., Zhang, S., Liu, D., Yu, Z., Zhang, L., Cui, J., Xie, K., Li, T. and Fu, C. (2018). Mobility and potential risk of sediment–associated heavy metal fractions under continuous drought–rewetting cycles. Science of The Total Environment, 625: 79-86.

13.      Sojka, M., Siepak, M., Jaskula, J. and WicherDysarz, J. (2018). Heavy metal transport in a river–reservoir system: A case study from Central Poland. Polish Journal of Environmental Studies, 27(4): 1725-1734.

14.      Kamaruzzaman, B. Y., Siti, W. A., Ong, M. C. and Joseph, B. (2010). Spatial distribution of lead and copper in the bottom sediments of Pahang River estuary, Pahang, Malaysia. Sains Malaysiana, 39(4): 543-547.

15.      Kamaruzzaman, B. Y., Nurulnadia, M. Y., Shazili, N. A. M., Ong, M. C., Saad, S., Chowdhury, A. J. K. and Bidai, J. (2011). Heavy metal concentration in the surface sediment of Tanjung Lumpur mangrove forest, Kuantan, Malaysia. Sains Malaysiana, 40(2): 89-92.

16.      Ong, M. C., Joseph, B., Shazili, N. A. M., Ghazali, A. and Mohamad, M. N. (2015). Heavy metals concentration in surficial sediments of Bidong Island, South China Sea off the East Coast of Peninsular Malaysia. Asian Journal of Earth Sciences, 8(3): 74-82.

17.      Barbieri, M. J. (2016). The importance of enrichment factor (EF) and geoaccumulation index (Igeo) to evaluate the soil contamination. Geology & Geophysics, 5(1): 1000237.

18.      Duncan, A. E., de Vries, N. and Nyarko, K. B. (2018). Assessment of heavy metal pollution in the sediments of the River Pra and its tributaries. Water, Air, & Soil Pollution, 229: 272.

19.      Haris, H., Looi, L. J., Aris, A. Z., Mokhtar, N. F., Ayob, N. A. A., Yusoff, F. M., Salleh, A. B. and Praveena, S. M. (2017). Geo–accumulation index and contamination factors of heavy metals (Zn and Pb) in urban river sediment. Environmental Geochemistry and Health, 39: 1259-1271.

20.      Williams, J. A. and Antoine, J. (2020). Evaluation of the elemental pollution status of Jamaican surface sediments using enrichment factor, geoaccumulation index, ecological risk and potential ecological risk index. Marine Pollution Bulletin, 157: 111288.

21.      Tomlinson, D. C., Wilson, J. G., Harris, C. R. and Jeffrey, D. W. (1980). Problems in the assessment of heavy metals levels in estuaries and the formation of pollution index. Helgoländer Wissenschaftliche Meeresuntersuchungen, 33: 566-569.

22.      Ding, X., Ye, S., Laws, E. A., Mozdzer, T. J., Yuan, H., Zhao, G., Yang, S., He, L., Wang, J. (2019). The concentration distribution and pollution assessment of heavy metals in surface sediments of the Bohai Bay, China. Marine Pollution Bulletin, 149: 110497.

23.      Joksimović, D., Perošević, A., Castelli, A., Pestorić, B., Šuković, D., Đurović, D. (2020). Assessment of heavy metal pollution in surface sediments of the Montenegrin Coast: A 10–year review. Journal of Soils and Sediments, 20: 2598-2607.

24.      Nweke, M. O. and Ukpai, S. N. (2016). Use of enrichment, ecological risk and contamination factors with geoaccumulation indexes to evaluate heavy metal contents in the soils around Ameka mining area, South of Abakaliki, Nigeria. Journal of Geography, Environment and Earth Science International, 5(4): 1-13.

25.      Wedepohl, D. H. (1995). The composition of the continental crust. Geochima et Cosmochima Acta, 59(7): 1217-1232.

26.      Shukla, V., Shukla, P. and Tiwari, A. (2018). Lead poisoning. Indian Journal of Medical Specialities, 9(3): 146-149.

27.      Xu, D., Wang, R., Wang, W., Ge, Q., Zhang, W., Chen, L. and Chu, F. (2019). Tracing the source of Pb using stable Pb isotope ratios in sediments of Eastern Beibu Gulf, South China Sea. Marine Pollution Bulletin, 141: 127-136.

28.      EPA (1990). http://www.atsdr.cdc.gov/toxprofiles/tp13–c6.pdf. [Access online 20 September 2021]

29.      Baruah, R. (2018). Towards the bioavailability of zinc in agricultural soils. In role of rhizosperic microbes in soil: pp. 99-136.

30.      Cakmak, I., McLaughlin, M. J. and White, P. (2017). Zinc for better crop production and human health. Plant Soil, 411: 1-4.

31.      Wani, A. L., Parveen, N., Ansari, M. O., Ahmad, M. F., Jameel, S. and Shadab, G. G. H. A. (2017). Zinc: an element of extensive medical importance. Current Medical Research and Practice, 7(3): 90-98.

32.      Hernández, E., Obrist–Farner, J., Brenner, M., Kenney, W. F., Curtis, J. H. and Duarte, E. J. (2020). Natural and anthropogenic sources of lead, zinc, and nickel in sediments of Lake Izabal, Guatemala. Journal of  Environmental Sciences, 96: 117-126.

33.      Lajayer, H. A., Savaghebi, G., Hadian, J., Hatami, M. and Pezhmanmehr, M. (2016). Comparison of Copper and Zinc Effects on Growth, Micro– and Macronutrients Status and Essential Oil Constituents in pennyroyal (Mentha pulegium L.). Brazilian Journal of Botany, 40: 379-388.

34.      Schneider, L., Maher, W. A., Potts, J., Taylor, A. M., Batley, G. E., Krikowa, F., Adamack, A., Chariton, A. A. and Gruber, B. (2018). Trophic transfer of metals in a seagrass food web: Bioaccumulation of essential and non–essential metals. Marine Pollution Bulletin, 113(A): 468-480.

35.      Martinez, C. E. and Motto, H. L. (2000). Solubility of lead, zinc and copper added to mineral soils.  Environmental Pollution, 107: 153-158.

36.      Wang, Y., Le Pape, P., Morin, G., Asta, M. P., King, G., Bártová, B., Suvorova, E., Frutschi, M., Ikogou, M., Pham, C. H. C., Vo, P. L., Herman, F., Charlet, L. and Bernier–Latmani, R. (2018). Arsenic speciation in Mekong Delta sediments depends on their depositional environment. Environmental Science and Technology, 52(6): 3431-3439.

37.      Ma, Z., Lin, L., Wu, M., Yu, H., Shang, T., Zhang, T. and Zhao, M. (2018). Total and inorganic arsenic contents in seaweeds: absorption, accumulation, transformation and toxicity. Aquaculture, 497: 49-55.

38.      WHO(2012). http://www.who.int/mediacentre/factsheets/fs372/en/. [Access online 20 September 2021].

39.      Zaini, N. M., Lee, H. W., Mohamed, K. N., Sabuti, A. A., Suratman, S. and Ong, M. C. (2020). Datasets on spatial and temporal distribution of heavy metals concentration in recent sediment at Merang River system, Terengganu, Malaysia. Data in Brief, 31: 105900.

40.      Akhir, M. F., Zakaria, N. Z. and Tangang, F. (2014). Intermonsoon variation of physical characteristics and current circulation along the east coast of Peninsular Malaysia. International Journal of Oceanography, 2014: 527587.

41.      Pradit, S., Noppradit, P., Goh, B. P., Sornplang, K., Ong, M. C. and Towatana, P. (2021). Occurrence of microplastics and trace metals in fish and shrimp from Songkhla Lake, Thailand during the COVID-19 pandemic. Applied Ecology and Environmental Research, 19(2): 1085-1106.