Malaysian Journal of Analytical
Sciences, Vol 27
No 1 (2023): 108 - 118
Seasonal
Variation in Concentration OF HEAVY METALS in Tropical River Sediment
(Variasi Bermusim dalam Kepekatan Logam Berat di Dalam Sedimen
Sungai Tropikal)
Nur Amirah Hidayah Madzlan1, Suhaimi Suratman2,
Khairul Nizam Mohamed3, Ong Meng Chuan1,2,4*
1Faculty of Science and Marine
Environment,
University Malaysia Terengganu, 20130
Kuala Nerus, Terengganu, Malaysia
2Institute of Oceanography and
Environment,
Universiti Malaysia Terengganu, 21030
Kuala Nerus, Terengganu, Malaysia
3Department of Environment,
Faculty of Forestry and Environment,
Universiti Putra Malaysia, 43400 UPM
Serdang, Selangor, Malaysia
4Ocean Pollution and Ecotoxicology
(OPEC) Research Group,
Universiti Malaysia Terengganu, 21030
Kuala Nerus, Terengganu, Malaysia
*Corresponding
author: ong@umt.edu.my
Received: 23 October 2022; Accepted: 24
November 2022; Published: 22 February
2023
Abstract
Heavy metal contamination has
a more significant impact than microbial and organic contaminations as the
elements could remain in the aqueous and particulate phases for an extended
period. Setiu River, Terengganu, is one of the
crucial rivers utilised as sites for aquaculture by the local communities.
Generally, the concentrations of lead (Pb), zinc (Zn), copper (Cu), and arsenic
(As) were influenced by human activities around river systems. Consequently,
the present study investigated the seasonal concentration variations of Pb, Zn,
Cu, and As in the surficial sediment of the river. The
sediment samples were collected between January and July 2017, corresponding to
the wet and dry seasons, from 60 different sampling locations along the river.
The samples were subjected to Teflon bomb closed digestion procedures with
mixed acid before the concentrations of the metals were determined with
inductively coupled plasma mass spectrometry (ICP-MS). Resultantly, the mean
concentrations of Pb, Zn, Cu, and As were 19.9 ± 9.89,
68.4 ± 31.8, 1.30 ± 0.66, and 3.05 ± 0.53 µg/g dry weight (wt.), respectively,
in the samples gathered in the wet season (January). Alternatively, the samples
collected during the dry season (July) contained 16.7 ± 15.1, 68.9 ± 48.5, 14.7
± 16.9, and 2.46 ± 2.78 µg/g dry wt. mean concentrations of Pb, Zn, Cu, and As,
respectively. The sample sediment quality was assessed based on the geoaccumulation index (Igeo).
Based on the Igeo, the area was considered
uncontaminated to moderately contaminated as the average values acquired were
within Classes 0 and 2. Nevertheless, the pollution load index (PLI) revealed
elevated concentrations of the metals, thus indicating anthropogenic sources,
particularly in the aquaculture area. Accordingly, the Setiu
river was assumed to be slightly polluted as the PLI values were 1.25 ± 0.34
(wet season) and 1.00 ± 1.00 (dry season).
Keywords: heavy metals, tropical river, pollution, index of geoaccumulation, pollution load index
Abstrak
Pencemaran logam logam berat
mempunyai kesan yang lebih signifikan berbanding dengan pencemaran mikrob atau
organik kerana unsur–unsur ini dapat dikitar dalam fasa berair dan partikulat
untuk jangka masa yang panjang. Sungai Setiu di Terengganu adalah salah satu
sungai yang penting sebagai tempat akuakultur bagi masyarakat setempat. Secara
amnya, kepekatan plumbum (Pb), zink (Zn), kuprum (Cu), dan arsenic (As)
dipengaruhi oleh aktiviti manusia di sekitar system sungai. Oleh itu, kajian
ini dilakukan untuk menyelidik variasi bermusim dalam kepekatan logam Pb, Zn,
Cu dan As dalam sedimen permukaan sungai. Sampel sedimen dikumpulkan dari 60
lokasi persampelan yang berlainan di sepanjang sungai, di antara Januari dan
Julai 2017, selaras dengan musim hujan dan musim kering. Setelah kaedah
penghadaman tertutup bom Teflon dengan asid campuran, kepekatan logam
ditentukan menggunakan spektrometri jisim plasma gandingan aruhan (ICPMS). Dari
keputusan yang diperoleh, kepekatan purata Pb, Zn, Cu dan As adalah 19.9±9.89
μg/g berat kering, 68.4±31.8 µg/g berat kering, 1.30±0.66 µg/g berat
kering dan 3.05±0.53 µg/g berat kering. untuk musim hujan (Januari), manakala,
16.7±15.1 µg/g berat kering; 68.9±48.5 µg/g berat kering, 14.7±16.9 µg/g berat
kering dan 2.46±2.78 µg/g berat kering untuk musim kering (Julai). Penilaian
kualiti sedimen menggunakan indeks geoakumulasi (Igeo) menunjukkan
bahawa kawasan tersebut masih boleh dianggap tidak tercemar hingga sederhana
tercemar kerana nilai purata Igeo dikategorikan dalam Kelas 0 hingga 2.
Sementara itu, indeks beban pencemaran (PLI) mendedahkan peningkatan kepekatan
logam yang dikaji, menunjukkan sumber antropogenik, terutama di kawasan
akuakultur. Sungai Setiu boleh dianggap sedikit tercemar kerana nilai PLI lebih
dari 1; 1.25±0.34 (musim hujan); 1.00±1.00 (musim kering). Secara amnya,
kepekatan Pb, Zn, Cu dan As telah menunjukkan bahawa logam tersebut dipengaruhi
oleh aktiviti manusia di sekitar sistem sungai tersebut.
Kata kunci:
logam berat, sungai tropikam pencemaran, indeks geoakumulasi, indeks
beban pencemaran
References
1.
Shanbehzadeh, S., Dastjerdi, M. V., Hassanzadeh, A. and Kiyanizadeh,
T. J. (2014). Heavy metals in water and sediment: a case study of Tembi River. Journal of Environmental and Public Health,
2014: 858720.
2.
Liang, W. and Yang, M. (2019). Urbanization,
economic growth and environmental pollution: Evidence from China. Sustainable Computing: Informatics and
Systems, 21: 1-9.
3.
Rao, C. and Yan, B. (2020). Study on the
interactive influence between economic growth and environmental pollution. Environmental Science and Pollution Research,
27: 39442-39465.
4.
Jia, Y., Wang, L., Qu, Z. and Yang, Z. (2017).
Effects on heavy metal accumulation in freshwater fishes: Species, tissues, and
sizes. Environmental Science and
Pollution Research, 25: 7012-7020.
5.
Wang, Q., Chen, Q., Yang, D. and Xin, S. (2018).
Distribution, ecological risk, and source analysis of heavy metals in sediments
of Taizihe River, China. Environmental Earth Sciences, 77: 569.
6.
Shahmoradi, B., Hajimirzaei, S., Amanollahi, J., Wantalla, K., Maleki, A., Lee, S. M. and Shim, M. J. (2020). Influence of
iron mining activity on heavy metal contamination in the sediments of the Aqyazi River, Iran. Environmental
Monitoring Assessment, 192: 521.
7.
Khan, B., Ullah, H., Khan, S., Aamir, M., Khan, A.
and Khan, W. (2016). Sources and contamination of heavy metals in sediments of
Kabul River: The role of organic matter in metals retention and accumulation. Soil and Sediment Contamination, 25(8):
891-904.
8.
Li, Y., Chen, H. and Teng, Y. (2020). Source
apportionment and source–oriented risk assessment of heavy metals in the
sediments of an urban river–lake system. Science
of The Total Environment, 737: 140310.
9.
Suratman,
S., Mohd Tahir, N., Lee, C.Y. and Abdul Rashid, S.R. (2006). Monsoon effects on
water quality at Besut River Basin, Terengganu. Malaysian Journal of Analytical Sciences,
10: 143-148.
10. Suratman, S., Hussein, A. N. A. R., Latif, M. T. and Weston, K. (2014).
Reassessment of physico–chemical water quality in Setiu Wetland, Malaysia. Sains Malaysiana, 43(8): 1127-1131.
11. Suratman, S. and Talib, M.T. (2015). Reassessment of nutrient status in Setiu Wetland, Terengganu, Malaysia. Asian Journal of Chemistry, 27(1): 239-242.
12. Lin, J., Zhang, S., Liu,
D., Yu, Z., Zhang, L., Cui, J., Xie, K., Li, T. and
Fu, C. (2018). Mobility and potential risk of sediment–associated heavy metal
fractions under continuous drought–rewetting cycles. Science of The Total Environment, 625: 79-86.
13. Sojka, M., Siepak, M., Jaskula, J. and Wicher–Dysarz, J. (2018). Heavy
metal transport in a river–reservoir system: A case study from Central Poland. Polish Journal of Environmental Studies,
27(4): 1725-1734.
14. Kamaruzzaman,
B. Y., Siti, W. A., Ong, M. C. and Joseph, B. (2010). Spatial distribution of
lead and copper in the bottom sediments of Pahang River estuary, Pahang,
Malaysia. Sains Malaysiana,
39(4): 543-547.
15. Kamaruzzaman,
B. Y., Nurulnadia, M. Y., Shazili,
N. A. M., Ong, M. C., Saad, S., Chowdhury, A. J. K. and Bidai,
J. (2011). Heavy metal concentration in the surface sediment of Tanjung Lumpur mangrove forest, Kuantan, Malaysia. Sains Malaysiana,
40(2): 89-92.
16. Ong, M. C., Joseph, B., Shazili,
N. A. M., Ghazali, A. and Mohamad, M. N. (2015). Heavy metals concentration in
surficial sediments of Bidong Island, South China Sea
off the East Coast of Peninsular Malaysia. Asian
Journal of Earth Sciences, 8(3): 74-82.
17. Barbieri, M. J. (2016).
The importance of enrichment factor (EF) and geoaccumulation
index (Igeo) to evaluate the soil
contamination. Geology & Geophysics,
5(1): 1000237.
18. Duncan, A. E., de Vries,
N. and Nyarko, K. B. (2018). Assessment of heavy metal pollution in the
sediments of the River Pra and its tributaries. Water, Air, & Soil Pollution, 229:
272.
19. Haris, H., Looi, L. J., Aris,
A. Z., Mokhtar, N. F., Ayob, N. A. A., Yusoff, F. M., Salleh, A. B. and Praveena,
S. M. (2017). Geo–accumulation index and contamination factors of heavy metals
(Zn and Pb) in urban river sediment. Environmental
Geochemistry and Health, 39: 1259-1271.
20. Williams, J. A. and
Antoine, J. (2020). Evaluation of the elemental pollution status of Jamaican
surface sediments using enrichment factor, geoaccumulation
index, ecological risk and potential ecological risk index. Marine Pollution Bulletin, 157: 111288.
21. Tomlinson, D.
C., Wilson, J.
G., Harris, C. R. and Jeffrey, D.
W.
(1980). Problems in
the assessment of heavy
metals levels in estuaries and the formation of pollution index. Helgoländer Wissenschaftliche Meeresuntersuchungen, 33: 566-569.
22. Ding, X., Ye, S., Laws,
E. A., Mozdzer, T. J., Yuan, H., Zhao, G., Yang, S.,
He, L., Wang, J. (2019). The concentration distribution and pollution
assessment of heavy metals in surface sediments of the Bohai Bay, China. Marine Pollution Bulletin, 149: 110497.
23. Joksimović, D., Perošević, A.,
Castelli, A., Pestorić, B., Šuković,
D., Đurović, D. (2020). Assessment of heavy
metal pollution in surface sediments of the Montenegrin Coast: A 10–year
review. Journal of Soils and Sediments,
20: 2598-2607.
24. Nweke, M. O. and Ukpai, S. N. (2016). Use of enrichment,
ecological risk and contamination factors with geoaccumulation
indexes to evaluate heavy metal contents in the soils around Ameka mining area, South of Abakaliki,
Nigeria. Journal of Geography, Environment and Earth Science International, 5(4):
1-13.
25. Wedepohl, D. H. (1995). The composition of the continental
crust. Geochima et Cosmochima
Acta, 59(7): 1217-1232.
26. Shukla, V., Shukla, P.
and Tiwari, A. (2018). Lead poisoning. Indian
Journal of Medical Specialities, 9(3): 146-149.
27. Xu, D., Wang, R., Wang, W.,
Ge, Q., Zhang, W., Chen, L. and Chu, F. (2019). Tracing the source of Pb using
stable Pb isotope ratios in sediments of Eastern Beibu
Gulf, South China Sea. Marine Pollution
Bulletin, 141: 127-136.
28. EPA (1990).
http://www.atsdr.cdc.gov/toxprofiles/tp13–c6.pdf. [Access online 20 September
2021]
29. Baruah, R. (2018).
Towards the bioavailability of zinc in agricultural soils. In role of rhizosperic microbes in soil: pp. 99-136.
30. Cakmak, I., McLaughlin, M. J. and White, P. (2017). Zinc
for better crop production and human health. Plant Soil, 411: 1-4.
31. Wani, A. L., Parveen,
N., Ansari, M. O., Ahmad, M. F., Jameel, S. and Shadab, G. G. H. A. (2017).
Zinc: an element of extensive medical importance. Current Medical Research and Practice, 7(3): 90-98.
32. Hernández, E., Obrist–Farner, J., Brenner, M., Kenney, W. F., Curtis, J. H. and
Duarte, E. J. (2020). Natural and anthropogenic sources of lead, zinc, and
nickel in sediments of Lake Izabal, Guatemala. Journal of Environmental
Sciences, 96: 117-126.
33. Lajayer, H. A., Savaghebi, G., Hadian, J., Hatami, M. and Pezhmanmehr, M. (2016). Comparison of Copper and Zinc
Effects on Growth, Micro– and Macronutrients Status and Essential Oil
Constituents in pennyroyal (Mentha pulegium L.). Brazilian
Journal of Botany, 40: 379-388.
34. Schneider, L., Maher, W.
A., Potts, J., Taylor, A. M., Batley, G. E., Krikowa, F., Adamack, A.,
Chariton, A. A. and Gruber, B. (2018). Trophic transfer of metals in a seagrass
food web: Bioaccumulation of essential and non–essential metals. Marine Pollution Bulletin, 113(A):
468-480.
35. Martinez, C. E. and Motto, H. L. (2000). Solubility of lead, zinc and copper added to mineral
soils. Environmental Pollution, 107:
153-158.
36. Wang, Y., Le Pape, P.,
Morin, G., Asta, M. P., King, G., Bártová,
B., Suvorova, E., Frutschi, M., Ikogou,
M., Pham, C. H. C., Vo, P. L., Herman, F., Charlet,
L. and Bernier–Latmani, R. (2018). Arsenic speciation
in Mekong Delta sediments depends on their depositional environment. Environmental Science and Technology,
52(6): 3431-3439.
37. Ma, Z., Lin, L., Wu, M.,
Yu, H., Shang, T., Zhang, T. and Zhao, M. (2018). Total and inorganic arsenic
contents in seaweeds: absorption, accumulation, transformation and toxicity. Aquaculture, 497: 49-55.
38. WHO(2012).
http://www.who.int/mediacentre/factsheets/fs372/en/. [Access online 20
September 2021].
39. Zaini, N. M., Lee, H. W., Mohamed, K. N., Sabuti, A. A., Suratman, S. and
Ong, M. C. (2020). Datasets on spatial and temporal distribution of heavy
metals concentration in recent sediment at Merang
River system, Terengganu, Malaysia. Data
in Brief, 31: 105900.
40. Akhir, M. F., Zakaria,
N. Z. and Tangang, F. (2014). Intermonsoon
variation of physical characteristics and current circulation along the east
coast of Peninsular Malaysia. International
Journal of Oceanography, 2014: 527587.
41. Pradit, S., Noppradit, P., Goh, B. P., Sornplang,
K., Ong, M. C. and Towatana, P. (2021). Occurrence of
microplastics and trace metals in fish and shrimp from Songkhla Lake, Thailand
during the COVID-19 pandemic. Applied
Ecology and Environmental Research, 19(2): 1085-1106.