Malaysian Journal of Analytical Sciences, Vol 27 No 1 (2023): 96 - 107

 

THE EFFECT OF ANTHRACENE GROUP SUBSTITUTION OF DISUBSTITUTED CHALCONE DERIVATIVE FEATURING TEREPHTHALALDEHYDE π-LINKER ON NON-LINEAR OPTICAL (NLO) CHARACTERISTIC

 

(Kesan Penggantian Kumpulan Antrasena Atas Terbitan Kalkon Dualgantian Yang Menampilkan Terephthalaldehid π-Penyambung Keatas Ciri-Ciri Optik Bukan Linear)

 

Nurul Nabilah Shuaib1, Adibah Izzati Daud1*, Suhana Arshad2, Mohamad Aizat Abu Bakar3, Wan M. Khairul4

 

 1Faculty of Engineering and Chemical Technology,

Universiti Malaysia Perlis,

02600 Arau, Perlis, Malaysia.

2School of Physics,

Universiti Sains Malaysia, 11800 USM, Pulau Pinang, Malaysia.

3Institute of Nano Optoelectronics Research and Technology (INOR),

Universiti Sains Malaysia, 11800 USM, Penang, Malaysia

4Faculty of Science and Marine Environment,

Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia.

 

*Corresponding author: adizzati@unimap.edu.my

 

 

Received: 22 September 2022; Accepted: 17 January 2023; Published:  22 February 2023

 

 

Abstract

In past years, the π-conjugated system has attracted much attention as a promising material for developing and manufacturing the next generation of organic electronics made of synthesised organic compounds. Chalcone, having the π-conjugated systems in their molecular structures and the unique α, β-unsaturated ketone structural, have gained much attraction due to their potential use in optoelectronics applications like organic light emitting diode (OLED). By altering the molecular structure, the physical and chemical properties of chalcone derivatives can be tailored to the application needed. In recent years, chemists have produced many types of π-conjugated molecules to acquire excellent luminescence characteristics from organic compounds, and such structures typically lead to intense colour and excellent photoluminescence. In this study, a disubstituted chalcone derivative featuring terephthalaldehyde (N1A) as a π-linker with anthracene as donating group substitution has been synthesised through the Claisen-Schmidt condensation reaction. The synthesised compound has been characterised using Fourier Transform Infrared spectroscopy (FTIR) and UV-Visible analysis. Density functional theory (DFT) computations are executed to evaluate the effect of anthracene as an electron donating substitution on NLO properties of disubstituted chalcone derivative. NLO responses of this disubstituted chalcone derivative disclose that the chalcone molecular framework exhibit an important characteristic for further application as OLED emitting material.

 

Keywords: chalcone, density functional theory, non-linear optical, spectroscopic

 

Abstrak

Pada tahun-tahun lepas, sistem π-konjugasi telah menarik banyak perhatian sebagai bahan yang berpotensi untuk dibangunkan dan dikeluarkan sebagai generasi seterusnya elektronik organik, yang dibuat daripada sintesis sebatian organik. Kalkon, yang mempunyai sistem terkonjugasi-π dalam struktur molekulnya serta struktur keton α, β-tak tepu yang unik, telah mendapat banyak tarikan kerana potensi penggunaannya dalam aplikasi optoelektronik seperti diod pemancar cahaya organik (OLED). Dengan mengubah struktur molekul, sifat fizikal dan kimia, terbitan kalkon boleh disesuaikan dengan aplikasi yang diperlukan. Dalam tahun-tahun kebelakangan ini, ahli kimia telah menghasilkan banyak jenis molekul terkonjugasi-π untuk memperoleh ciri kependarkilauan yang sangat baik daripada sebatian organik, dan struktur sedemikian biasanya membawa kepada warna yang terang dan foto pendarcahaya yang sangat baik. Dalam kajian ini, terbitan kalkon tergantian yang menampilkan terephthalaldehid (N1A) sebagai penghubung-π dengan antrasena sebagai penggantian kumpulan penderma, telah disintesis melalui tindak balas pemeluwapan Claisen-Schmidt. Sebatian yang disintesis telah dicirikan menggunakan spektroskopi Lembayung Inframerah (FTIR) dan analisa Ultra Lembayung sinar nampak. Pengiraan teori fungsi ketumpatan (DFT) dilaksanakan untuk menilai kesan antrasena sebagai penggantian pendermaan elektron ke atas sifat NLO bagi terbitan kalkon tersubstitusi. Dapatan NLO bagi terbitan dualgantian ini menunjukkan kerangka molekul kalkon mempunyai ciri penting untuk aplikasi seterusnya sebagai bahan pemancar OLED.

 

Kata kunci: kalkon, teori fungsi ketumpatan, optik bukan linear, spektroskopi

 

References

1.         Bagher, A. M. (2017). Quantum dot display technology and comparison with OLED display technology. International Journal of Advanced Research in Physical Science4(1): 48-53.

2.         Haque, S., Shah, M. S., Rahman, M. and Mohiuddin, M. (2017). Biopolymer composites in light emitting diodes. Biopolymer Composites in Electronics, 277-310.

3.         Nagar, R., Varrla, E. and Vinayan, B. P. (2018). Photocatalysts for hydrogen generation and organic contaminants degradation. Multifunctional Photocatalytic Materials for Energy: pp. 215-236.

4.         Chen, F. C. (2018). Organic semiconductors. Encyclopedia of Modern Optics: pp. 220-231.

5.         Dykstra, E., Fralaide, M., Zhang, Y., Biswas, R., Slafer, W. D., Shinar, J. and Shinar, R. (2022). OLEDs on planarized light outcoupling-enhancing structures in plastic. Organic Electronics, 111: 106648.

6.         Wang, C., Dong, H., Hu, W., Liu, Y. and Zhu, D. (2012). Semiconducting π-conjugated systems in field-effect transistors: a material odyssey of organic electronics. Chemical reviews, 112(4): 2208-2267.

7.         Ansari, S. P. and Ali, F. (2018). Conjugated organic polymers for optoelectronic devices. Functional Polymers, edited by MA Jafar Mazumder, H. Sheardown, and A. Al-Ahmed (Springer International Publishing): pp. 1-40.

8.         Ahmad, A., Sinha, R. K., Kulkarni, S. D., Lewis, P. M., Bhat, P. and Shetty, N. S. (2022). Synthesis, photophysical properties and DFT studies of chalcones and their 2-methoxy-3-cyanopyridine derivatives. Journal of Photochemistry and Photobiology A: Chemistry, 114494.

9.         Cho, E., Coropceanu, V. and Brédas, J. L. (2021). Impact of chemical modifications on the luminescence properties of organic neutral radical emitters. Journal of Materials Chemistry C9(33): 10794-10801.

10.      Rammohan, A., Reddy, J. S., Sravya, G., Rao, C. N. and Zyryanov, G. V. (2020). Chalcone synthesis, properties and medicinal applications: a review. Environmental Chemistry Letters, 18(2): 433-458.

11.      Pannipara, M., Asiri, A. M., Alamry, K. A., Arshad, M. N. and El-Daly, S. A. (2015). Synthesis, spectral behaviour and photophysics of donor–acceptor kind of chalcones: excited state intramolecular charge transfer and fluorescence quenching studies. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 136: 1893-1902.

12.      Prabhu, A. N., Upadhyaya, V., Jayarama, A. and Bhat, K. S. (2016). Third-order NLO property of thienyl chalcone derivative: Physicochemical analysis and crystal structure determination. Molecular Crystals and Liquid Crystals, 637(1), 76-86.

13.      Al-Ahmad, A. Y., Shabeeb, G. M., Abdullah, A. Q. and Ziadan, K. M. (2011). Z-scan measurement for the nonlinear absorption and the nonlinear refraction of poly1, 4-diazophenylene-bridged-tris (8-hydroxy-quinoline) aluminum (PDPAlq3). Optik, 122(21): 1885-1889.

14.      De Araújo, C. B., Gomes, A. S. and Boudebs, G. (2016). Techniques for nonlinear optical characterization of materials: a review. Reports on Progress in Physics, 79(3): 036401.

15.      Alsaee, S. K., Bakar, M. A. A., Zainuri, D. A., Anizaim, A. H., Zaini, M. F., Rosli, M. M. and Razak, I. A. (2022). Nonlinear optical properties of pyrene-based chalcone:(E)-1-(4′-bromo-[1, 1′-biphenyl]-4-yl)-3-(pyren-1-yl) prop-2-en-1-one, a structure-activity study. Optical Materials, 128: 112314.

16.      Anizaim, A. H., Arshad, S., Zaini, M. F., Abdullah, M., Zainuri, D. A. and Razak, I. A. (2019). Third order nonlinear optical properties of selected fluorinated chalcone derivatives. Optical Materials, 98: 109406.

17.      Kumar, P. R., Ravindrachary, V., Janardhana, K. and Poojary, B. (2012). Structural and optical properties of a new chalcone single crystal. Journal of Crystal Growth, 354(1): 182-187.

18.      Sabina, X. J., Karthikeyan, J., Velmurugan, G., Tamizh, M. M. and Shetty, A. N. (2017). Design and in vitro biological evaluation of substituted chalcones synthesized from nitrogen mustards as potent microtubule targeted anticancer agents. New Journal of Chemistry, 41(10): 4096-4109.

19.      Chinnasami, S., Manikandan, M., Chandran, S., Paulraj, R. and Ramasamy, P. (2019). Growth, Hirshfeld surfaces, spectral, quantum chemical calculations, photoconductivity and chemical etching analyses of nonlinear optical p-toluidine p-toluenesulfonate single crystal. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 206: 340-349.

20.      Sawant, A. B. and Nirwan, R. S. (2012). Synthesis, characterization and DFT studies of 6, 8-dichloro-2-(4-chlorophenyl)-4H-chromen-4-one. Indian Journal of Pure and Applied Physics, 50: 308-313.

21.      Costa, J. C., Taveira, R. J., Lima, C. F., Mendes, A. and Santos, L. M. (2016). Optical band gaps of organic semiconductor materials. Optical Materials, 58: 51-60.

22.      Hegde, H., Sinha, R. K., Kulkarni, S. D. and Shetty, N. S. (2020). Synthesis, photophysical and DFT studies of naphthyl chalcone and nicotinonitrile derivatives. Journal of Photochemistry and Photobiology A: Chemistry, 389: 112222.

23.      Sánchez-Vergara, M. E., Leyva-Esqueda, E. A., Alvarez, C., López Reyes, M., Miralrio, A. and Salcedo, R. (2016). Influence of TCNQ acceptor on optical and electrical properties of tetrasubstituted allenes films fabricated by vacuum thermal evaporation. Journal of Materials Science: Materials in Electronics, 27(9): 9900-9910.

24.      Bureš, F. (2014). Fundamental aspects of property tuning in push–pull molecules. RSC Advances, 4(102): 58826-58851.

25.      Janardhana, K., Ravindrachary, V., Kumar, P. C., Umesh, G. and Manjunatha, K. B. (2013). Third order optical non-linearity of a novel chalcone derivative through Z scan technique. Indian Journal of Pure and Applied Physics, 51: 844-850.

26.      Nakum, K. J., Katariya, K. D., Hagar, M. and Jadeja, R. N. (2022). The influence of lateral hydroxyl group and molecular flexibility on the mesogenic behaviour of a new homologous series based on thiophene-chalcone: Synthesis, characterization, crystal structure and DFT study. Journal of Molecular Structure, 1261: 132891.

27.      Jiang, X., Zhao, S., Lin, Z., Luo, J., Bristowe, P. D., Guan, X. and Chen, C. (2014). The role of dipole moment in determining the nonlinear optical behavior of materials: ab initio studies on quaternary molybdenum tellurite crystals. Journal of Materials Chemistry C, 2(3): 530-537.

28.      Maidur, S. R., Jahagirdar, J. R., Patil, P. S., Chia, T. S. and Quah, C. K. (2018). Structural characterizations, Hirshfeld surface analyses, and third-order nonlinear optical properties of two novel chalcone derivatives. Optical Materials, 75: 580-594.

29.      Maidur, S. R., Patil, P. S., Ekbote, A., Chia, T. S. and Quah, C. K. (2017). Molecular structure, second-and third-order nonlinear optical properties and DFT studies of a novel non-centrosymmetric chalcone derivative:(2E)-3-(4-fluorophenyl)-1-(4-{[(1E)-(4-fluorophenyl) methylene] amino} phenyl) prop-2-en-1-one. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 184: 342-354.

30.      Jagadeesh, M., Lavanya, M., Babu, B. H., Hong, K., Ma, R., Kim, J. and Kim, T. K. (2015). Synthesis and detailed spectroscopic characterization of various hydroxy-functionalized fluorescent chalcones: A combined experimental and theoretical study. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 150: 557-564.

31.      Chaudhry, A. R., Irfan, A., Muhammad, S., Al-Sehemi, A. G., Ahmed, R. and Jingping, Z. (2017). Computational study of structural, optoelectronic and nonlinear optical properties of dynamic solid-state chalcone derivatives. Journal of Molecular Graphics and Modelling, 75: 355-364.