Malaysian Journal of Analytical
Sciences, Vol 27
No 1 (2023): 96 - 107
THE EFFECT OF ANTHRACENE GROUP
SUBSTITUTION OF DISUBSTITUTED CHALCONE DERIVATIVE FEATURING TEREPHTHALALDEHYDE
π-LINKER ON NON-LINEAR OPTICAL (NLO) CHARACTERISTIC
(Kesan Penggantian Kumpulan Antrasena Atas Terbitan Kalkon
Dualgantian Yang Menampilkan Terephthalaldehid π-Penyambung Keatas
Ciri-Ciri Optik Bukan Linear)
Nurul Nabilah Shuaib1,
Adibah Izzati Daud1*,
Suhana Arshad2, Mohamad Aizat Abu Bakar3, Wan M. Khairul4
1Faculty of Engineering and Chemical
Technology,
Universiti Malaysia Perlis,
02600 Arau, Perlis, Malaysia.
2School
of Physics,
Universiti Sains Malaysia, 11800 USM, Pulau Pinang, Malaysia.
3Institute of Nano Optoelectronics Research and Technology
(INOR),
Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
4Faculty
of Science and Marine Environment,
Universiti Malaysia Terengganu, 21030 Kuala Nerus,
Terengganu, Malaysia.
*Corresponding
author: adizzati@unimap.edu.my
Received: 22 September 2022;
Accepted: 17 January 2023; Published: 22
February 2023
Abstract
In past years, the π-conjugated system has attracted much
attention as a promising material for developing and manufacturing the next
generation of organic electronics made of synthesised organic compounds.
Chalcone, having the π-conjugated systems in their molecular structures and
the unique α, β-unsaturated ketone structural, have gained much
attraction due to their potential use in optoelectronics applications like
organic light emitting diode (OLED). By altering the molecular structure, the
physical and chemical properties of chalcone derivatives can be tailored to the
application needed. In recent years, chemists have produced many types of
π-conjugated molecules to acquire excellent luminescence characteristics
from organic compounds, and such structures typically lead to intense colour
and excellent photoluminescence. In this study, a disubstituted chalcone
derivative featuring terephthalaldehyde (N1A)
as a π-linker with anthracene as donating group substitution has been
synthesised through the Claisen-Schmidt condensation reaction. The synthesised
compound has been characterised using Fourier Transform Infrared spectroscopy
(FTIR) and UV-Visible analysis. Density functional theory (DFT) computations
are executed to evaluate the effect of anthracene as an electron donating
substitution on NLO properties of disubstituted chalcone derivative. NLO
responses of this disubstituted chalcone derivative disclose that the chalcone
molecular framework exhibit an important characteristic for further application
as OLED emitting material.
Keywords: chalcone, density
functional theory, non-linear optical,
spectroscopic
Abstrak
Pada tahun-tahun lepas, sistem
π-konjugasi telah menarik banyak perhatian sebagai bahan yang berpotensi
untuk dibangunkan dan dikeluarkan sebagai generasi seterusnya elektronik
organik, yang dibuat daripada sintesis sebatian organik. Kalkon, yang mempunyai
sistem terkonjugasi-π dalam struktur molekulnya serta struktur keton
α, β-tak tepu yang unik, telah mendapat banyak tarikan kerana potensi
penggunaannya dalam aplikasi optoelektronik seperti diod pemancar cahaya
organik (OLED). Dengan mengubah struktur molekul, sifat fizikal dan kimia,
terbitan kalkon boleh disesuaikan dengan aplikasi yang diperlukan. Dalam
tahun-tahun kebelakangan ini, ahli kimia telah menghasilkan banyak jenis
molekul terkonjugasi-π untuk memperoleh ciri kependarkilauan yang sangat
baik daripada sebatian organik, dan struktur sedemikian biasanya membawa kepada
warna yang terang dan foto pendarcahaya yang sangat baik. Dalam kajian ini,
terbitan kalkon tergantian yang menampilkan terephthalaldehid (N1A)
sebagai penghubung-π dengan antrasena sebagai penggantian kumpulan
penderma, telah disintesis melalui tindak balas pemeluwapan Claisen-Schmidt.
Sebatian yang disintesis telah dicirikan menggunakan spektroskopi Lembayung
Inframerah (FTIR) dan analisa Ultra Lembayung sinar nampak. Pengiraan teori
fungsi ketumpatan (DFT) dilaksanakan untuk menilai kesan antrasena sebagai
penggantian pendermaan elektron ke atas sifat NLO bagi terbitan kalkon
tersubstitusi. Dapatan NLO bagi terbitan dualgantian ini menunjukkan kerangka
molekul kalkon mempunyai ciri penting untuk aplikasi seterusnya sebagai bahan
pemancar OLED.
Kata kunci: kalkon, teori fungsi ketumpatan, optik bukan linear, spektroskopi
References
1.
Bagher, A. M. (2017).
Quantum dot display technology and comparison with OLED display
technology. International Journal of Advanced Research in Physical
Science, 4(1): 48-53.
2.
Haque, S., Shah, M. S.,
Rahman, M. and Mohiuddin, M. (2017). Biopolymer composites in light emitting
diodes. Biopolymer Composites in Electronics, 277-310.
3.
Nagar, R., Varrla, E. and Vinayan, B. P.
(2018). Photocatalysts for hydrogen generation and organic
contaminants degradation. Multifunctional Photocatalytic Materials for
Energy: pp. 215-236.
4.
Chen, F. C. (2018).
Organic semiconductors. Encyclopedia of Modern Optics: pp. 220-231.
5.
Dykstra, E., Fralaide, M., Zhang, Y., Biswas, R., Slafer,
W. D., Shinar, J. and Shinar, R. (2022). OLEDs on planarized light outcoupling-enhancing
structures in plastic. Organic Electronics, 111: 106648.
6.
Wang, C., Dong, H., Hu,
W., Liu, Y. and Zhu, D. (2012). Semiconducting π-conjugated systems in
field-effect transistors: a material odyssey of organic electronics. Chemical
reviews, 112(4): 2208-2267.
7.
Ansari,
S. P. and Ali, F. (2018). Conjugated organic polymers for optoelectronic
devices. Functional Polymers, edited by MA Jafar Mazumder, H. Sheardown, and A.
Al-Ahmed (Springer International Publishing): pp. 1-40.
8.
Ahmad, A., Sinha, R. K.,
Kulkarni, S. D., Lewis, P. M., Bhat, P. and Shetty, N. S. (2022). Synthesis,
photophysical properties and DFT studies of chalcones and their
2-methoxy-3-cyanopyridine derivatives. Journal of Photochemistry and
Photobiology A: Chemistry, 114494.
9.
Cho, E., Coropceanu, V. and Brédas, J. L.
(2021). Impact of chemical modifications on the luminescence properties of
organic neutral radical emitters. Journal of Materials Chemistry C, 9(33):
10794-10801.
10.
Rammohan,
A., Reddy, J. S., Sravya, G., Rao, C. N. and Zyryanov, G. V. (2020). Chalcone synthesis, properties and
medicinal applications: a review. Environmental Chemistry Letters, 18(2):
433-458.
11.
Pannipara, M., Asiri, A. M., Alamry,
K. A., Arshad, M. N. and El-Daly, S. A. (2015). Synthesis, spectral behaviour and photophysics of
donor–acceptor kind of chalcones: excited state intramolecular charge transfer
and fluorescence quenching studies. Spectrochimica
Acta Part A: Molecular and Biomolecular Spectroscopy, 136: 1893-1902.
12.
Prabhu,
A. N., Upadhyaya, V., Jayarama, A. and Bhat, K. S.
(2016). Third-order NLO property of thienyl chalcone derivative:
Physicochemical analysis and crystal structure determination. Molecular
Crystals and Liquid Crystals, 637(1), 76-86.
13.
Al-Ahmad, A. Y., Shabeeb, G. M., Abdullah, A. Q. and Ziadan,
K. M. (2011). Z-scan measurement for the nonlinear absorption and the nonlinear
refraction of poly1, 4-diazophenylene-bridged-tris (8-hydroxy-quinoline)
aluminum (PDPAlq3). Optik, 122(21):
1885-1889.
14.
De Araújo, C. B., Gomes,
A. S. and Boudebs, G. (2016). Techniques
for nonlinear optical characterization of materials: a review. Reports
on Progress in Physics, 79(3): 036401.
15.
Alsaee,
S. K., Bakar, M. A. A., Zainuri, D. A., Anizaim, A. H., Zaini, M. F., Rosli, M. M. and Razak, I. A. (2022). Nonlinear optical
properties of pyrene-based chalcone:(E)-1-(4′-bromo-[1,
1′-biphenyl]-4-yl)-3-(pyren-1-yl) prop-2-en-1-one, a structure-activity
study. Optical Materials, 128: 112314.
16.
Anizaim,
A. H., Arshad, S., Zaini, M. F., Abdullah, M., Zainuri, D. A. and Razak, I. A. (2019). Third order
nonlinear optical properties of selected fluorinated chalcone
derivatives. Optical Materials, 98: 109406.
17.
Kumar, P. R., Ravindrachary, V., Janardhana, K.
and Poojary, B. (2012). Structural and optical properties of a new chalcone
single crystal. Journal of Crystal Growth, 354(1): 182-187.
18.
Sabina, X. J.,
Karthikeyan, J., Velmurugan, G., Tamizh, M. M. and
Shetty, A. N. (2017). Design and in vitro biological evaluation of substituted
chalcones synthesized from nitrogen mustards as potent microtubule targeted
anticancer agents. New Journal of Chemistry, 41(10):
4096-4109.
19.
Chinnasami,
S., Manikandan, M., Chandran, S., Paulraj, R. and
Ramasamy, P. (2019). Growth, Hirshfeld surfaces,
spectral, quantum chemical calculations, photoconductivity and chemical etching
analyses of nonlinear optical p-toluidine p-toluenesulfonate
single crystal. Spectrochimica Acta
Part A: Molecular and Biomolecular Spectroscopy, 206: 340-349.
20.
Sawant, A. B. and Nirwan, R. S. (2012). Synthesis, characterization and DFT
studies of 6, 8-dichloro-2-(4-chlorophenyl)-4H-chromen-4-one. Indian Journal
of Pure and Applied Physics, 50: 308-313.
21.
Costa, J. C., Taveira, R. J., Lima, C. F., Mendes, A. and Santos, L. M.
(2016). Optical band gaps of organic semiconductor
materials. Optical Materials, 58: 51-60.
22.
Hegde, H., Sinha, R. K.,
Kulkarni, S. D. and Shetty, N. S. (2020). Synthesis, photophysical and DFT
studies of naphthyl chalcone and nicotinonitrile derivatives. Journal
of Photochemistry and Photobiology A: Chemistry, 389: 112222.
23.
Sánchez-Vergara, M. E.,
Leyva-Esqueda, E. A., Alvarez, C., López Reyes, M., Miralrio, A. and Salcedo, R. (2016). Influence of TCNQ
acceptor on optical and electrical properties of tetrasubstituted allenes films
fabricated by vacuum thermal evaporation. Journal of Materials Science:
Materials in Electronics, 27(9): 9900-9910.
24.
Bureš,
F. (2014). Fundamental aspects of property tuning in push–pull molecules. RSC
Advances, 4(102): 58826-58851.
25.
Janardhana,
K., Ravindrachary, V., Kumar, P. C., Umesh, G. and Manjunatha, K. B. (2013). Third order optical non-linearity
of a novel chalcone derivative through Z scan technique. Indian Journal of Pure and Applied Physics, 51: 844-850.
26.
Nakum, K. J., Katariya, K. D.,
Hagar, M. and Jadeja, R. N. (2022). The influence of lateral
hydroxyl group and molecular flexibility on the mesogenic behaviour
of a new homologous series based on thiophene-chalcone: Synthesis,
characterization, crystal structure and DFT study. Journal of Molecular
Structure, 1261: 132891.
27.
Jiang, X., Zhao, S.,
Lin, Z., Luo, J., Bristowe, P. D., Guan, X. and Chen,
C. (2014). The role of dipole moment in determining the nonlinear optical
behavior of materials: ab initio studies on quaternary molybdenum tellurite
crystals. Journal of Materials Chemistry C, 2(3): 530-537.
28.
Maidur, S. R., Jahagirdar, J. R.,
Patil, P. S., Chia, T. S. and Quah, C. K. (2018). Structural
characterizations, Hirshfeld surface analyses, and
third-order nonlinear optical properties of two novel chalcone
derivatives. Optical Materials, 75: 580-594.
29.
Maidur,
S. R., Patil, P. S., Ekbote, A., Chia, T. S. and
Quah, C. K. (2017). Molecular structure, second-and third-order nonlinear
optical properties and DFT studies of a novel non-centrosymmetric chalcone
derivative:(2E)-3-(4-fluorophenyl)-1-(4-{[(1E)-(4-fluorophenyl) methylene]
amino} phenyl) prop-2-en-1-one. Spectrochimica
Acta Part A: Molecular and Biomolecular Spectroscopy, 184: 342-354.
30.
Jagadeesh, M., Lavanya,
M., Babu, B. H., Hong, K., Ma, R., Kim, J. and Kim, T. K. (2015). Synthesis and
detailed spectroscopic characterization of various hydroxy-functionalized
fluorescent chalcones: A combined experimental and theoretical study. Spectrochimica Acta Part A: Molecular and
Biomolecular Spectroscopy, 150: 557-564.
31.
Chaudhry, A. R., Irfan,
A., Muhammad, S., Al-Sehemi, A. G., Ahmed, R. and Jingping, Z. (2017). Computational study of structural,
optoelectronic and nonlinear optical properties of dynamic solid-state chalcone
derivatives. Journal of Molecular Graphics and Modelling, 75:
355-364.