Malaysian
Journal of Analytical Sciences, Vol 26 No 6 (2022): 1240 – 1248
THE APPLICATION OF ELECTRONIC NOSE COUPLED
WITH 80:20 K-NEAREST NEIGHBORS CLASSIFICATION TECHNIQUE FOR AGARWOOD OIL
QUALITY INDEX ESTABLISHMENT
(Kombinasi Aplikasi Hidung
Elektronik Bersama Teknik Klasifikasi 80:20
K-Nearest Neighbors Untuk Pembangunan Indek
Kualiti Minyak Gaharu)
Sahrim Lias1, 2, Abd Majid
Jalil2, Mailina Jamil2, Mohd Shafik Yuzman Tolmanan2,
Nurlaila Ismail1,
Mohd Nasir Taib1
1 Faculty of
Electrical Engineering,
University
Teknologi Mara (UiTM), Shah Alam 40000, Selangor, Malaysia
2 Natural
Products Division,
Forest
Research Institute Malaysia (FRIM), Kepong 52109, Selangor, Malaysia
*Corresponding author: sahrim@frim.gov.my
Received: 3 February 2022; Accepted:
19 May 2022; Published: 27 December 2022
Abstract
Agarwood
oil is highly valued with numerous uses and benefits to the user. However, traditional
agarwood grading techniques are subjective, time consuming and labor intensive
with poorly reproducible results, in our study, a commercial Fox4000 electronic
nose (EN) with AlphaSOFT software was evaluated as a
substitute for human nose sniff assessment. Eight pure agarwood oil samples
were used: the JBD sample that was selected as the initial high-grade reference
sample based on previous research, and seven samples new to the FRIM
collection. All samples were subjected to the EN tests and the seven new
samples compared with the JBD sample using the non-parametric Wilcoxon’s
signed-rank test. The REG sample that was closest in aroma profile to JBD was
then chosen as the high-grade reference sample for subsequent tests. Varying
volumes of REG were blended with gurjun balsam and
sandalwood pure oils to produce nineteen blended samples containing increasing
percentages of REG. The 19 samples were then used in the EN tests for database
establishment. All 19 blended samples were subjected to the EN tests and
resulting data transformed using a z-score scale to generate an Agarwood Oil
Quality Index (AOQI) that was classified into three levels based on percentage
volume of agarwood oil in the oil blend. The EN significant sensor selection
process was conducted using Spearman’s rho correlation (SRC) and stepwise multi
linear regression (SMLR). Finally, the 80:20 k-Nearest Neighbors (kNN) classifier was used to evaluate the AOQI model with
the confusion-matrix based performance measure (CMBPM) as the classifier
performance evaluator. The results showed SRC with 11 selected sensors
outperformed SMLR with 80:20 k-NN test accuracy equal to 89.5%.
Keywords: agarwood
oil grading, electronic nose,
80:20 k-NN classifier
Abstrak
Minyak gaharu dikenali
mempunyai harga yang tinggi dengan pelbagai kegunaan dan manfaat kepada
pengguna. Walau bagaimanapun, teknik penggredan gaharu secara tradisional
adalah sangat terhad dari segi subjektiviti, kebolehulangan
yang rendah, penggunaan masa, dankos buruh yang
mahal. Dalam kajian ini, Hidung
Elektronik (EN) Fox4000 komersial dengan perisian AlphaSOFT
telah digunakan bagi menggantikan penilaian menghidu menggunakan hidung
manusia. Lapan sampel minyak gaharu tulen telah digunakan. Sampel JBD telah
dipilih sebagai sampel rujukan bergred tinggi berdasarkan kajian terdahulu .
Semua sampel tertakluk kepada eksperimen EN dan dibandingkan dengan sampel JBD
menggunakan ujian peringkat-bertanda Wilcoxon bukan parametrik untuk
pemilihan sampel rujukan gred tinggi yang baharu. Sampel REG telah dipilih dan dicampur dengan sampel minyak keruing dan cendana tulen .
Kesemua 19 sampel campuran telah melalui ujian EN untuk penubuhan tiga tahap
utama Indeks Kualiti Minyak Gaharu
(AOQI) menggunakan skala skor-z. Proses pemilihan sensor
EN yang signifikan telah dijalankan menggunakan teknik Spearman
Rho Correlation (SRC) dan Stepwise Multi Linear Regression
(SMLR). Akhirnya, teknik kelasifikasi 80:20 k-Nearest Neighbors (k-NN) telah
digunakan untuk menilai model AOQI dengan teknik Confusion-Matrix
Based Performance Measure (CMBPM) sebagai penilai prestasi pengelasan.
Keputusan menunjukkan SRC dengan 11 sensor terpilih
mengatasi prestasi SMLR dengan ketepatan ujian 80:20 k-NN bersamaan dengan
89.50%.
Kata kunci: penggredan minyak
gaharu, hidung elektronik, pengelasan 80:20 k-NN
Graphical
Abstract
References
1.
Yahya,
A. Z., Wai Mun, H. and Hassan, N. H. (2018). KARAS (Aquilaria malaccensis)
A plantation species in Peninsular Malaysia. Forest Research Institute Malaysia
(FRIM). Kuala Lumpur, Malaysia.
2.
Muhammad, I., Jusoh, M. Z. and Sajap,
A. S. (2018). Gaharu Komoditi Ketiga Negara. University Putra Malaysia (UPM).
Selangor, Malaysia.
3.
Forestry Department Peninsular
Malaysia (2015). Manual in grading of agarwood. Forestry Department Peninsular
Malaysia (FDPM). Selangor, Malaysia.
4.
Malaysian Timber industry Board
(2014). Panduan pengkelasan produk gaharu Malaysia. Malaysian Timber industry
Board (MTIB). Kuala Lumpur, Malaysia.
5.
Lias, Sahrim, Ali, N. A. M.,
Jamil, M., Jalil, A. M. and Othman, M. F. (2016). Discrimination of pure and
mixture agarwood oils via electronic nose coupled with k-NN kfold classifier. Procedia
Chemistry, 20: 63-68.
6.
Ismail, N., Rahiman, M. H. F.,
Taib, M. N., Ali, N. A. M., Jamil, M. and Tajuddin, S. N. (2013).
Classification of the quality of agarwood oils from Malaysia using Z-score
technique. Proceedings - 2013 IEEE 3rd International Conference on System
Engineering and Technology, 2013: 78-82.
7.
Haslina, E., Latib, A., Najib, M.
S., Mohd, C., Che, A. and Tajuddin, S. N. (2018). Analysis of different quality
agarwood oil (Aquilaria malaccensis) and sensory study. Journal of
Telecommunication, Electronic and Computer Engineering, 10(1): 57-61.
8.
Zubir, N. S. A., Abas, M. A.,
Ismail, N., Ali, N. A. M., Rahiman, M. H. F., Mun, N. K., Tajuddin, S. H. and
Taib, M. N. (2017). Analysis of algorithms variation in multilayer perceptron
neural network for agarwood oil qualities classification. 8th
Control and System Graduate Research Colloquium, ICSGRC 2017 - Proceedings:
122-126.
9.
Ismail, N., Rahiman, M. H. F.,
Taib, M. N., Ali, N. A. M., Jamil, M. and Tajuddin, S. N. (2013). Analysis of
chemical compounds of agarwood oil based on headspace-solid phase
microextraction combined with gas chromatography mass-spectrometry. 9th
International Colloquium on Signal Processing and Its Applications:
215-218.
10. Ismail,
S. N., Maulidiani, M., Akhtar, M. T., Abas, F., Ismail, I. S., Khatib, A.,
Mohamad Ali, N. A. and Shaari, K.
(2017). Discriminative analysis of different grades of gaharu (Aquilaria
malaccensis Lamk.) via1H-NMR-based metabolomics using PLS-DA and random
forests classification models. Molecules, 22(10): 1612.
11. Lias,
S., Mohamad Ali, N. A., Jamil, M., Tolmanan, M. S. Y. and Misman, M. A. (2018).
A study on the application of electronic nose coupled with dfa and statistical
analysis for evaluating the relationship between sample volumes versus sensor
intensity of agarwood essential oils blending ratio. MATEC Web of
Conferences, 2018: 201-02008.
12. Ismail,
N., Rahiman, M. H. F., Taib, M. N., Ali, N. A. M., Jamil, M. and Tajuddin, S. N.
(2014). Application of ANN in agarwood oil grade classification. 10th
International Colloquium on Signal Processing and Its Applications, CSPA 2014:
216-220.
13. Ismail,
N., Rahiman, M. H. F., Taib, M. N., Ali, N. A. M., Jamil, M. and Tajuddin, S.
N. (2014). A review study of agarwood oil and its quality analysis,
Jurnal Teknologi, 1: 37-42.
14. Karimifard,
S., Ahmadian, A., Khoshnevisan, M. and Nambakhsh, M. S. (2006). Morphological
heart arrhythmia detection using hermitian basis functions and kNN classifier. Annual
International Conference of the IEEE Engineering in Medicine and Biology -
Proceedings, (4): 1367-1370.
15. Liang,
K. and Wang, D. (2019). KNN _ SVM based information transmission method for
renewable energy power generation. IEEE Sustainable Power and Energy
Conference, 2019: 1671–1676.
16. Wasule,
V. and Sonar, P. (2017). Classification of brain MRI using SVM and KNN
classifier. 3rd IEEE International Conference on Sensing, Signal
Processing and Security, 2017: 218-223.
17. Bharate,
A. A. and Shirdhonkar, M. S. (2020). Classification of grape leaves using KNN
and SVM classifiers. 4th International Conference on Computing
Methodologies and Communication, 2020: 745-749.
18. Xu, M.,
Wang, J. and Gu, S. (2019). Rapid identification of tea quality by E-nose and
computer vision combining with a synergetic data fusion strategy. Journal of
Food Engineering, 241: 10-17.