Malaysian Journal of Analytical Sciences, Vol 26 No 6 (2022): 1227 - 1239

 

CARBON DOTS/CHITOSAN MODIFIED SCREEN-PRINTED CARBON ELECTRODES FOR THE DETECTION OF BISPHENOL A

 

(Elektrod Karbon Bercetak Skrin Terubah Suai Karbon Titik/Kitosan

untuk Pengesanan Bisfenol A)

 

Nor Faezah Mohd Daud1, Jaafar Abdullah1,2*, Nor Azah Yusof1,2, Putri Nur Syafieqah Zainal1

 

1Department of Chemistry,

Faculty of Science,

Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia

2Institute of Nanoscience and Nanotechnology,

University Putra Malaysia, 43400 Serdang, Selangor, Malaysia

 

*Corresponding author: jafar@upm.edu.my

 

 

Received: 10 February 2022; Accepted: 16 June 2022; Published:  27 December 2022

 

Abstract

Bisphenol A (BPA) is an organic compound in daily plastic products. The compound is primarily transferred from water bottles, food cans liners, and dental fillings into foods and beverages. The BPA is considered an endocrine-disrupting compound related to broad health concerns, such as reproduction problems and the development of various cancers. Consequently, developing a reliable analytical approach to determine BPA levels is urgent. The current study developed an electrochemical sensor from modified screen-printed carbon electrodes (SPCE) with carbon dots-chitosan (CDs-CS) to detect BPA. The CDs-modified SPCE provided a good electrocatalytic application with extraordinary electronic properties and significantly enhanced electrical conductivity. The modified SPCE/CDs-CS sensor was prepared through the drop casting technique. Subsequently, its BPA detection abilities were assessed via differential pulse voltammetry (DPV). In investigating the optimum parameters to elevate the performance of the developed sensors, 1% m/v CS concentration and 1:1 (v/v) CDs to CS ratio were recorded. The obtained CDs-CS/SPCE sensor demonstrated great electrocatalytic features for detecting BPA within the 0.4 and 10 µM concentration range with a sensitivity of 0.46 µA/µM (R˛ = 0.9911) and 0.37 µM limit of detection (LOD).

 

Keywords: Bisphenol A, carbon dots, chitosan, electrochemical sensor, environmental

 

Abstrak

Bisfenol A (BPA) adalah sebatian organik yang terdapat dalam produk plastik yang kita gunakan setiap hari. Sebilangan besarnya dipindahkan ke dalam makanan dan minuman termasuk botol air, lapisan tin makanan, dan tampalan gigi. BPA dianggap sebagai sebatian yang mengganggu endokrin yang berkaitan dengan pelbagai jenis masalah kesihatan seperti perkembangan barah dan masalah pembiakan. Oleh itu, pembangunan pendekatan analisis yang boleh dipercayai untuk mengesan BPA adalah isu mendesak. Dalam kajian ini, sensor elektrokimia berasaskan modifikasi elektrod karbon bercetak skrin (SPCE) dengan karbon titik-kitosan (CD-CS) telah diterokai untuk mengesan bisfenol A (BPA). SPCE yang diubahsuai dengan CD memberikan aplikasi elektro-pemangkin yang baik mempunyai sifat elektronik yang luar biasa dan peningkatan besar dalam kekonduksian elektrik. SPCE yang diubahsuai dengan CDs-CS disediakan dengan menggunakan teknik penyalutan titis. Pengesanan BPA pada sensor SPCE / CDs-CS dikaji dengan menggunakan voltammetri denyutan pembezaan (DPV). Parameter optimum pembangunan sensor seperti kepekatan CS 1% (m/v) dan nisbah CD-CS 1/1 (v/v) dikaji untuk meningkatkan prestasi sensor yang dibangunkan. Hasil kajian menunjukkan bahawa SPCE yang dimodifikasi dengan komposit CD-CS mempunyai ciri elektrokatalitik yang hebat untuk mengesan BPA dalam julat kepekatan dari 0.4 µM hingga 10 µM dengan kepekaan 0.46 µA/µM (R˛ = 0.9911) dan had pengesanan (LOD) 0.37 µM.

 

Kata kunci: bisfenol A, karbon titik, kitosan, sensor elektrokimia, alam sekitar 


 

Graphical Abstract

 

References

1.         Santana, E. R., de Lima, C. A., Piovesan, J. V. and Spinelli, A. (2017). An original ferroferric oxide and gold nanoparticles-modified glassy carbon electrode for the determination of bisphenol A. Sensors and Actuators B: Chemical, 240: 487-496.

2.         Shi, R., Yuan, X., Liu, A., Xu, M. and Zhao, Z. (2018). Determination of bisphenol a in beverages by an electrochemical sensor based on Rh2O3/reduced graphene oxide composites. Applied Sciences, 8(12): 2535.

3.         Watabe, Y., Kondo, T., Morita, M., Tanaka, N., Haginaka, J. and Hosoya, K. (2004). Determination of bisphenol A in environmental water at ultra-low level by high-performance liquid chromatography with an effective on-line pretreatment device. Journal of Chromatography A, 1032(1-2): 45-49.

4.         Cunha, S. C., Pena, A. and Fernandes, J. O. (2015). Dispersive liquid–liquid microextraction followed by microwave-assisted silylation and gas chromatography-mass spectrometry analysis for simultaneous trace quantification of bisphenol A and 13 ultraviolet filters in wastewaters. Journal of Chromatography A, 1414: 10-21.

5.         ter Halle, A., Claparols, C., Garrigues, J. C., Franceschi-Messant, S. and Perez, E. (2015). Development of an extraction method based on new porous organogel materials coupled with liquid chromatography–mass spectrometry for the rapid quantification of bisphenol A in urine. Journal of Chromatography A, 1414: 1-9.

6.         Yin, H., Zhou, Y., Xu, J., Ai, S., Cui, L. and Zhu, L. (2010). Amperometric biosensor based on tyrosinase immobilized onto multiwalled carbon nanotubes-cobalt phthalocyanine-silk fibroin film and its application to determine bisphenol A. Analytica Chimica Acta, 659(1-2): 144-150.

7.         Farajzadeh, M. A. and Mogaddam, M. R. A. (2012). Air-assisted liquid–liquid microextraction method as a novel microextraction technique; Application in extraction and preconcentration of phthalate esters in aqueous sample followed by gas chromatography–flame ionization detection. Analytica Chimica Acta, 728: 31-38.

8.         Nikahd, B. and Khalilzadeh, M. A. (2016). Liquid phase determination of bisphenol A in food samples using novel nanostructure ionic liquid modified sensor. Journal of Molecular Liquids, 215: 253-257.

9.         Wang, J. Y., Su, Y. L., Wu, B. H. and Cheng, S. H. (2016). Reusable electrochemical sensor for bisphenol A based on ionic liquid functionalized conducting polymer platform. Talanta, 147: 103-110.

10.      Goulart, L. A., de Moraes, F. C. and Mascaro, L. H. (2016). Influence of the different carbon nanotubes on the development of electrochemical sensors for bisphenol A. Materials Science and Engineering: C, 58: 768-773.

11.      Moraes, F. C., Silva, T. A., Cesarino, I. and Machado, S. A. (2013). Effect of the surface organization with carbon nanotubes on the electrochemical detection of bisphenol A. Sensors and Actuators B: Chemical, 177: 14-18.

12.      Li, Y., Gao, Y., Cao, Y. and Li, H. (2012). Electrochemical sensor for bisphenol A determination based on MWCNT/melamine complex modified GCE. Sensors and Actuators B: Chemical, 171: 726-733.

13.      Fan, H., Li, Y., Wu, D., Ma, H., Mao, K., Fan, D., ... and Wei, Q. (2012). Electrochemical bisphenol A sensor based on N-doped graphene sheets. Analytica Chimica Acta, 711: 24-28.

14.      Niu, X., Yang, W., Wang, G., Ren, J., Guo, H. and Gao, J. (2013). A novel electrochemical sensor of bisphenol A based on stacked graphene nanofibers/gold nanoparticles composite modified glassy carbon electrode. Electrochimica Acta, 98: 167-175.

15.      Zhang, Y., Cheng, Y., Zhou, Y., Li, B., Gu, W., Shi, X. and Xian, Y. (2013). Electrochemical sensor for bisphenol A based on magnetic nanoparticles decorated reduced graphene oxide. Talanta, 107: 211-218.

16.      Yu, L., Yue, X., Yang, R., Jing, S. and Qu, L. (2016). A sensitive and low toxicity electrochemical sensor for 2, 4-dichlorophenol based on the nanocomposite of carbon dots, hexadecyltrimethyl ammonium bromide and chitosan. Sensors and Actuators B: Chemical, 224: 241-247.

17.      Zou, Y., Yan, F., Zheng, T., Shi, D., Sun, F., Yang, N. and Chen, L. (2015). Highly luminescent organosilane-functionalized carbon dots as a nanosensor for sensitive and selective detection of quercetin in aqueous solution. Talanta, 135:145-148.

18.      Zuo, P., Lu, X., Sun, Z., Guo, Y. and He, H. (2016). A review on syntheses, properties, characterization and bioanalytical applications of fluorescent carbon dots. Microchimica Acta, 183(2): 519-542.

19.      Baruah, U., Gogoi, N., Majumdar, G. and Chowdhury, D. (2015). β-Cyclodextrin and calix [4] arene-25, 26, 27, 28-tetrol capped carbon dots for selective and sensitive detection of fluoride. Carbohydrate Polymers, 117: 377-383.

20.      Wei, Y., Zhang, D., Fang, Y., Wang, H., Liu, Y., Xu, Z., ... and Guo, Y. (2019). Detection of ascorbic acid using green synthesized carbon quantum dots. Journal of Sensors, 2019.

21.      Hou, J., Dong, J., Zhu, H., Teng, X., Ai, S. and Mang, M. (2015). A simple and sensitive fluorescent sensor for methyl parathion based on l-tyrosine methyl ester functionalized carbon dots. Biosensors and Bioelectronics, 68: 20-26.

22.      Wu, L., Ma, C., Zheng, X., Liu, H. and Yu, J. (2015). based electrochemiluminescence origami device for protein detection using assembled cascade DNA–carbon dots nanotags based on rolling circle amplification. Biosensors and Bioelectronics, 68: 413-420.

23.      Qian, Z. S., Chai, L. J., Huang, Y. Y., Tang, C., Shen, J. J., Chen, J. R. and Feng, H. (2015). A real-time fluorescent assay for the detection of alkaline phosphatase activity based on carbon quantum dots. Biosensors and Bioelectronics, 68: 675-680.

24.      Song, J., Zhao, L., Wang, Y., Xue, Y., Deng, Y., Zhao, X. and Li, Q. (2018). Carbon quantum dots prepared with chitosan for synthesis of CQDs/AuNPs for iodine ions detection. Nanomaterials, 8(12): 1043.

25.      Abdullah, J., Ahmad, M., Heng, L. Y., Karuppiah, N. and Sidek, H. (2006). Stacked films immobilization of MBTH in nafion/sol-gel silicate and horseradish peroxidase in chitosan for the determination of phenolic compounds. Analytical and Bioanalytical Chemistry, 386(5): 1285-1292.

26.      Yu, L., Yue, X., Yang, R., Jing, S. and Qu, L. (2016). A sensitive and low toxicity electrochemical sensor for 2, 4-dichlorophenol based on the nanocomposite of carbon dots, hexadecyltrimethyl ammonium bromide and chitosan. Sensors and Actuators B: Chemical, 224: 241-247.

27.      Jiang, Y., Han, Q., Jin, C., Zhang, J. and Wang, B. (2015). A fluorescence turn-off chemosensor based on N-doped carbon quantum dots for detection of Fe3+ in aqueous solution. Materials Letters, 141: 366-368.

28.      Kou, L. J., Liang, R. N., Wang, X. W., Chen, Y. and Qin, W. (2013). Potentiometric sensor for determination of neutral bisphenol A using a molecularly imprinted polymer as a receptor. Analytical and Bioanalytical Chemistry, 405(14): 4931-4936.

29.      Guo, W., Pi, F., Zhang, H., Sun, J., Zhang, Y. and Sun, X. (2017). A novel molecularly imprinted electrochemical sensor modified with carbon dots, chitosan, gold nanoparticles for the determination of patulin. Biosensors and Bioelectronics, 98: 299-304.

30.      Omidi, M., Yadegari, A. and Tayebi, L. (2017). Wound dressing application of pH-sensitive carbon dots/chitosan hydrogel. RSC Advances, 7(18): 10638-10649.

31.      Hassan, S., Suzuki, M. and Abd El-Moneim, A. (2014). Synthesis of MnO2–chitosan nanocomposite by one-step electrodeposition for electrochemical energy storage application. Journal of Power Sources, 246: 68-73.

32.      Chowdhuri, A. R., Tripathy, S., Haldar, C., Roy, S. and Sahu, S. K. (2015). Single step synthesis of carbon dot embedded chitosan nanoparticles for cell imaging and hydrophobic drug delivery. Journal of Materials Chemistry B, 3(47), 9122-9131.

33.      Liu, Y., Li, J., Tschirhart, T., Terrell, J. L., Kim, E., Tsao, C. Y., ... and Payne, G. F. (2017). Connecting biology to electronics: Molecular communication via redox modality. Advanced Healthcare Materials, 6(24): 1700789.

34.      Wang, Y. H., Yu, C. M., Gu, H. Y. and Tu, Y. F. (2016). The hemoglobin-modified electrode with chitosan/Fe3O4 nanocomposite for the detection of trichloroacetic acid. Journal of Solid State Electrochemistry, 20(5): 1337-1344.

35.      Omar, N. A. S., Irmawati, R., Fen, Y. W., Abdullah, J., Daud, N. F. M., Daniyal, W. M. E. M. M. and Mahdi, M. A. (2021). A sensing approach for manganese ion detection by carbon dots nanocomposite thin film-based surface plasmon resonance sensor. Optik, 243: 167435.

36.      Muhammad, N., Abdullah, J., Sulaiman, Y. and Ngee, L. H. (2017). Electrochemical determination of 3-nitrophenol with a reduced graphene oxide modified screen printed carbon electrode. Sensor Letters, 15(2): 187-195.

37.      Yin, H., Ma, Q., Zhou, Y., Ai, S. and Zhu, L. (2010). Electrochemical behavior and voltammetric determination of 4-aminophenol based on graphene–chitosan composite film modified glassy carbon electrode. Electrochimica Acta, 55(23): 7102-7108.

38.      Fartas, F. M., Abdullah, J., Yusof, N. A., Sulaiman, Y. and Saiman, M. I. (2017). Biosensor based on tyrosinase immobilized on graphene-decorated gold nanoparticle/chitosan for phenolic detection in aqueous. Sensors, 17(5): 1132.

39.      Rekos, K., Kampouraki, Z. C., Sarafidis, C., Samanidou, V. and Deliyanni, E. (2019). Graphene oxide based magnetic nanocomposites with polymers as effective bisphenol–a nanoadsorbents. Materials, 12(12): 1987.

40.      Ashraf, G., Asif, M., Aziz, A., Wang, Z., Qiu, X., Huang, Q., ... and Liu, H. (2019). Nanocomposites consisting of copper and copper oxide incorporated into MoS4 nanostructures for sensitive voltammetric determination of bisphenol A. Microchimica Acta, 186(6): 1-9.

41.      Vikas, V., Swamy, B. K., Viswanath, C. C. and Naik, T. S. (2017). Electrochemical studies of bisphenol-A at sodium alpha olefin sulfonate modified carbon paste electrode: A voltammetric study. Analytical & Bioanalytical Electrochemistry, 9(2): 164-173.

42.      Hou, C., Tang, W., Zhang, C., Wang, Y. and Zhu, N. (2014). A novel and sensitive electrochemical sensor for bisphenol A determination based on carbon black supporting ferroferric oxide nanoparticles. Electrochimica Acta, 144: 324-331.

43.      Ulubay Karabiberoğlu, Ş. (2019). Sensitive voltammetric determination of bisphenol A based on a glassy carbon electrode modified with copper oxide‐zinc oxide decorated on graphene oxide. Electroanalysis, 31(1): 91-102.

44.      Yang, J. and Gunasekaran, S. (2013). Electrochemically reduced graphene oxide sheets for use in high performance supercapacitors. Carbon, 51: 36-44.

45.      Pereira, G. F., Andrade, L. S., Rocha-Filho, R. C., Bocchi, N. and Biaggio, S. R. (2012). Electrochemical determination of bisphenol A using a boron-doped diamond electrode. Electrochimica Acta, 82: 3-8.