Malaysian
Journal of Analytical Sciences, Vol 26 No 6 (2022): 1227 - 1239
CARBON DOTS/CHITOSAN MODIFIED SCREEN-PRINTED CARBON
ELECTRODES FOR THE DETECTION OF BISPHENOL A
(Elektrod
Karbon Bercetak Skrin Terubah Suai Karbon Titik/Kitosan
untuk
Pengesanan Bisfenol A)
Nor Faezah Mohd Daud1, Jaafar Abdullah1,2*, Nor Azah Yusof1,2, Putri Nur Syafieqah
Zainal1
1Department of Chemistry,
Faculty of Science,
Universiti Putra Malaysia, 43400
UPM Serdang, Selangor, Malaysia
2Institute
of Nanoscience and Nanotechnology,
University
Putra Malaysia, 43400 Serdang, Selangor, Malaysia
*Corresponding author: jafar@upm.edu.my
Received: 10 February 2022; Accepted:
16 June 2022; Published: 27 December
2022
Abstract
Bisphenol A (BPA) is
an organic compound in daily plastic products. The compound is primarily
transferred from water bottles, food cans liners, and dental fillings into
foods and beverages. The BPA is considered an endocrine-disrupting compound related
to broad health concerns, such as reproduction problems and the development of
various cancers. Consequently, developing a reliable analytical approach to
determine BPA levels is urgent. The current study developed an
electrochemical sensor from modified screen-printed carbon electrodes
(SPCE) with carbon dots-chitosan (CDs-CS) to detect BPA. The CDs-modified SPCE provided a
good electrocatalytic application with extraordinary electronic
properties and significantly enhanced electrical conductivity. The modified
SPCE/CDs-CS sensor was prepared through the drop casting technique.
Subsequently, its BPA detection abilities were assessed via differential pulse voltammetry (DPV). In
investigating the optimum parameters to elevate the performance of the developed
sensors, 1% m/v CS concentration and 1:1 (v/v) CDs to CS ratio were recorded. The
obtained CDs-CS/SPCE
sensor demonstrated great electrocatalytic features for detecting BPA within
the 0.4 and 10 µM concentration range with a sensitivity of 0.46 µA/µM (R˛ = 0.9911) and 0.37 µM limit of detection (LOD).
Keywords:
Bisphenol A, carbon dots, chitosan, electrochemical sensor, environmental
Abstrak
Bisfenol A (BPA) adalah sebatian organik yang terdapat
dalam produk plastik yang kita gunakan setiap hari. Sebilangan besarnya
dipindahkan ke dalam makanan dan minuman termasuk botol air, lapisan tin
makanan, dan tampalan gigi. BPA dianggap sebagai sebatian yang mengganggu
endokrin yang berkaitan dengan pelbagai jenis masalah kesihatan seperti
perkembangan barah dan masalah pembiakan. Oleh itu, pembangunan pendekatan
analisis yang boleh dipercayai untuk mengesan BPA adalah isu mendesak. Dalam
kajian ini, sensor elektrokimia berasaskan modifikasi elektrod karbon bercetak
skrin (SPCE) dengan karbon titik-kitosan (CD-CS) telah diterokai untuk mengesan
bisfenol A (BPA). SPCE yang diubahsuai dengan CD memberikan aplikasi
elektro-pemangkin yang baik mempunyai sifat elektronik yang luar biasa dan
peningkatan besar dalam kekonduksian elektrik. SPCE yang diubahsuai dengan
CDs-CS disediakan dengan menggunakan teknik penyalutan titis. Pengesanan BPA
pada sensor SPCE / CDs-CS dikaji dengan menggunakan voltammetri denyutan
pembezaan (DPV). Parameter optimum pembangunan sensor seperti kepekatan CS 1%
(m/v) dan nisbah CD-CS 1/1 (v/v) dikaji untuk meningkatkan prestasi sensor yang
dibangunkan. Hasil kajian menunjukkan bahawa SPCE yang dimodifikasi dengan
komposit CD-CS mempunyai ciri elektrokatalitik yang hebat untuk mengesan BPA
dalam julat kepekatan dari 0.4 µM hingga 10 µM dengan kepekaan 0.46 µA/µM (R˛ =
0.9911) dan had pengesanan (LOD) 0.37 µM.
Kata kunci: bisfenol A, karbon titik, kitosan, sensor
elektrokimia, alam sekitar
Graphical
Abstract
References
1.
Santana, E.
R., de Lima, C. A., Piovesan, J. V. and Spinelli, A.
(2017). An original ferroferric oxide and gold
nanoparticles-modified glassy carbon electrode for the determination of
bisphenol A. Sensors and Actuators B: Chemical, 240: 487-496.
2.
Shi, R., Yuan,
X., Liu, A., Xu, M. and Zhao, Z. (2018). Determination of bisphenol a in
beverages by an electrochemical sensor based on Rh2O3/reduced
graphene oxide composites. Applied Sciences, 8(12): 2535.
3.
Watabe,
Y., Kondo, T., Morita, M., Tanaka, N., Haginaka, J.
and Hosoya, K. (2004). Determination of bisphenol A
in environmental water at ultra-low level by high-performance liquid
chromatography with an effective on-line pretreatment
device. Journal of Chromatography A, 1032(1-2): 45-49.
4.
Cunha, S. C., Pena, A. and Fernandes, J. O.
(2015). Dispersive liquid–liquid microextraction
followed by microwave-assisted silylation and gas
chromatography-mass spectrometry analysis for simultaneous trace quantification
of bisphenol A and 13 ultraviolet filters in wastewaters. Journal of
Chromatography A, 1414: 10-21.
5.
ter
Halle, A., Claparols, C., Garrigues, J. C., Franceschi-Messant, S. and Perez, E. (2015). Development
of an extraction method based on new porous organogel
materials coupled with liquid chromatography–mass spectrometry for the rapid
quantification of bisphenol A in urine. Journal of Chromatography A,
1414: 1-9.
6.
Yin, H., Zhou, Y., Xu, J., Ai, S., Cui, L. and
Zhu, L. (2010). Amperometric
biosensor based on tyrosinase immobilized onto multiwalled carbon
nanotubes-cobalt phthalocyanine-silk fibroin film and its application to
determine bisphenol A. Analytica Chimica Acta,
659(1-2): 144-150.
7.
Farajzadeh,
M. A. and Mogaddam, M. R. A. (2012). Air-assisted
liquid–liquid microextraction method as a novel microextraction technique;
Application in extraction and preconcentration of phthalate esters in aqueous
sample followed by gas chromatography–flame ionization detection. Analytica Chimica Acta, 728: 31-38.
8.
Nikahd,
B. and Khalilzadeh, M. A. (2016). Liquid phase
determination of bisphenol A in food samples using novel nanostructure ionic
liquid modified sensor. Journal of Molecular Liquids, 215: 253-257.
9.
Wang, J. Y., Su, Y. L., Wu, B. H. and Cheng, S.
H. (2016). Reusable electrochemical sensor for bisphenol A
based on ionic liquid functionalized conducting polymer platform. Talanta, 147: 103-110.
10. Goulart,
L. A., de Moraes, F. C. and Mascaro,
L. H. (2016). Influence of the different carbon nanotubes on the
development of electrochemical sensors for bisphenol A. Materials Science
and Engineering: C, 58: 768-773.
11. Moraes,
F. C., Silva, T. A., Cesarino, I. and Machado, S. A.
(2013). Effect of the surface organization with carbon nanotubes on the
electrochemical detection of bisphenol A. Sensors and Actuators B: Chemical,
177: 14-18.
12. Li,
Y., Gao, Y., Cao, Y. and Li, H. (2012). Electrochemical sensor for bisphenol A
determination based on MWCNT/melamine complex modified GCE. Sensors and
Actuators B: Chemical, 171: 726-733.
13. Fan,
H., Li, Y., Wu, D., Ma, H., Mao, K., Fan, D., ... and
Wei, Q. (2012). Electrochemical bisphenol A sensor based on N-doped graphene
sheets. Analytica Chimica Acta, 711: 24-28.
14. Niu,
X., Yang, W., Wang, G., Ren, J., Guo, H. and Gao, J. (2013). A novel
electrochemical sensor of bisphenol A based on stacked graphene nanofibers/gold
nanoparticles composite modified glassy carbon electrode. Electrochimica
Acta, 98: 167-175.
15. Zhang,
Y., Cheng, Y., Zhou, Y., Li, B., Gu, W., Shi, X. and Xian, Y. (2013).
Electrochemical sensor for bisphenol A based on magnetic nanoparticles
decorated reduced graphene oxide. Talanta,
107: 211-218.
16. Yu, L., Yue, X., Yang, R., Jing, S. and Qu, L.
(2016). A sensitive and low toxicity electrochemical sensor for 2, 4-dichlorophenol
based on the nanocomposite of carbon dots, hexadecyltrimethyl
ammonium bromide and chitosan. Sensors and Actuators B: Chemical, 224:
241-247.
17. Zou,
Y., Yan, F., Zheng, T., Shi, D., Sun, F., Yang, N. and Chen, L. (2015). Highly
luminescent organosilane-functionalized carbon dots
as a nanosensor for sensitive and selective detection
of quercetin in aqueous solution. Talanta,
135:145-148.
18. Zuo,
P., Lu, X., Sun, Z., Guo, Y. and He, H. (2016). A review on syntheses,
properties, characterization and bioanalytical applications of fluorescent
carbon dots. Microchimica Acta, 183(2):
519-542.
19. Baruah,
U., Gogoi, N., Majumdar, G. and Chowdhury, D. (2015).
β-Cyclodextrin and calix [4] arene-25, 26, 27, 28-tetrol capped carbon
dots for selective and sensitive detection of fluoride. Carbohydrate
Polymers, 117: 377-383.
20. Wei,
Y., Zhang, D., Fang, Y., Wang, H., Liu, Y., Xu, Z., ... and Guo, Y. (2019).
Detection of ascorbic acid using green synthesized carbon quantum dots. Journal
of Sensors, 2019.
21. Hou,
J., Dong, J., Zhu, H., Teng, X., Ai, S. and Mang, M. (2015). A
simple and sensitive fluorescent sensor for methyl parathion based on
l-tyrosine methyl ester functionalized carbon dots. Biosensors and
Bioelectronics, 68: 20-26.
22. Wu,
L., Ma, C., Zheng, X., Liu, H. and Yu, J. (2015). based
electrochemiluminescence origami device for protein detection using assembled
cascade DNA–carbon dots nanotags based on rolling circle amplification. Biosensors
and Bioelectronics, 68: 413-420.
23. Qian, Z. S., Chai, L. J., Huang, Y. Y., Tang,
C., Shen, J. J., Chen, J. R. and Feng, H. (2015). A real-time fluorescent assay
for the detection of alkaline phosphatase activity based on carbon quantum
dots. Biosensors and Bioelectronics, 68: 675-680.
24. Song,
J., Zhao, L., Wang, Y., Xue, Y., Deng, Y., Zhao, X.
and Li, Q. (2018). Carbon quantum dots prepared with chitosan for synthesis of
CQDs/AuNPs for iodine ions detection. Nanomaterials, 8(12): 1043.
25. Abdullah,
J., Ahmad, M., Heng, L. Y., Karuppiah, N. and Sidek,
H. (2006). Stacked films immobilization of MBTH in nafion/sol-gel
silicate and horseradish peroxidase in chitosan for the determination of
phenolic compounds. Analytical and Bioanalytical Chemistry, 386(5):
1285-1292.
26. Yu,
L., Yue, X., Yang, R., Jing, S. and Qu, L. (2016). A sensitive and low toxicity
electrochemical sensor for 2, 4-dichlorophenol based on the nanocomposite of
carbon dots, hexadecyltrimethyl ammonium bromide and
chitosan. Sensors and Actuators B: Chemical, 224: 241-247.
27. Jiang,
Y., Han, Q., Jin, C., Zhang, J. and Wang, B. (2015).
A fluorescence turn-off chemosensor based on N-doped
carbon quantum dots for detection of Fe3+ in aqueous solution. Materials
Letters, 141: 366-368.
28. Kou,
L. J., Liang, R. N., Wang, X. W., Chen, Y. and Qin, W. (2013). Potentiometric
sensor for determination of neutral bisphenol A using a molecularly imprinted
polymer as a receptor. Analytical and Bioanalytical Chemistry, 405(14):
4931-4936.
29. Guo,
W., Pi, F., Zhang, H., Sun, J., Zhang, Y. and Sun, X. (2017). A novel
molecularly imprinted electrochemical sensor modified with carbon dots,
chitosan, gold nanoparticles for the determination of patulin. Biosensors
and Bioelectronics, 98: 299-304.
30. Omidi,
M., Yadegari, A. and Tayebi, L. (2017). Wound
dressing application of pH-sensitive carbon dots/chitosan hydrogel. RSC
Advances, 7(18): 10638-10649.
31. Hassan,
S., Suzuki, M. and Abd El-Moneim, A. (2014).
Synthesis of MnO2–chitosan nanocomposite by one-step electrodeposition
for electrochemical energy storage application. Journal of Power Sources,
246: 68-73.
32. Chowdhuri,
A. R., Tripathy, S., Haldar, C., Roy, S. and Sahu, S. K. (2015). Single step synthesis of carbon dot
embedded chitosan nanoparticles for cell imaging and hydrophobic drug delivery.
Journal of Materials Chemistry B, 3(47), 9122-9131.
33. Liu,
Y., Li, J., Tschirhart, T., Terrell, J. L., Kim, E.,
Tsao, C. Y., ... and Payne, G. F. (2017). Connecting biology to electronics:
Molecular communication via redox modality. Advanced Healthcare Materials,
6(24): 1700789.
34. Wang,
Y. H., Yu, C. M., Gu, H. Y. and Tu, Y. F. (2016). The
hemoglobin-modified electrode with chitosan/Fe3O4
nanocomposite for the detection of trichloroacetic acid. Journal of Solid
State Electrochemistry, 20(5): 1337-1344.
35. Omar,
N. A. S., Irmawati, R., Fen, Y. W., Abdullah, J.,
Daud, N. F. M., Daniyal, W. M. E. M. M. and Mahdi, M.
A. (2021). A sensing approach for manganese ion detection by carbon dots
nanocomposite thin film-based surface plasmon resonance sensor. Optik, 243: 167435.
36. Muhammad,
N., Abdullah, J., Sulaiman, Y. and Ngee, L. H.
(2017). Electrochemical determination of 3-nitrophenol with a reduced graphene
oxide modified screen printed carbon electrode. Sensor Letters, 15(2):
187-195.
37. Yin,
H., Ma, Q., Zhou, Y., Ai, S. and Zhu, L. (2010). Electrochemical
behavior and voltammetric
determination of 4-aminophenol based on graphene–chitosan composite film
modified glassy carbon electrode. Electrochimica
Acta, 55(23): 7102-7108.
38. Fartas,
F. M., Abdullah, J., Yusof, N. A., Sulaiman, Y. and Saiman, M. I. (2017). Biosensor based on tyrosinase
immobilized on graphene-decorated gold nanoparticle/chitosan for phenolic
detection in aqueous. Sensors, 17(5): 1132.
39. Rekos,
K., Kampouraki, Z. C., Sarafidis,
C., Samanidou, V. and Deliyanni,
E. (2019). Graphene oxide based magnetic nanocomposites
with polymers as effective bisphenol–a nanoadsorbents.
Materials, 12(12): 1987.
40. Ashraf,
G., Asif, M., Aziz, A., Wang, Z., Qiu, X., Huang, Q.,
... and Liu, H. (2019). Nanocomposites consisting of copper and copper oxide
incorporated into MoS4 nanostructures for sensitive voltammetric determination of bisphenol A. Microchimica Acta, 186(6): 1-9.
41. Vikas,
V., Swamy, B. K., Viswanath, C. C. and Naik, T. S. (2017). Electrochemical
studies of bisphenol-A at sodium alpha olefin sulfonate modified carbon paste
electrode: A voltammetric study. Analytical &
Bioanalytical Electrochemistry, 9(2): 164-173.
42. Hou,
C., Tang, W., Zhang, C., Wang, Y. and Zhu, N. (2014). A novel and sensitive
electrochemical sensor for bisphenol A determination based on carbon black
supporting ferroferric oxide nanoparticles. Electrochimica Acta, 144: 324-331.
43. Ulubay
Karabiberoğlu, Ş. (2019). Sensitive voltammetric determination of bisphenol A based on a glassy
carbon electrode modified with copper oxide‐zinc oxide decorated on
graphene oxide. Electroanalysis, 31(1): 91-102.
44. Yang,
J. and Gunasekaran, S. (2013). Electrochemically reduced graphene oxide sheets
for use in high performance supercapacitors. Carbon, 51: 36-44.
45. Pereira,
G. F., Andrade, L. S., Rocha-Filho, R. C., Bocchi, N.
and Biaggio, S. R. (2012). Electrochemical
determination of bisphenol A using a boron-doped diamond electrode. Electrochimica Acta, 82: 3-8.