Malaysian Journal of Analytical Sciences, Vol 26 No 6 (2022): 1216 - 1226

 

CHARACTERIZATION OF CELLULOSE NANOCRYSTAL-GOLD NANOPARTICLES/CHITOSAN MODIFIED SCREEN-PRINTED CARBON ELECTRODE AND ITS APPLICATION IN THE FABRICATION OF ELECTROCHEMICAL BIOSENSOR FOR TETRACYCLINE DETECTION

 

(Percirian Elektrod Skrin Bercetak Karbon Terubahsuai Nanokristal Selulosa-Partikel Nano Emas/Kitosan dan Aplikasinya dalam Fabrikasi Penderia Bio Elektrokimia untuk

Pengesanan Tetrasiklin)

 

Nurul Shahirah Hasim1, Nor Azah Yusof1.2, Ruzniza Mohd Zawawi1, Noordiana Nordin3*

 

1Department of Chemistry,

Faculty of Science,

Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia

2Functional Nanotechnology Devices Laboratory,

Institute of Nanoscience and Nanotechnology,

Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia

3Laboratory of Food Safety and Food Integrity,

Institute of Tropical Agriculture and Food Security,

Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia.

 

*Corresponding author: noordiana@upm.edu.my

 

 

Received: 10 February 2022; Accepted: 19 July 2022; Published:  27 December 2022

 

 

Abstract

Tetracycline is one of the antibiotics used therapeutically and as a growth promoter in animals. Tetracycline residues in food products of animal origin have raised concerns among consumers. Due to its adverse effects on human health, it is critical to develop a reliable analytical method for routine monitoring of tetracycline in foods. Biosensors are among the rapid analytical devices that are reliable because of their simple detection methodology, low cost, sensitivity and specificity. For an effective signal transformation of tetracycline residues, it is critical to completely attach the transducer to the biological component, so that a feasible biosensor can be constructed. In this study, the screen-printed carbon electrode (SPCE) was modified with cellulose nanocrystal–gold nanoparticles/chitosan composite (CNC–AuNPs/chitosan). The synthesized CNC–AuNPs composite was characterized using UV–Vis spectroscopy, X-ray diffraction, Fourier-transform infrared spectroscopy and high-resolution transmission electron microscopy. In addition, the electrochemical behavior of the modified SPCE was investigated by cyclic voltammetry, differential pulse voltammetry (DPV) and electrochemical impedance spectroscopy under optimized conditions. DPV showed a linear calibration within the range of 0.01 to1000 µM concentration of tetracycline with the detection limit of 0.07 µM. The developed biosensor also resulted in different peak currents measured after storage for 14 days at room temperature (53.07%) and under 4°C (89.28%). Therefore, with acceptable sensitivity and selectivity, the fabricated biosensor can be suggested as a potential detection method for tetracycline residues.

Keywords: Cellulose nanocrystal, gold nanoparticles, screen-printed carbon electrode, electrochemical biosensor, tetracycline

 

Abstrak

Tetrasiklin adalah salah satu antibiotik yang digunakan secara terapeutik dan sebagai penyokong pertumbuhan pada haiwan. Sisa tetrasiklin dalam produk makanan yang berasal dari haiwan telah menimbulkan kebimbangan di kalangan pengguna. Oleh kerana kesan buruknya terhadap kesihatan manusia, adalah sangat penting untuk membangunkan kaedah analisis yang boleh dipercayai untuk pemantauan rutin tetrasiklin dalam makanan. Penderia bio adalah antara peranti analisis pantas yang boleh dipercayai kerana kaedah pengesanannya yang mudah, menjimatkan kos, kepekaan dan kekhususannya. Untuk transformasi isyarat yang berkesan dari sisa tetrasiklin, adalah sangat penting untuk melampirkan transduser sepenuhnya ke komponen biologi, supaya penderia bio yang boleh dilaksanakan dapat dibina. Dalam kajian ini, penderia bio dengan pengubahsuaian elektrod skrin bercetak karbon (SPCE) telah melibatkan nanokristal selulosa-partikel nano emas/kitosan (CNC-AuNPs/kitosan). Komposit CNC-AuNPs yang disintesis telah dicirikan dengan menggunakan spektroskopi penglihatan-UV, pembelauan sinaran-X, spektroskopi inframerah transformasi Fourier dan mikroskopi penghantaran elektron. Di samping itu, tingkah laku elektrokimia SPCE yang diubahsuai telah disiasat oleh voltammetri berkitar, voltammetri pembeza denyut (DPV) dan spektrometer electrokimia impedans dibawah keadaan yang optima. DPV menunjukkan kalibrasi linear dalam julat kepekatan tetrasiklin 0.01 hingga 1000 µM dengan had pengesanan 0.07 µM. Penderia bio yang telah dibangunkan juga telah menghasilkan perbezaan dalam arus puncak yang diukur setelah disimpan selama 14 hari pada suhu bilik (53.07%) dan di  bawah suhu 4°C (89.28%). Oleh itu, dengan sensitiviti dan selektiviti yang telah diperoleh, penderia bio yang dibangunkan disyorkan berpotensi sebagai kaedah pengesanan sisa tetrasiklin.

 

Kata kunci: nanokristal selulosa, partikel nano emas, elektrod karbon tercetak, penderia bio elektrokimia, tetrasiklin

 


 

Graphical Abstract

 

References

1 .     Ramchandani, M., Manges, A. R., DebRoy, C., Smith, S. P., Johnson, J. R. and Riley, L.W. (2005). Possible animal origin of human-associated, multidrug-resistant, uropathogenic Escherichia coli. Clinical Infectious Diseases, 40(2): 251-257.

2 .     Landers, T. F., Cohen, B., Wittum, T. E. and Larson, E .L. (2012). A review of antibiotic use in food animals: Perspective, policy, and potential. Public Health Reports, 127(1): 4-22.

3 .     Food Drug Administration (2014). 2012 summary report on antimicrobials sold or distributed for use in food-producing animals. Washington DC: Department of Health and Human Services, Food and Drug Administration, Center for Veterinary Medicine: pp. 1-56.

4 .     Boyaci, I. H. and Mutlu, M. (2011). Amperometric biosensors in food processing, safety, and quality control. Biosensors in Food Processing, Safety, and Quality Control, 2011: 1-51.

5 .     Codex Alimentarius (2018). Maximum residue limits (MRLs) and risk management recommendations (RMRs) for residues of veterinary drugs in food CX/MRL 2-2018. Access from http://www.fao.org/fao-who-codexalimentarius/codex-texts/dbs/vetdrugs/veterinary-drugs/en/.

6 .     Mustafa, F. and Andreescu, S. (2018). Chemical and biological sensors for food-quality monitoring and smart packaging. Foods, 7(10): 168.

7 .     Yan, W., Chen, C., Wang, L., Zhang, D., Li, A.J., Yao, Z. and Shi, L.Y. (2016). Facile and green synthesis of cellulose nanocrystal-supported gold nanoparticles with superior catalytic activity. Carbohydrate Polymers, 140: 66-73.

8 .     Guo, Y., Shen, G., Sun, X. and Wang, X. (2015). Electrochemical aptasensor based on multiwalled carbon nanotubes and graphene for tetracycline detection. IEEE Sensors Journal, 15(3): 1951-1958.

9 .     Ouyang, Q., Liu, Y., Chen, Q., Guo, Z., Zhao, J., Li, H. and Hu, W. (2017). Rapid and specific sensing of tetracycline in food using a novel upconversion aptasensor. Food Control, 81:156-163.

10 .   Jahanbani, S. and Benvidi, A. (2016). Comparison of two fabricated aptasensors based on modified carbon paste/oleic acid and magnetic bar carbon paste/Fe3O4@oleic acid nanoparticle electrodes for tetracycline detection. Biosensors and Bioelectronics, 85:553-562.

11 .   Le, T. H., Pham, V. P., La, T. H., Phan, T. B. and Le, Q. H. (2016). Electrochemical aptasensor for detecting tetracycline in milk. Advances in Natural Sciences: Nanoscience and Nanotechnology, 7(1): 015008.

12 .   Brown, K. R., Walter, D. G. and Natan, M. J. (2000). Seeding of colloidal Au nanoparticle solutions:  Improved control of particle size and shape. Chemistry of Materials, 12(2): 306-313.

13 .   Zhao, H., Kwak, J. H., Conrad Zhang, Z., Brown, H. M., Arey, B.W. and Holladay, J. E. (2007). Studying cellulose fiber structure by SEM, XRD, NMR and acid hydrolysis. Carbohydrate Polymers, 68(2): 235-241.

14 .  Krishnamurthy, S., Esterle, A., Sharma, N. C. and Sahi, S. V. (2014). Yucca-derived synthesis of gold nanomaterial and their catalytic potential. Nanoscale Research Letters, 9(1): 1-9.

15 .   Lam, E., Hrapovic, S., Majid, E., Chong, J. H. and Luong, J. H. T. (2012). Catalysis using gold nanoparticles decorated on nanocrystalline cellulose. Nanoscale, 4(3): 997-1002.

16 .   Kimling, J., Maier, M., Okenve, B., Kotaidis, V., Ballot, H. and Plech, A. (2006). Turkevich method for gold nanoparticle synthesis revisited. Journal of Physical Chemistry B, 110(32): 15700-15707.

17 .   Jiang, Y. and Wu, J. (2019). Recent development in chitosan nanocomposites for surface-based biosensor applications. Electrophoresis, 40(16): 2084-2097.

18 .   Zhou, L., Li, D.J., Gai, L., Wang, J. P. and Li, Y. Bin. (2012). Electrochemical aptasensor for the detection of tetracycline with multi-walled carbon nanotubes amplification. Sensors and Actuators, B: Chemical, 162(1): 201-208.

19 .   Benvidi, A., Tezerjani, M. D., Moshtaghiun, S. M. and Mazloum-Ardakani, M. (2016). An aptasensor for tetracycline using a glassy carbon modified with nanosheets of graphene oxide. Microchimica Acta, 183: 1797-1804.

20 .   Tang, Y., Liu, P., Xu, J., Li, L. Le, Yang, L., Liu, X., Liu, S. and Zhou, Y. (2018). Electrochemical aptasensor based on a novel flower-like TiO2 nanocomposite for the detection of tetracycline. Sensors and Actuators, B: Chemical, 258: 906-912.