Malaysian
Journal of Analytical Sciences, Vol 26 No 6 (2022): 1205 - 1215
LABEL-FREE
ELECTROCHEMICAL IMMUNOSENSOR DEVELOPMENT FOR MYCOTOXINS DETECTION IN GRAIN CORN
(Pembangunan
Imunosensor Elektrokimia Tanpa Label untuk Pengesanan
Mikotoksin
dalam Jagung Bijian)
Noor Sheryna Jusoh, Norhafniza
Awaludin, Faridah Salam, Adlin Azlina Abdul Kadir,
Nur Azura Mohd Said*
Biotechnology and Nanotechnology
Research Centre,
Malaysian Agricultural Research
and Development Institute,
MARDI Headquarter, Persiaran MARDI-UPM, 43400
Serdang, Selangor, Malaysia
*Corresponding author:
nazurams@mardi.gov.my
Received: 7 February 2022; Accepted: 23
April 2022; Published: 27 December 2022
Abstract
Mycotoxins
have been a huge threat in the agriculture and poultry industries. In Malaysia,
the presence of mycotoxins, particularly in grain corn, is not only detrimental
to health; it may also have a detrimental effect on the economy, as we rely
heavily on this source for animal feed. With this regard, a rapid detection
method of mycotoxins on-site lends itself well in reducing the negative
economic impact and strengthening the food safety aspect. We report here an
electrochemical-based biosensor for mycotoxins detection in grain corn employing
differential pulse voltammetry technique. Polyclonal antibodies against
Aflatoxin B1 and Ochratoxin A were developed in-house and used in the sensor
development. Cross-reactivity study with intra and interspecies proved the
selectivity of developed antibodies. The antibodies were then immobilized on a
screen-printed carbon electrode functionalized with gold nanoparticles and
polyaniline. The developed immunosensor system showed significant performance
in both phosphate buffer solution (PBS) and grain corn matrix systems.
Excellent R2 and low limit
of detection (LOD) values were achieved in a broad working range for both
buffer conditions. Aflatoxin B1 displayed R2
of 0.9935 and LOD of 0.6 ppb in PBS; and R2 of 0.978 and LOD of 1.81 ppb in grain corn matrix.
Ochratoxin A displayed R2 of
0.9962 and LOD of 0.87 ppb in PBS; and R2
of 0.971 and LOD of 3.18 ppb in grain corn matrix. The LODs obtained for
both detections are lower than the maximum residues limit (MRLs) permitted for
grain corn (5 ppb). Both aflatoxin and ochratoxin biosensors
exhibited acceptable recoveries in the 90% to 120% recovery range in grain corn
matrix. This successful method could be applied and widened to other cereal
grains and their processed food products.
Keywords: aflatoxin B1, ochratoxin A, immunosensor,
differential pulse voltammetry, grain corn
Abstrak
Mikotoksin merupakan satu ancaman kepada industri
pertanian dan ternakan. Di Malaysia, kehadiran mikotoksin terutamanya dalam
jagung bijian bukan sahaja merbahaya kepada kesihatan, tetapi juga membawa
kesan yang buruk kepada ekonomi berikutan kebergantungan sepenuhnya kepada
jagung bijian sebagai sumber makanan haiwan. Dalam hal ini, kaedah pengesanan
pantas mikotoksin di lapangan dapat mengurangkan kesan negatif kepada ekonomi
di samping memperkasa aspek keselamatan makanan. Kami melaporkan biosensor
berdasarkan elektrokimia untuk pengesanan mikotoksin dalam jagung bijian dengan
menggunakan teknik voltametri denyut beza. Antibodi poliklonal terhadap
Aflatoksin B1 dan Okratoksin A telah dibangunkan secara dalaman dan digunakan
dalam pembangunan sensor. Kajian tindakbalas silang intra dan interspesies
membuktikan selektiviti antibodi yang dibangunkan. Antibodi kemudian dipegunkan
di atas elektrod skrin-bercetak karbon berfungsi dengan nanozarah emas dan
polianilin. Sistem immunosensor yang dibangunkan menunjukkan prestasi yang
signifikan dalam kedua-dua sistem larutan penimbal fosfat (PBS) dan matriks
jagung. Nilai R2 dan had
pengesanan rendah (LOD) yang baik dapat dicapai dalam julat bekerja yang luas
bagi kedua-dua keadaan penimbal. Aflatoksin B1 menunjukkan R2 0.9935 dan LOD 0.6 ppb dalam PBS; dan R2 0.978 dan LOD 1.81 ppb
dalam matriks jagung bijian. Ochratoxin A menunjukkan R2 0.9962 dan LOD 0.87 ppb dalam PBS; dan R2 0.971 dan LOD 3.18 ppb
dalam matriks jagung bijian. LOD yang didapati bagi kedua-dua pengesanan adalah
lebih rendah daripada had residu maksimum (MRL) yang dibenarkan untuk jagung
bijian (5 ppb). Kedua-dua biosensor aflatoksin dan okratoksin menunjukkan
perolehan yang boleh diterima dalam julat perolehan 90% to 120% dalam matriks
jagung. Kaedah yang terbukti berjaya ini boleh digunakan dan diperluaskan
kepada lain-lain bijian dan produk makanan terproses.
Kata kunci: aflatoksin B1, okratoksin A,
imunosensor, voltametri denyut beza, jagung bijian
Graphical Abstract

1.
Buszewska-Forajta,
M. (2020). Mycotoxins, invisible danger of feedstuff with toxic effect on
animals. Toxicon, 182: 34-53.
2.
Adegbeye,
M, J., Reddy, P. R. K., Chilaka, C. A., Balogun, O.
B., Elghandour, M. M. Y., Rivas-Caceres, R. R. and
Salem, A. Z. M. (2020). Mycotoxin toxicity and residue in animal products:
Prevalence, consumer, exposure and reduction strategies – A review. Toxicon, 177: 96-108.
3.
Afsah-Hejri,
L., Jinap, S., Hajeb, P.,
Radu, S. and Shakibazadeh, S. (2013). A review on
mycotoxins in food and feed: Malaysia case study. Comprehensive Reviews in Food Science and Food Safety, 12: 629-651.
4.
Magnolia,
A. P., Poloni, V. L. and Cavaglieri,
L. (2019). Impact of mycotoxin contamination in the
animal feed industry. Current Opinion in
Food Science, 29: 99-108.
5.
Schaarschmidt,
S. and Fauhl-Hassek, C. (2021). The fate of
mycotoxins during the primary food processing of maize. Food Control, 121: 107651.
6.
Kumar, P., Mahato, D. K., Sharma, B., Borah, R., Haque, S., Mahmud, M.
M. C., Shah, A. K., Rawal, D., Bora, H. and Bui, S. (2020). Ochratoxins in food
and feed: Occurrence and impact on human health and management strategies. Toxicon, 187: 151-162.
7.
Gruber-Dorninger, C., Jenkins, T. and Schatzmayr,
G. (2019). Global mycotoxin occurrence in feed: A ten-year survey. Toxins, 11(375): 1-25.
8.
Kebede, H., Liu, X., Jin, J. and Xing, F. (2020). Current status of major
mycotoxins contamination in food and feed in Africa. Food Control, 110: 106975.
9.
Luo, S., Du, H., Kebede,
H., Liu, Y. and Xing, F. (2021). Contamination status of major mycotoxins in
agricultural product and food stuff in Europe. Food Control, 127: 108120.
10.
Agriopoulou,
S., Stamatelopoulou, E. and Varzakas,
T. (2020). Advances in occurrence, importance, and mycotoxin control
strategies: Prevention and detoxification in foods. Foods, 9 (137): 1-48.
11.
Chiotta,
M. L., Fumero, M. V., Cendoya,
E., Palazzini, J. M., Alaniz-Zanon,
M. S., Ramirez, M. L. and Chulze, S. N. (2020).
Toxigenic fungal species and natural occurrence of mycotoxins in crops
harvested in Argentina. Revista Argentina de Microbiologia,
52 (4): 339-347.
12.
Al-Jaal,
B., Salama, S., Al-Qasmi, N. and Jaganjac,
M. (2019). Mycotoxin contamination of food and feed in the Gulf Cooperation
council countries and its detection. Toxicon,
171: 43-50.
13.
Udomkun,
P., Wiredu, A. N., Nagle, M., Bandyopadhyay, R., Muller, J. and Vanlauwe, B. (2017). Mycotoxins in Sub-Saharan Africa:
Present situation, socio-economic impact, awareness, and outlook. Food Control, 72: 110-122.
14.
Bryden, W. L. (2012).
Mycotoxin contamination of the feed supply chain: Implications for animal
productivity and feed security. Animal
Feed Science and Technology, 173: 134-158.
15.
Munkvold,
G.P., Arias, S., Taschl, I. & Gruber-Dorninger, C. (2019). In Serna-Salvidar,
S.O. (3rd Edition), Corn: Chemistry and Technology (pp. 235-287).
AACC International & Elsevier Inc. Publisher.
16.
Kaushik, A., Arya, S. K.,
Vasudev, A. and Bhansali, S. (2013). Recent advances in detection of ochratoxin
A. Open Journal of Applied Biosensor,
2: 1-11.
17.
Yao, H., Hruska, Z. and Mavungu, D. D. (2015). Developments in detection and
determination of aflatoxins. World
Mycotoxin Journal, 8(2): 181-191.
18.
Roseanu,
A., Jecu, L., Badea, M. and
Evans, R. W. (2010). Mycotoxins: An overview on their quantification methods. Romanian Journal of Biochemistry, 47(1):
79-86.
19.
Moina,
C., & Ybarra, G. (2012). Fundamentals and applications of immunosensors. In
N. H. L. Chiu (Ed.), Advances in
immunoassay technology. Rijeka, Croatia: InTech:
pp. 65–80.
20.
Vidal, J. C., Bonel, L., Ezquerra, A.,
Hernandez, S., Bertolin, J. R., Cubel,
C. and Castillo, J. R. (2013). Electrochemical affinity biosensors for
detection of mycotoxins: A review. Biosensors
and Bioelectronics, 49: 146-158.
21.
Sharma, A., Goud, K. Y.,
Hayat, A., Bhand, S. and Marty, J. L. (2017). Recent
advances in electrochemical-based sensing platforms for aflatoxins detection. Chemosensors, 5
(1): 1-15.
22.
Tothill,
I. E. (2011). Biosensors and nanomaterials and their application for mycotoxin
determination. World Mycotoxin Journal,
4(4): 361-374.
23.
Alhamoud,
Y., Yang, D., Kenston, S. S. F., Liu, G., Liu, L.,
Zhou, H., Ahmed, F. and Zhao, J. (2019). Advances in biosensors for the
detection of ochratoxin A: Bio-receptors, nanomaterials, and their
applications. Biosensors and
Bioelectronics, 141: 111418.
24.
Ma, H., Sun, J., Zhang,
Y., Bian, C., Xia, S. and Zhen, T. (2016). Label-free
immunosensor based on one-step electrodeposition of chitosan-gold nanoparticles
biocompatible film on Au microelectrode for determination of aflatoxin B1 in
maize. Biosensors and Bioelectronics,
80: 222-229.
25.
Shaikh, M. O., Srikanth,
B., Zhu, P.-Y. and Chu, C.-H. (2019). Impedimetric immunosensor utilizing
polyaniline/gold nanocomposite-modified screen-printed electrodes for early
detection of chronic kidney disease. Sensors,
19(18): 3990.
26.
Zhang, S., Shen, Y.,
Shen, G., Wang, S., Shen, G. and Yu, R. (2016). Electrochemical immunosensor
based on Pd-Au nanoparticles supported on functionalized PDDA-MWCNT
nanocomposites for aflatoxin B1 detection. Analytical
Biochemistry, 494: 10-15.
27.
Kabomo,
T. M. and Scurrel, M. S. (2016). The effect of
protonation and oxidation state of polyaniline on the stability of gold
nanoparticles. European Polymer Journal,
82: 300-306.
28.
Yagati,
A. K., Chavan, S. G., Baek, C., Lee, M.-H. and Min,
J. (2018). Label-free impedance sensing of aflatoxin B1 with polyaniline
nanofibers/Au nanoparticle electrode array. Sensors,
18 (1320): 1-14.
29.
Lee, N. A. and Rachmawati, S. (2006). A rapid ELISA for screening
aflatoxin B1 in animal feed and feed ingredients in Indonesia. Food and Agricultural Immunology, 17(2):
91-104.
30.
Nakhjavan,
B., Ahmed, N. S. and Khosravifard, M. (2020).
Development of an improved method of sample extraction and quantitation of
multi-mycotoxin in feed by LC-MS/MS. Toxins,
12(462): 1-14.
31.
Iqbal, S. Z. (2021).
Mycotoxins in food, recent development in food analysis and future challenges;
a review. Current Opinion in Food Science,
42: 237-247.