Malaysian Journal of Analytical Sciences, Vol 26 No 6 (2022): 1205 - 1215

 

LABEL-FREE ELECTROCHEMICAL IMMUNOSENSOR DEVELOPMENT FOR MYCOTOXINS DETECTION IN GRAIN CORN

 

(Pembangunan Imunosensor Elektrokimia Tanpa Label untuk Pengesanan

Mikotoksin dalam Jagung Bijian)

 

Noor Sheryna Jusoh, Norhafniza Awaludin, Faridah Salam, Adlin Azlina Abdul Kadir,

Nur Azura Mohd Said*

 

Biotechnology and Nanotechnology Research Centre,

Malaysian Agricultural Research and Development Institute,

 MARDI Headquarter, Persiaran MARDI-UPM, 43400 Serdang, Selangor, Malaysia

 

*Corresponding author: nazurams@mardi.gov.my

 

Received: 7 February 2022; Accepted: 23 April 2022; Published:  27 December 2022

 

 

Abstract

Mycotoxins have been a huge threat in the agriculture and poultry industries. In Malaysia, the presence of mycotoxins, particularly in grain corn, is not only detrimental to health; it may also have a detrimental effect on the economy, as we rely heavily on this source for animal feed. With this regard, a rapid detection method of mycotoxins on-site lends itself well in reducing the negative economic impact and strengthening the food safety aspect. We report here an electrochemical-based biosensor for mycotoxins detection in grain corn employing differential pulse voltammetry technique. Polyclonal antibodies against Aflatoxin B1 and Ochratoxin A were developed in-house and used in the sensor development. Cross-reactivity study with intra and interspecies proved the selectivity of developed antibodies. The antibodies were then immobilized on a screen-printed carbon electrode functionalized with gold nanoparticles and polyaniline. The developed immunosensor system showed significant performance in both phosphate buffer solution (PBS) and grain corn matrix systems. Excellent R2 and low limit of detection (LOD) values were achieved in a broad working range for both buffer conditions. Aflatoxin B1 displayed R2 of 0.9935 and LOD of 0.6 ppb in PBS; and R2 of 0.978 and LOD of 1.81 ppb in grain corn matrix. Ochratoxin A displayed R2 of 0.9962 and LOD of 0.87 ppb in PBS; and R2 of 0.971 and LOD of 3.18 ppb in grain corn matrix. The LODs obtained for both detections are lower than the maximum residues limit (MRLs) permitted for grain corn (5 ppb). Both aflatoxin and ochratoxin biosensors exhibited acceptable recoveries in the 90% to 120% recovery range in grain corn matrix. This successful method could be applied and widened to other cereal grains and their processed food products.

 

Keywords: aflatoxin B1, ochratoxin A, immunosensor, differential pulse voltammetry, grain corn

 

Abstrak

Mikotoksin merupakan satu ancaman kepada industri pertanian dan ternakan. Di Malaysia, kehadiran mikotoksin terutamanya dalam jagung bijian bukan sahaja merbahaya kepada kesihatan, tetapi juga membawa kesan yang buruk kepada ekonomi berikutan kebergantungan sepenuhnya kepada jagung bijian sebagai sumber makanan haiwan. Dalam hal ini, kaedah pengesanan pantas mikotoksin di lapangan dapat mengurangkan kesan negatif kepada ekonomi di samping memperkasa aspek keselamatan makanan. Kami melaporkan biosensor berdasarkan elektrokimia untuk pengesanan mikotoksin dalam jagung bijian dengan menggunakan teknik voltametri denyut beza. Antibodi poliklonal terhadap Aflatoksin B1 dan Okratoksin A telah dibangunkan secara dalaman dan digunakan dalam pembangunan sensor. Kajian tindakbalas silang intra dan interspesies membuktikan selektiviti antibodi yang dibangunkan. Antibodi kemudian dipegunkan di atas elektrod skrin-bercetak karbon berfungsi dengan nanozarah emas dan polianilin. Sistem immunosensor yang dibangunkan menunjukkan prestasi yang signifikan dalam kedua-dua sistem larutan penimbal fosfat (PBS) dan matriks jagung. Nilai R2 dan had pengesanan rendah (LOD) yang baik dapat dicapai dalam julat bekerja yang luas bagi kedua-dua keadaan penimbal. Aflatoksin B1 menunjukkan R2 0.9935 dan LOD 0.6 ppb dalam PBS; dan R2 0.978 dan LOD 1.81 ppb dalam matriks jagung bijian. Ochratoxin A menunjukkan R2 0.9962 dan LOD 0.87 ppb dalam PBS; dan R2 0.971 dan LOD 3.18 ppb dalam matriks jagung bijian. LOD yang didapati bagi kedua-dua pengesanan adalah lebih rendah daripada had residu maksimum (MRL) yang dibenarkan untuk jagung bijian (5 ppb). Kedua-dua biosensor aflatoksin dan okratoksin menunjukkan perolehan yang boleh diterima dalam julat perolehan 90% to 120% dalam matriks jagung. Kaedah yang terbukti berjaya ini boleh digunakan dan diperluaskan kepada lain-lain bijian dan produk makanan terproses.

 

Kata kunci: aflatoksin B1, okratoksin A, imunosensor, voltametri denyut beza, jagung bijian

 


 


Graphical Abstract

References

1.              Buszewska-Forajta, M. (2020). Mycotoxins, invisible danger of feedstuff with toxic effect on animals. Toxicon, 182: 34-53.

2.              Adegbeye, M, J., Reddy, P. R. K., Chilaka, C. A., Balogun, O. B., Elghandour, M. M. Y., Rivas-Caceres, R. R. and Salem, A. Z. M. (2020). Mycotoxin toxicity and residue in animal products: Prevalence, consumer, exposure and reduction strategies – A review. Toxicon, 177: 96-108.

3.              Afsah-Hejri, L., Jinap, S., Hajeb, P., Radu, S. and Shakibazadeh, S. (2013). A review on mycotoxins in food and feed: Malaysia case study. Comprehensive Reviews in Food Science and Food Safety, 12: 629-651.

4.              Magnolia, A. P., Poloni, V. L. and Cavaglieri, L. (2019). Impact of mycotoxin contamination in the animal feed industry. Current Opinion in Food Science, 29: 99-108.

5.              Schaarschmidt, S. and Fauhl-Hassek, C. (2021). The fate of mycotoxins during the primary food processing of maize. Food Control, 121: 107651.

6.              Kumar, P., Mahato, D. K., Sharma, B., Borah, R., Haque, S., Mahmud, M. M. C., Shah, A. K., Rawal, D., Bora, H. and Bui, S. (2020). Ochratoxins in food and feed: Occurrence and impact on human health and management strategies. Toxicon, 187: 151-162.

7.              Gruber-Dorninger, C., Jenkins, T. and Schatzmayr, G. (2019). Global mycotoxin occurrence in feed: A ten-year survey. Toxins, 11(375): 1-25.

8.              Kebede, H., Liu, X., Jin, J. and Xing, F. (2020). Current status of major mycotoxins contamination in food and feed in Africa. Food Control, 110: 106975.

9.              Luo, S., Du, H., Kebede, H., Liu, Y. and Xing, F. (2021). Contamination status of major mycotoxins in agricultural product and food stuff in Europe. Food Control, 127: 108120.

10.           Agriopoulou, S., Stamatelopoulou, E. and Varzakas, T. (2020). Advances in occurrence, importance, and mycotoxin control strategies: Prevention and detoxification in foods. Foods, 9 (137): 1-48.

11.         Chiotta, M. L., Fumero, M. V., Cendoya, E., Palazzini, J. M., Alaniz-Zanon, M. S., Ramirez, M. L. and Chulze, S. N. (2020). Toxigenic fungal species and natural occurrence of mycotoxins in crops harvested in Argentina. Revista Argentina de Microbiologia, 52 (4): 339-347.

12.           Al-Jaal, B., Salama, S., Al-Qasmi, N. and Jaganjac, M. (2019). Mycotoxin contamination of food and feed in the Gulf Cooperation council countries and its detection. Toxicon, 171: 43-50.

13.           Udomkun, P., Wiredu, A. N., Nagle, M., Bandyopadhyay, R., Muller, J. and Vanlauwe, B. (2017). Mycotoxins in Sub-Saharan Africa: Present situation, socio-economic impact, awareness, and outlook. Food Control, 72: 110-122.

14.           Bryden, W. L. (2012). Mycotoxin contamination of the feed supply chain: Implications for animal productivity and feed security. Animal Feed Science and Technology, 173: 134-158.

15.           Munkvold, G.P., Arias, S., Taschl, I. & Gruber-Dorninger, C. (2019). In Serna-Salvidar, S.O. (3rd Edition), Corn: Chemistry and Technology (pp. 235-287). AACC International & Elsevier Inc. Publisher.

16.           Kaushik, A., Arya, S. K., Vasudev, A. and Bhansali, S. (2013). Recent advances in detection of ochratoxin A. Open Journal of Applied Biosensor, 2: 1-11.

17.           Yao, H., Hruska, Z. and Mavungu, D. D. (2015). Developments in detection and determination of aflatoxins. World Mycotoxin Journal, 8(2): 181-191.

18.           Roseanu, A., Jecu, L., Badea, M. and Evans, R. W. (2010). Mycotoxins: An overview on their quantification methods. Romanian Journal of Biochemistry, 47(1): 79-86.

19.           Moina, C., & Ybarra, G. (2012). Fundamentals and applications of immunosensors. In N. H. L. Chiu (Ed.), Advances in immunoassay technology. Rijeka, Croatia: InTech: pp. 65–80.

20.           Vidal, J. C., Bonel, L., Ezquerra, A., Hernandez, S., Bertolin, J. R., Cubel, C. and Castillo, J. R. (2013). Electrochemical affinity biosensors for detection of mycotoxins: A review. Biosensors and Bioelectronics, 49: 146-158.

21.           Sharma, A., Goud, K. Y., Hayat, A., Bhand, S. and Marty, J. L. (2017). Recent advances in electrochemical-based sensing platforms for aflatoxins detection. Chemosensors, 5 (1): 1-15.

22.           Tothill, I. E. (2011). Biosensors and nanomaterials and their application for mycotoxin determination. World Mycotoxin Journal, 4(4): 361-374.

23.       Alhamoud, Y., Yang, D., Kenston, S. S. F., Liu, G., Liu, L., Zhou, H., Ahmed, F. and Zhao, J. (2019). Advances in biosensors for the detection of ochratoxin A: Bio-receptors, nanomaterials, and their applications. Biosensors and Bioelectronics, 141: 111418.

24.           Ma, H., Sun, J., Zhang, Y., Bian, C., Xia, S. and Zhen, T. (2016). Label-free immunosensor based on one-step electrodeposition of chitosan-gold nanoparticles biocompatible film on Au microelectrode for determination of aflatoxin B1 in maize. Biosensors and Bioelectronics, 80: 222-229.

25.           Shaikh, M. O., Srikanth, B., Zhu, P.-Y. and Chu, C.-H. (2019). Impedimetric immunosensor utilizing polyaniline/gold nanocomposite-modified screen-printed electrodes for early detection of chronic kidney disease. Sensors, 19(18): 3990.

26.        Zhang, S., Shen, Y., Shen, G., Wang, S., Shen, G. and Yu, R. (2016). Electrochemical immunosensor based on Pd-Au nanoparticles supported on functionalized PDDA-MWCNT nanocomposites for aflatoxin B1 detection. Analytical Biochemistry, 494: 10-15.

27.           Kabomo, T. M. and Scurrel, M. S. (2016). The effect of protonation and oxidation state of polyaniline on the stability of gold nanoparticles. European Polymer Journal, 82: 300-306.

28.           Yagati, A. K., Chavan, S. G., Baek, C., Lee, M.-H. and Min, J. (2018). Label-free impedance sensing of aflatoxin B1 with polyaniline nanofibers/Au nanoparticle electrode array. Sensors, 18 (1320): 1-14.

29.           Lee, N. A. and Rachmawati, S. (2006). A rapid ELISA for screening aflatoxin B1 in animal feed and feed ingredients in Indonesia. Food and Agricultural Immunology, 17(2): 91-104.

30.           Nakhjavan, B., Ahmed, N. S. and Khosravifard, M. (2020). Development of an improved method of sample extraction and quantitation of multi-mycotoxin in feed by LC-MS/MS. Toxins, 12(462): 1-14.

31.           Iqbal, S. Z. (2021). Mycotoxins in food, recent development in food analysis and future challenges; a review. Current Opinion in Food Science, 42: 237-247.