Malaysian
Journal of Analytical Sciences, Vol 26 No 6 (2022): 1179 - 1190
ENZYME-BASED
ELECTROCHEMICAL BIOSENSOR ON IMMOBILIZATION OF TYROSINASE ONTO CARBOXYL
FUNCTIONALIZED CARBON NANOTUBE FOR
DETECTION
OF TYRAMINE
(Biosensor
Elektrokimia Berasaskan-Enzim
Diimobilasi Enzim Tirosinase Ke Karboksil
Tiupnano Karbon Untuk Pengesanan Tiramin)
Nurul
Hana Masód and Syaza Azhari*
Industrial
Chemical Technology,
Faculty
of Science and Technology,
Universiti Sains
Islam Malaysia, Negeri Sembilan
Nilai 71800, Malaysia
*Corresponding author: syaza@usim.edu.my
Received: 12 February 2022; Accepted:
27 March 2022; Published: 27 December
2022
Abstract
Tyramine (TYR) in foods have been regarded as a quality indicator of
food freshness for assessing microbial action, which potentially affects human
health. Enzyme-based electrochemical biosensor technology represents an
excessively massive field that significantly impacts food quality control with
incredible potential and rapid tools. Thus, this study aimed to immobilize
tyrosinase (tyro) over single-wall carbon nanotubes (SWCNTs) onto the
screen-printed carbon electrode (SPCE) in the detection of TYR. The
characteristics and electrochemical behaviour of the modified SPCEs were
investigated by Fourier transformed infrared spectroscopy (FTIR), cyclic
voltammetry (CV) and differential pulse voltammetry (DPV). Under optimum
experimental conditions, Tyro-SWCNT-COOH/SPCE biosensor exhibit good
performance at scan rate 50 mVs-1 (range of 10 to 500 mVs-1),
pH 8.0 (range of 7.0 – 10.0), 8 µL enzyme tyrosinase (range of 2 to 10 µL), and 0.5 mg/mL SWCNTs (range
of 0.2 - 3.0 mg/ml). The modified SPCEs was successfully applied for tyramine
(TYR) determination with a detection limit (LOD) of 0.02 mM.
Keywords: tyrosinase, tyramine,
screen-printed electrode, single-walled carbon nanotube
Abstrak
Tiramin (TYR) dalam makanan telah
dianggap sebagai penunjuk kualiti kesegaran makanan untuk menilai tindakan
mikrob yang berpotensi menjejaskan kesihatan manusia. Teknologi biosensor
elektrokimia berasaskan enzim mewakili bidang yang luas dimana mampu memberi
kesan ketara terhadap kawalan kualiti makanan dengan potensi dan alat pantas
yang luar biasa. Oleh itu, matlamat kajian ini adalah untuk mengalihkan
tirosinase (tyro) ke atas tiubnano karbon berdinding tunggal (SWCNT) ke
elektrod karbon bercetak skrin (SPCE) dalam pengesanan tiramin (TYR). Ciri-ciri
dan tingkah laku elektrokimia SPCE yang diubah suai telah disiasat oleh
spektroskopi inframerah (FTIR), voltammetri kitaran (CV) dan voltammetri nadi
pembezaan (DPV). Di bawah keadaan percubaan optimum, biosensor
Tyro-SWCNT-COOH/SPCE mempamerkan prestasi yang baik pada kadar imbasan 50 mVs-1
(julat 10 hingga 500 mVs-1), pH 8.0 (julat 7.0 – 10.0), 8 µl enzim tirosinase
(julat daripada 2 hingga 10 µl), dan 0.5 mg/ml SWCNTs (julat 0.2 – 3.0 mg/ml).
SPCE yang diubah suai telah berjaya digunakan untuk penentuan tiramine (TYR)
dengan had pengesanan (LOD) sebanyak 0.02 mM.
Kata kunci: tirosinase, tiramin, elektrod bercetak
skrin, tiub nano karbon berdinding tunggal
Graphical Abstract

References
1.
Lázaro, C.A., Conte-Júnior, C.A., Canto, A.C., Monteiro, M.L.G.,
Costa-Lima, B., Cruz, A.G. da, et al. (2015). Biogenic amines as bacterial
quality indicators in different poultry meat species, LWT - Food Science and
Technology, 60(1): 15-21.
2.
Lázaro, C.A.,
Conte-Júnior, C.A., Cunha, F.L., Mársico, E.T., Mano, S.B. and Franco, R.M.
(2013). Validation of an HPLC methodology for the identification and
quantification of biogenic amines in chicken meat. Food Analytical Methods,
6(4): 1024-1032.
3.
Durlu-Özkaya,
F., Ayhan, K. and Vural, N. (2001). Biogenic amines produced by
Enterobacteriaceae isolated from meat products. Meat Science, 58(2):
163-166.
4.
Ruiz-Capillas,
C. and Herrero, A.M. (2019). Impact of biogenic amines on food quality and
safety. Foods, 31(12): 2368-2378.
5.
Soares, I.P.,
da Silva, A.G., da Fonseca Alves, R., de Souza Corręa, R.A.M., Ferreira, L.F.
and Franco, D.L. (2019). Electrochemical enzymatic biosensor for tyramine based
on polymeric matrix derived from 4-mercaptophenylacetic acid. Journal of Solid
State Electrochemistry, 23 (3): 985-995.
6.
Verma, N.,
Hooda, V., Gahlaut, A., Gothwal, A. and Hooda, V. (2019). Enzymatic biosensors
for the quantification of biogenic amines: a literature update. Critical
Reviews in Biotechnology, 2019: 1-14.
7.
Khan, M.Z.H.,
Liu, X., Zhu, J., Ma, F., Hu, W. and Liu, X. (2018). Electrochemical detection
of tyramine with ITO/APTES/ErGO electrode and its application in real sample
analysis. Biosensors and Bioelectronics, 118(3): 1169-1198.
8.
Cantarini, M.
V., Painter, C.J., Gilmore, E.M., Bolger, C., Watkins, C.L., and Hughes, A.M.
(2004). Effect of oral linezolid on the pressor response to intravenous
tyramine. British Journal of Clinical Pharmacology, 58(5): 470-475.
9.
Costa,
D.J.E., Martínez, A.M., Ribeiro, W.F., Bichinho, K.M., Di Nezio, M.S.,
Pistonesi, M.F., et al. (2016). Determination of tryptamine in foods using
square wave adsorptive stripping voltammetry. Talanta, 154: 134-140.
10.
da Silva, W.,
Ghica, M.E., Ajayi, R.F., Iwuoha, E.I. and Brett, C.M.A. (2019). Impedimetric
sensor for tyramine based on gold nanoparticle
doped-poly(8-anilino-1-naphthalene sulphonic acid) modified gold electrodes. Talanta,
195: 604-612.
11.
Wan, H., Sun,
Q., Li, H., Sun, F., Hu, N., and Wang, P. (2015). Screen-printed gold electrode
with gold nanoparticles modification for simultaneous electrochemical
determination of lead and copper. Sensors and Actuators, B: Chemical,
209: 336-342.
12.
Jewell, E.,
Philip, B. and Greenwood, P. (2016) Improved manufacturing performance of
screen printed carbon electrodes through material formulation. Biosensors,
6(3): 30.
13.
Rawat, K.A.,
Bhamore, J.R., Singhal, R.K. and Kailasa, S.K. (2017) Microwave assisted
synthesis of tyrosine protected gold nanoparticles for dual (colorimetric and
fluorimetric) detection of spermine and spermidine in biological samples. Biosensors
and Bioelectronics, 88: 71-77.
14.
Chen, M.,
Zeng, G., Xu, P., Lai, C. and Tang, L. (2017) How do enzymes' meet'
nanoparticles and nanomaterials?. Trends in Biochemical Sciences,
42(11): 914-930.
15.
Lan, L., Yao,
Y., Ping, J., and Ying, Y. (2017). Recent advances in nanomaterial-based
biosensors for antibiotics detection. Biosensors and Bioelectronics, 91:
504-514.
16.
Apetrei, I.M.
and Apetrei, C. (2013). Amperometric biosensor based on polypyrrole and
tyrosinase for the detection of tyramine in food samples. Sensors and
Actuators, B: Chemical, 178: 40-46.
17.
Manan,
F.A.A., Hong, W.W., Abdullah, J., Yusof, N.A. and Ahmad, I. (2019).
Nanocrystalline cellulose decorated quantum dots based tyrosinase biosensor for
phenol determination. Materials Science and Engineering C, 99: 37-46.
18.
Camargo,
J.R., Baccarin, M., Raymundo-Pereira, P.A., Campos, A.M., Oliveira, G.G.,
Fatibello-Filho, O. (2018). Electrochemical biosensor made with tyrosinase
immobilized in a matrix of nanodiamonds and potato starch for detecting
phenolic compounds, Analytica Chimica Acta, 1034: 137-143.
19.
Montereali,
M.R., Seta, L. Della, Vastarella, W. and Pilloton, R. (2010). A disposable
Laccase-Tyrosinase based biosensor for amperometric detection of phenolic
compounds in must and wine. Journal of Molecular Catalysis B: Enzymatic,
64 (3-4): 189-194.
20.
Wang, B.,
Zheng, J., He, Y. and Sheng, Q. (2013). A sandwich-type phenolic biosensor
based on tyrosinase embedding into single-wall carbon nanotubes and polyaniline
nanocomposites. Sensors and Actuators, B: Chemical, 186: 417-422.
21.
Apetrei, I.M.
and Apetrei, C. (2015). The biocomposite screen-printed biosensor based on
immobilization of tyrosinase onto the carboxyl functionalized carbon nanotube
for assaying tyramine in fish products. Journal of Food Engineering,
149: 1-8.
22.
da Silva, W.,
Ghica, M.E., Ajayi, R.F., Iwuoha, E.I. and Brett, C.M.A. (2019). Tyrosinase
based amperometric biosensor for determination of tyramine in fermented food
and beverages with gold nanoparticle doped poly(8-anilino-1-naphthalene
sulphonic acid) modified electrode. Food Chemistry, 282: 18-26.
23.
Ng, C.M., Loh,
H.S., Muthoosamy, K., Sridewi, N. and Manickam, S. (2016). Conjugation of
insulin onto the sidewalls of single-walled carbon nanotubes through
functionalization and diimide-activated amidation. International Journal of
Nanomedicine, 11: 1607-1614.
24.
Guler, Z. and
Sarac, A.S. (2016) Electrochemical impedance and spectroscopy study of the
EDC/NHS activation of the carboxyl groups on
poly(ε-caprolactone)/poly(m-anthranilic acid) nanofibers. Express
Polymer Letters, 10(2): 96-110.
25.
Rahman, M.J.
and Mieno, T. (2014). Water-dispersible multiwalled carbon nanotubes obtained
from citric-acid-assisted oxygen plasma functionalization. Journal of
Nanomaterials, 2014: 508192.
26.
Azri, F.A.,
Sukor, R., Hajian, R., Yusof, N.A., Bakar, F.A., and Selamat, J. (2017).
Modification strategy of screen-printed carbon electrode with functionalized multi-walled carbon nanotube and chitosan matrix for
biosensor development. Asian Journal of Chemistry, 29(1): 31-36.
27.
Moraes, M.B.,
Cividanes, L., and Thim, G. (2018). Synthesis of graphene oxide and
functionalized CNT nanocomposites based on epoxy resin. Journal of Aerospace
Technology and Management, 10: 1-10.
28.
Abuilaiwi, F.A.,
Laoui, T., Al-Harthi, M., and Atieh, M.A. (2010). Modification and
functionalization of multiwalled carbon nanotube (MWCNT) via fischer
esterification. Arabian Journal for Science and Engineering,. 29 (1):
31-36.
29.
Tsai, P.A.,
Kuo, H.Y., Chiu, W.M. and Wu, J.H. (2013). Purification and functionalization
of single-walled carbon nanotubes through different treatment procedures. Journal
of Nanomaterials, 2013: 3-12.
30.
Jacobs, C.B.,
Vickrey, T.L., and Venton, B.J. (2011). Functional groups modulate the sensitivity
and electron transfer kinetics of neurochemicals at carbon nanotube modified
microelectrodes. Analyst, 136 (17): 3557-3565.
31.
Venton, B.J.
and Cao, Q. (2020). Fundamentals of fast-scan cyclic voltammetry for dopamine
detection. Analyst, 145(4): 1158-1168.
32.
Rahimi-Mohseni,
M., Raoof, J.B., Ojani, R., Aghajanzadeh, T.A., and Bagheri Hashkavayi, A.
(2018). Development of a new paper based nano-biosensor using the co-catalytic
effect of tyrosinase from banana peel tissue (Musa Cavendish) and
functionalized silica nanoparticles for voltammetric determination of
L-tyrosine. International Journal of Biological Macromolecules, 113:
648-654.
33.
Tîlmaciu,
C.M. and Morris, M.C. (2015). Carbon nanotube biosensors. Frontiers in
Chemistry, 3: 1-21.
34.
Muhammad, A.,
Yusof, N.A., Hajian, R., and Abdullah, J. (2016). Construction of an
electrochemical sensor based on carbon nanotubes/gold nanoparticles for trace
determination of amoxicillin in bovine milk. Sensors (Switzerland), 16
(1): 1-13.
35.
Chakkarapani,
L.D. and Brandl, M. (2020). Carbon screen-printed electrode coated with poly
(toluidine blue) as an electrochemical sensor for the detection of tyramine. Engineering
Proceedings, 2(1): 51.