Malaysian Journal of Analytical Sciences, Vol 26 No 6 (2022): 1179 - 1190

 

ENZYME-BASED ELECTROCHEMICAL BIOSENSOR ON IMMOBILIZATION OF TYROSINASE ONTO CARBOXYL FUNCTIONALIZED CARBON NANOTUBE FOR

DETECTION OF TYRAMINE

 

(Biosensor Elektrokimia Berasaskan-Enzim Diimobilasi Enzim Tirosinase Ke Karboksil Tiupnano Karbon Untuk Pengesanan Tiramin)

 

Nurul Hana Masód and Syaza Azhari*

 

Industrial Chemical Technology,

Faculty of Science and Technology,

Universiti Sains Islam Malaysia, Negeri Sembilan Nilai 71800, Malaysia

 

*Corresponding author: syaza@usim.edu.my

 

 

Received: 12 February 2022; Accepted: 27 March 2022; Published:  27 December 2022

 

 

Abstract

Tyramine (TYR) in foods have been regarded as a quality indicator of food freshness for assessing microbial action, which potentially affects human health. Enzyme-based electrochemical biosensor technology represents an excessively massive field that significantly impacts food quality control with incredible potential and rapid tools. Thus, this study aimed to immobilize tyrosinase (tyro) over single-wall carbon nanotubes (SWCNTs) onto the screen-printed carbon electrode (SPCE) in the detection of TYR. The characteristics and electrochemical behaviour of the modified SPCEs were investigated by Fourier transformed infrared spectroscopy (FTIR), cyclic voltammetry (CV) and differential pulse voltammetry (DPV). Under optimum experimental conditions, Tyro-SWCNT-COOH/SPCE biosensor exhibit good performance at scan rate 50 mVs-1 (range of 10 to 500 mVs-1), pH 8.0 (range of 7.0 – 10.0), 8 µL enzyme tyrosinase (range of 2 to 10 µL), and 0.5 mg/mL SWCNTs (range of 0.2 - 3.0 mg/ml). The modified SPCEs was successfully applied for tyramine (TYR) determination with a detection limit (LOD) of 0.02 mM.

 

Keywords: tyrosinase, tyramine, screen-printed electrode, single-walled carbon nanotube

 

Abstrak

Tiramin (TYR) dalam makanan telah dianggap sebagai penunjuk kualiti kesegaran makanan untuk menilai tindakan mikrob yang berpotensi menjejaskan kesihatan manusia. Teknologi biosensor elektrokimia berasaskan enzim mewakili bidang yang luas dimana mampu memberi kesan ketara terhadap kawalan kualiti makanan dengan potensi dan alat pantas yang luar biasa. Oleh itu, matlamat kajian ini adalah untuk mengalihkan tirosinase (tyro) ke atas tiubnano karbon berdinding tunggal (SWCNT) ke elektrod karbon bercetak skrin (SPCE) dalam pengesanan tiramin (TYR). Ciri-ciri dan tingkah laku elektrokimia SPCE yang diubah suai telah disiasat oleh spektroskopi inframerah (FTIR), voltammetri kitaran (CV) dan voltammetri nadi pembezaan (DPV). Di bawah keadaan percubaan optimum, biosensor Tyro-SWCNT-COOH/SPCE mempamerkan prestasi yang baik pada kadar imbasan 50 mVs-1 (julat 10 hingga 500 mVs-1), pH 8.0 (julat 7.0 – 10.0), 8 µl enzim tirosinase (julat daripada 2 hingga 10 µl), dan 0.5 mg/ml SWCNTs (julat 0.2 – 3.0 mg/ml). SPCE yang diubah suai telah berjaya digunakan untuk penentuan tiramine (TYR) dengan had pengesanan (LOD) sebanyak 0.02 mM.

 

Kata kunci: tirosinase, tiramin, elektrod bercetak skrin, tiub nano karbon berdinding tunggal

 


 


Graphical Abstract

 

References

1.         Lázaro, C.A., Conte-Júnior, C.A., Canto, A.C., Monteiro, M.L.G., Costa-Lima, B., Cruz, A.G. da, et al. (2015). Biogenic amines as bacterial quality indicators in different poultry meat species, LWT - Food Science and Technology, 60(1): 15-21.

2.         Lázaro, C.A., Conte-Júnior, C.A., Cunha, F.L., Mársico, E.T., Mano, S.B. and Franco, R.M. (2013). Validation of an HPLC methodology for the identification and quantification of biogenic amines in chicken meat. Food Analytical Methods, 6(4): 1024-1032.

3.         Durlu-Özkaya, F., Ayhan, K. and Vural, N. (2001). Biogenic amines produced by Enterobacteriaceae isolated from meat products. Meat Science, 58(2): 163-166.

4.         Ruiz-Capillas, C. and Herrero, A.M. (2019). Impact of biogenic amines on food quality and safety. Foods, 31(12): 2368-2378.

5.         Soares, I.P., da Silva, A.G., da Fonseca Alves, R., de Souza Corręa, R.A.M., Ferreira, L.F. and Franco, D.L. (2019). Electrochemical enzymatic biosensor for tyramine based on polymeric matrix derived from 4-mercaptophenylacetic acid. Journal of Solid State Electrochemistry, 23 (3): 985-995.

6.         Verma, N., Hooda, V., Gahlaut, A., Gothwal, A. and Hooda, V. (2019). Enzymatic biosensors for the quantification of biogenic amines: a literature update. Critical Reviews in Biotechnology, 2019: 1-14.

7.         Khan, M.Z.H., Liu, X., Zhu, J., Ma, F., Hu, W. and Liu, X. (2018). Electrochemical detection of tyramine with ITO/APTES/ErGO electrode and its application in real sample analysis. Biosensors and Bioelectronics, 118(3): 1169-1198.

8.         Cantarini, M. V., Painter, C.J., Gilmore, E.M., Bolger, C., Watkins, C.L., and Hughes, A.M. (2004). Effect of oral linezolid on the pressor response to intravenous tyramine. British Journal of Clinical Pharmacology, 58(5): 470-475.

9.         Costa, D.J.E., Martínez, A.M., Ribeiro, W.F., Bichinho, K.M., Di Nezio, M.S., Pistonesi, M.F., et al. (2016). Determination of tryptamine in foods using square wave adsorptive stripping voltammetry. Talanta, 154: 134-140.

10.      da Silva, W., Ghica, M.E., Ajayi, R.F., Iwuoha, E.I. and Brett, C.M.A. (2019). Impedimetric sensor for tyramine based on gold nanoparticle doped-poly(8-anilino-1-naphthalene sulphonic acid) modified gold electrodes. Talanta, 195: 604-612.

11.      Wan, H., Sun, Q., Li, H., Sun, F., Hu, N., and Wang, P. (2015). Screen-printed gold electrode with gold nanoparticles modification for simultaneous electrochemical determination of lead and copper. Sensors and Actuators, B: Chemical, 209: 336-342.

12.      Jewell, E., Philip, B. and Greenwood, P. (2016) Improved manufacturing performance of screen printed carbon electrodes through material formulation. Biosensors, 6(3): 30.

13.      Rawat, K.A., Bhamore, J.R., Singhal, R.K. and Kailasa, S.K. (2017) Microwave assisted synthesis of tyrosine protected gold nanoparticles for dual (colorimetric and fluorimetric) detection of spermine and spermidine in biological samples. Biosensors and Bioelectronics, 88: 71-77.

14.      Chen, M., Zeng, G., Xu, P., Lai, C. and Tang, L. (2017) How do enzymes' meet' nanoparticles and nanomaterials?. Trends in Biochemical Sciences, 42(11): 914-930.

15.      Lan, L., Yao, Y., Ping, J., and Ying, Y. (2017). Recent advances in nanomaterial-based biosensors for antibiotics detection. Biosensors and Bioelectronics, 91: 504-514.

16.      Apetrei, I.M. and Apetrei, C. (2013). Amperometric biosensor based on polypyrrole and tyrosinase for the detection of tyramine in food samples. Sensors and Actuators, B: Chemical, 178: 40-46.

17.      Manan, F.A.A., Hong, W.W., Abdullah, J., Yusof, N.A. and Ahmad, I. (2019). Nanocrystalline cellulose decorated quantum dots based tyrosinase biosensor for phenol determination. Materials Science and Engineering C, 99: 37-46.

18.      Camargo, J.R., Baccarin, M., Raymundo-Pereira, P.A., Campos, A.M., Oliveira, G.G., Fatibello-Filho, O. (2018). Electrochemical biosensor made with tyrosinase immobilized in a matrix of nanodiamonds and potato starch for detecting phenolic compounds, Analytica Chimica Acta, 1034: 137-143.

19.      Montereali, M.R., Seta, L. Della, Vastarella, W. and Pilloton, R. (2010). A disposable Laccase-Tyrosinase based biosensor for amperometric detection of phenolic compounds in must and wine. Journal of Molecular Catalysis B: Enzymatic, 64 (3-4): 189-194.

20.      Wang, B., Zheng, J., He, Y. and Sheng, Q. (2013). A sandwich-type phenolic biosensor based on tyrosinase embedding into single-wall carbon nanotubes and polyaniline nanocomposites. Sensors and Actuators, B: Chemical, 186: 417-422.

21.      Apetrei, I.M. and Apetrei, C. (2015). The biocomposite screen-printed biosensor based on immobilization of tyrosinase onto the carboxyl functionalized carbon nanotube for assaying tyramine in fish products. Journal of Food Engineering, 149: 1-8.

22.      da Silva, W., Ghica, M.E., Ajayi, R.F., Iwuoha, E.I. and Brett, C.M.A. (2019). Tyrosinase based amperometric biosensor for determination of tyramine in fermented food and beverages with gold nanoparticle doped poly(8-anilino-1-naphthalene sulphonic acid) modified electrode. Food Chemistry, 282: 18-26.

23.      Ng, C.M., Loh, H.S., Muthoosamy, K., Sridewi, N. and Manickam, S. (2016). Conjugation of insulin onto the sidewalls of single-walled carbon nanotubes through functionalization and diimide-activated amidation. International Journal of Nanomedicine, 11: 1607-1614.

24.      Guler, Z. and Sarac, A.S. (2016) Electrochemical impedance and spectroscopy study of the EDC/NHS activation of the carboxyl groups on poly(ε-caprolactone)/poly(m-anthranilic acid) nanofibers. Express Polymer Letters, 10(2): 96-110.

25.      Rahman, M.J. and Mieno, T. (2014). Water-dispersible multiwalled carbon nanotubes obtained from citric-acid-assisted oxygen plasma functionalization. Journal of Nanomaterials, 2014: 508192.

26.      Azri, F.A., Sukor, R., Hajian, R., Yusof, N.A., Bakar, F.A., and Selamat, J. (2017). Modification strategy of screen-printed carbon electrode with functionalized multi-walled carbon nanotube and chitosan matrix for biosensor development. Asian Journal of Chemistry, 29(1): 31-36.

27.      Moraes, M.B., Cividanes, L., and Thim, G. (2018). Synthesis of graphene oxide and functionalized CNT nanocomposites based on epoxy resin. Journal of Aerospace Technology and Management, 10: 1-10.

28.      Abuilaiwi, F.A., Laoui, T., Al-Harthi, M., and Atieh, M.A. (2010). Modification and functionalization of multiwalled carbon nanotube (MWCNT) via fischer esterification. Arabian Journal for Science and Engineering,. 29 (1): 31-36.

29.      Tsai, P.A., Kuo, H.Y., Chiu, W.M. and Wu, J.H. (2013). Purification and functionalization of single-walled carbon nanotubes through different treatment procedures. Journal of Nanomaterials, 2013: 3-12.

30.      Jacobs, C.B., Vickrey, T.L., and Venton, B.J. (2011). Functional groups modulate the sensitivity and electron transfer kinetics of neurochemicals at carbon nanotube modified microelectrodes. Analyst, 136 (17): 3557-3565.

31.      Venton, B.J. and Cao, Q. (2020). Fundamentals of fast-scan cyclic voltammetry for dopamine detection. Analyst, 145(4): 1158-1168.

32.      Rahimi-Mohseni, M., Raoof, J.B., Ojani, R., Aghajanzadeh, T.A., and Bagheri Hashkavayi, A. (2018). Development of a new paper based nano-biosensor using the co-catalytic effect of tyrosinase from banana peel tissue (Musa Cavendish) and functionalized silica nanoparticles for voltammetric determination of L-tyrosine. International Journal of Biological Macromolecules, 113: 648-654.

33.      Tîlmaciu, C.M. and Morris, M.C. (2015). Carbon nanotube biosensors. Frontiers in Chemistry, 3: 1-21.

34.      Muhammad, A., Yusof, N.A., Hajian, R., and Abdullah, J. (2016). Construction of an electrochemical sensor based on carbon nanotubes/gold nanoparticles for trace determination of amoxicillin in bovine milk. Sensors (Switzerland), 16 (1): 1-13.

35.      Chakkarapani, L.D. and Brandl, M. (2020). Carbon screen-printed electrode coated with poly (toluidine blue) as an electrochemical sensor for the detection of tyramine. Engineering Proceedings, 2(1): 51.