Malaysian Journal of Analytical Sciences, Vol 26 No 6 (2022): 1168 – 1178

 

ENHANCING THE HYDROGEN GAS SENSING PROPERTIES OF ZINC OXIDE DOPED WITH ALUMINUM PREPARED VIA

THERMAL OXIDATION

 

(Meningkatkan Sifat Penderiaan Gas Hidrogen bagi Zink Oksida Terdop Aluminium yang Disediakan dengan Kaedah Pengoksidaan Terma)

 

Naif H. Al-Hardan1*, Muhammad Azmi Abdul Hamid1, Azlan Abdul Aziz2, Naser M. Ahmed2

 

1Department of Applied Physics,

Faculty of Science and Technology,

Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia

2School of Physics,

Universiti Sains Malaysia, 11800 Penang, Penang, Malaysia

 

*Corresponding author: naifalhardan@ukm.edu.my

 

 

Received: 31 January 2022; Accepted: 19 May 2022; Published:  27 December 2022

 

 

Abstract

This work describes the gas sensing performance of undoped zinc oxide (ZnO) and ZnO doped with 2 atomic% aluminum (ZnO: Al 2% at.) prepared via the thermal oxidation of zinc (Zn) and Al metal. The prepared films exhibited a polycrystalline structure of the hexagonal ZnO structure. The element composition shows the presence of Zn, O and Al, with Al percentage of approximately 2.2% at. The current-voltage characteristic was used to study the effect of the low hydrogen (H2) concentrations on the sensing properties of ZnO and ZnO: Al. The maximum response of the undoped ZnO was approximately 100 at an operating temperature of 400 ℃ and increased to approximately 2000 at an operating temperature of 300 ℃ after doping with 2% at. Al. The current study reveals the promising potential for the Al-doped ZnO for low H2 gas concentrations, as there was an enhancement in the response and reduction in the operating temperature of the doped ZnO with Al.

 

Keywords: hydrogen gas sensors, doping process, ZnO:Al

 

Abstrak

Kerja ini menerangkan prestasi penderiaan gas untuk zink oksida (ZnO) tanpa dop dan ZnO terdop 2 atom% aluminum (ZnO: Al 2% at.) yang disediakan melalui pengoksidaan terma logam zink (Zn) dan Al. Filem yang disediakan mempunyai struktur polikristal iaitu struktur heksagonal ZnO. Komposisi unsur menunjukkan kehadiran Zn, O dan Al, dengan peratusan Al pada anggaran 2.2% at. Ciri Arus-Voltan telah digunakan untuk mengkaji kesan kepekatan hidrogen (H2)  rendah terhadap sifat penderiaan ZnO dan ZnO:Al. Gerakbalas maksimum ZnO tanpa dop dalam anggaran 100 pada suhu operasi 400℃ dan meningkat kepada 2000 pada suhu operasi 300℃ setelah didop dengan Al. Kajian semasa menunjukkan ZnO terdop Al mempunyai potensi baik pada kepekatan  gas H2 yang rendah, di mana pengayaan dalam respons dan pengurangan dalam operasi suhu terhadap ZnO didop Bersama Al.

 

Kata kunci: hidrogen penderia gas, proses doping, ZnO:Al

 

Graphical Abstract

 

References

1.         Müller, G., Friedberger, A., Kreisl, P., Ahlers, S., Schulz, O. and Becker, T. (2003). A MEMS toolkit for metal-oxide-based gas sensing systems. Thin Solid Films, 436(1): 34-45.

2.         Tuller, H. L. and Mlcak, R. (2000). Advanced sensor technology based on oxide thin film-MEMS integration. Journal of Electroceramics, 4(2): 415-425.

3.         Graf, M., Barrettino, D., Zimmermann, M., Hierlemann, A., Baltes, H., Hahn, S., ... and Weimar, U. (2004). CMOS monolithic metal-oxide sensor system comprising a microhotplate and associated circuitry. IEEE Sensors Journal, 4(1): 9-16.

4.         Alenezi, M. R., Henley, S. J., Emerson, N. G. and Silva, S. R. P. (2014). From 1D and 2D ZnO nanostructures to 3D hierarchical structures with enhanced gas sensing properties. Nanoscale, 6(1): 235-247.

5.         Al-Hardan, N. H., Abdul Hamid, M. A., Shamsudin, R., Othman, N. K. and Kar Keng, L. (2016). Amperometric non-enzymatic hydrogen peroxide sensor based on aligned zinc oxide nanorods. Sensors, 16(7): 1004.

6.         Al-Khalqi, E. M., Hamid, M. A. A., Shamsudin, R., Al-Hardan, N. H., Jalar, A. and Keng, L. K. (2020). Zinc oxide nanorod electrolyte–insulator–semiconductor sensor for enhanced 2-methoxyethanol selectivity. IEEE Sensors Journal, 21(5): 6234-6240.

7.         Law, J. B. K. and Thong, J. T. L. (2008). Improving the NH3 gas sensitivity of ZnO nanowire sensors by reducing the carrier concentration. Nanotechnology19(20), 205502.

8.         Barreca, D., Bekermann, D., Comini, E., Devi, A., Fischer, R. A., Gasparotto, A., ... and Tondello, E. (2010). 1D ZnO nano-assemblies by Plasma-CVD as chemical sensors for flammable and toxic gases. Sensors and Actuators B: Chemical, 149(1): 1-7.

9.         Basu, S. and Basu, P. K. (2009). Nanocrystalline metal oxides for methane sensors: role of noble metals. Journal of Sensors, 2009: 861968.

10.      Al-Hardan, N. H., Abdullah, M. J. and Aziz, A. A. (2013). Performance of Cr-doped ZnO for acetone sensing. Applied Surface Science, 270: 480-485.

11.      Hjiri, M., Dhahri, R., Omri, K., El Mir, L., Leonardi, S. G., Donato, N. and Neri, G. (2014). Effect of indium doping on ZnO based-gas sensor for CO. Materials Science in Semiconductor Processing, 27: 319-325.

12.      Al-Khalqi, E. M., Abdul Hamid, M. A., Al-Hardan, N. H. and Keng, L. K. (2021). Highly sensitive magnesium-doped ZnO nanorod pH sensors based on electrolyte–insulator–semiconductor (EIS) sensors. Sensors, 21(6): 2110.

13.      Hjiri, M., El Mir, L., Leonardi, S. G., Pistone, A., Mavilia, L. and Neri, G. (2014). Al-doped ZnO for highly sensitive CO gas sensors. Sensors and Actuators B: Chemical, 196: 413-420.

14.      Yang, Z., Huang, Y., Chen, G., Guo, Z., Cheng, S. and Huang, S. (2009). Ethanol gas sensor based on Al-doped ZnO nanomaterial with many gas diffusing channels. Sensors and Actuators B: Chemical, 140(2): 549-556.

15.      Navale, S. C., Ravi, V., Mulla, I. S., Gosavi, S. W. and Kulkarni, S. K. (2007). Low temperature synthesis and NOx sensing properties of nanostructured Al-doped ZnO. Sensors and Actuators B: Chemical, 126(2): 382-386.

16.      Yoo, R., Güntner, A. T., Park, Y., Rim, H. J., Lee, H. S. and Lee, W. (2019). Sensing of acetone by Al-doped ZnO. Sensors and Actuators B: Chemical, 283: 107-115.

17.      Darvishnejad, M. H., Firooz, A. A., Beheshtian, J. and Khodadadi, A. A. (2016). Highly sensitive and selective ethanol and acetone gas sensors by adding some dopants (Mn, Fe, Co, Ni) onto hexagonal ZnO plates. RSC Advances, 6(10): 7838-7845.

18.      Lee, S. H., Han, S. H., Jung, H. S., Shin, H., Lee, J., Noh, J. H., ... and Shin, H. (2010). Al-doped ZnO thin film: a new transparent conducting layer for ZnO nanowire-based dye-sensitized solar cells. The Journal of Physical Chemistry C, 114(15): 7185-7189.

19.      Miki-Yoshida, M., Morales, J. and Solis, J. (2000). Influence of Al, In, Cu, Fe and Sn dopants on the response of thin film ZnO gas sensor to ethanol vapour. Thin Solid Films, 373(1-2): 137-140.

20.      Zan, L., Wei, Q. and Xiaohong, W. (2015). Controllable hydrothermal synthesis of Al-doped ZnO with different microstructures, growth mechanisms, and gas sensing properties. RSC Advances, 5(69): 56325-56332.

21.      Yuliarto, B., Nulhakim, L., Ramadhani, M. F., Iqbal, M. and Nuruddin, A. (2015). Improved performances of ethanol sensor fabricated on Al-doped ZnO nanosheet thin films. IEEE Sensors Journal, 15(7): 4114-4120.

22.      Fardindoost, S., Rahimi, F. and Ghasempour, R. (2010). Pd doped WO3 films prepared by sol–gel process for hydrogen sensing. International Journal of Hydrogen Energy, 35(2): 854-860.

23.      Grimes, C. A., Ong, K. G., Varghese, O. K., Yang, X., Mor, G., Paulose, M., ... and Mason, A. J. (2003). A sentinel sensor network for hydrogen sensing. Sensors, 3(3): 69-82.

24.      Al-Salman, H. S., Abdullah, M. J. and Al-Hardan, N. (2013). ZnO thin film nanostructures for hydrogen gas sensing applications. Ceramics International, 39: S447-S450.

25.      Boon-Brett, L., Bousek, J., Black, G., Moretto, P., Castello, P., Hübert, T. and Banach, U. (2010). Identifying performance gaps in hydrogen safety sensor technology for automotive and stationary applications. International Journal of Hydrogen Energy, 35(1): 373-384.

26.      Kern, W. (1990). The evolution of silicon wafer cleaning technology. Journal of the Electrochemical Society, 137(6): 1887.

27.      Jeong, S. H., Kho, S., Jung, D., Lee, S. B. and Boo, J. H. (2003). Deposition of aluminum-doped zinc oxide films by RF magnetron sputtering and study of their surface characteristics. Surface and Coatings Technology, 174: 187-192.

28.      Ma, T. Y. and Lee, S. C. (2000). Effects of aluminum content and substrate temperature on the structural and electrical properties of aluminum-doped ZnO films prepared by ultrasonic spray pyrolysis. Journal of Materials Science: Materials in Electronics, 11(4): 305-309.

29.      Lupan, O., Shishiyanu, S., Ursaki, V., Khallaf, H., Chow, L., Shishiyanu, T., ... and Railean, S. (2009). Synthesis of nanostructured Al-doped zinc oxide films on Si for solar cells applications. Solar Energy Materials and Solar Cells, 93(8), 1417-1422.

30.      Haug, F. J., Geller, Z., Zogg, H., Tiwari, A. N., & Vignali, C. (2001). Influence of deposition conditions on the thermal stability of ZnO: Al films grown by rf magnetron sputtering. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 19(1): 171-174.

31.      Sahay, P. P. and Nath, R. K. (2008). Al-doped ZnO thin films as methanol sensors. Sensors and Actuators B: Chemical, 134(2), 654-659.

32.      Gurlo, A. and Riedel, R. (2007). In situ and operando spectroscopy for assessing mechanisms of gas sensing. Angewandte Chemie International Edition, 46(21): 3826-3848.

33.      Nenov, T. G. and Yordanov, S. P. (2020). Ceramic sensors: technology and applications. CRC press.

34.      Moseley, P. T. (1997). Solid state gas sensors. Measurement Science And Technology, 8(3): 223.

35.      Krishnakumar, T., Jayaprakash, R., Pinna, N., Donato, N., Bonavita, A., Micali, G. and Neri, G. (2009). CO gas sensing of ZnO nanostructures synthesized by an assisted microwave wet chemical route. Sensors and Actuators B: Chemical, 143(1): 198-204.

36.      Patil, D. R. and Patil, L. A. (2009). Cr2O3-modified ZnO thick film resistors as LPG sensors. Talanta, 77(4): 1409-1414.

37.      Xia, H., Wang, Y., Kong, F., Wang, S., Zhu, B., Guo, X., ... and Wu, S. (2008). Au-doped WO3-based sensor for NO2 detection at low operating temperature. Sensors and Actuators B: Chemical, 134(1), 133-139.

38.      Ferro, R., Rodriguez, J. A. and Bertrand, P. (2005). Development and characterization of a sprayed ZnO thin film‐based NO2 sensor. Physica Status Solidi (C), 2(10): 3754-3757.

39.      Tian, S., Yang, F., Zeng, D. and Xie, C. (2012). Solution-processed gas sensors based on ZnO nanorods array with an exposed (0001) facet for enhanced gas-sensing properties. The Journal of Physical Chemistry C, 116(19): 10586-10591