Malaysian Journal of Analytical
Sciences, Vol 26 No 6 (2022): 1168 – 1178
ENHANCING THE HYDROGEN GAS
SENSING PROPERTIES OF ZINC OXIDE DOPED WITH ALUMINUM PREPARED VIA
THERMAL OXIDATION
(Meningkatkan
Sifat Penderiaan Gas Hidrogen
bagi Zink Oksida Terdop Aluminium yang Disediakan dengan Kaedah Pengoksidaan Terma)
Naif H. Al-Hardan1*, Muhammad Azmi Abdul
Hamid1, Azlan Abdul Aziz2,
Naser M. Ahmed2
1Department
of Applied Physics,
Faculty
of Science and Technology,
Universiti Kebangsaan
Malaysia, 43600 UKM Bangi, Selangor, Malaysia
2School
of Physics,
Universiti Sains
Malaysia, 11800 Penang, Penang, Malaysia
*Corresponding
author: naifalhardan@ukm.edu.my
Received: 31 January 2022; Accepted:
19 May 2022; Published: 27 December 2022
Abstract
This
work describes the gas sensing performance of undoped zinc oxide (ZnO) and ZnO doped with 2 atomic%
aluminum (ZnO: Al 2% at.) prepared via the thermal oxidation
of zinc (Zn) and Al metal. The prepared films exhibited a polycrystalline
structure of the hexagonal ZnO structure. The element
composition shows the presence of Zn, O and Al, with Al percentage of
approximately 2.2% at. The current-voltage characteristic was used to study the
effect of the low hydrogen (H2) concentrations on the sensing
properties of ZnO and ZnO:
Al. The maximum response of the undoped ZnO was
approximately 100 at an operating temperature of 400 ℃ and increased to
approximately 2000 at an operating temperature of 300 ℃ after doping with
2% at. Al. The current study reveals the promising potential for the Al-doped ZnO for low H2 gas concentrations, as there was
an enhancement in the response and reduction in the operating temperature of
the doped ZnO with Al.
Keywords: hydrogen gas sensors,
doping process, ZnO:Al
Abstrak
Kerja ini menerangkan
prestasi penderiaan gas untuk zink oksida
(ZnO) tanpa dop dan ZnO terdop 2 atom% aluminum (ZnO: Al 2% at.) yang disediakan melalui pengoksidaan terma logam zink
(Zn) dan Al. Filem yang disediakan
mempunyai struktur polikristal iaitu struktur heksagonal ZnO. Komposisi unsur menunjukkan kehadiran Zn, O dan Al, dengan peratusan Al pada anggaran 2.2%
at. Ciri Arus-Voltan telah digunakan untuk mengkaji kesan kepekatan hidrogen (H2)
rendah terhadap sifat penderiaan ZnO dan ZnO:Al. Gerakbalas maksimum ZnO tanpa dop dalam
anggaran 100 pada suhu operasi 400℃ dan meningkat kepada 2000 pada suhu operasi 300℃ setelah didop dengan Al. Kajian semasa menunjukkan ZnO terdop Al mempunyai
potensi baik pada kepekatan gas H2
yang rendah, di mana pengayaan
dalam respons dan pengurangan dalam operasi suhu terhadap
ZnO didop Bersama Al.
Kata kunci: hidrogen penderia gas, proses doping, ZnO:Al
Graphical Abstract
References
1.
Müller, G., Friedberger, A.,
Kreisl, P., Ahlers, S., Schulz, O. and Becker, T. (2003). A MEMS toolkit for
metal-oxide-based gas sensing systems. Thin Solid Films, 436(1):
34-45.
2.
Tuller, H. L. and Mlcak, R.
(2000). Advanced sensor technology based on oxide thin film-MEMS
integration. Journal of Electroceramics, 4(2): 415-425.
3.
Graf, M., Barrettino, D.,
Zimmermann, M., Hierlemann, A., Baltes, H., Hahn, S., ... and Weimar, U.
(2004). CMOS monolithic metal-oxide sensor system comprising a microhotplate
and associated circuitry. IEEE Sensors Journal, 4(1): 9-16.
4.
Alenezi, M. R., Henley, S. J., Emerson, N. G. and Silva, S.
R. P. (2014). From 1D and 2D ZnO nanostructures to 3D hierarchical structures
with enhanced gas sensing properties. Nanoscale, 6(1): 235-247.
5.
Al-Hardan, N. H., Abdul Hamid, M.
A., Shamsudin, R., Othman, N. K. and Kar Keng, L. (2016). Amperometric
non-enzymatic hydrogen peroxide sensor based on aligned zinc oxide nanorods. Sensors, 16(7):
1004.
6.
Al-Khalqi, E. M., Hamid, M. A. A.,
Shamsudin, R., Al-Hardan, N. H., Jalar, A. and Keng, L. K. (2020). Zinc oxide
nanorod electrolyte–insulator–semiconductor sensor for enhanced
2-methoxyethanol selectivity. IEEE Sensors Journal, 21(5):
6234-6240.
7.
Law, J. B. K. and Thong, J. T. L.
(2008). Improving the NH3 gas sensitivity of ZnO nanowire sensors by
reducing the carrier concentration. Nanotechnology, 19(20),
205502.
8.
Barreca, D., Bekermann, D., Comini,
E., Devi, A., Fischer, R. A., Gasparotto, A., ... and Tondello, E. (2010). 1D
ZnO nano-assemblies by Plasma-CVD as chemical sensors for flammable and toxic
gases. Sensors and Actuators B: Chemical, 149(1): 1-7.
9.
Basu, S. and Basu, P. K. (2009). Nanocrystalline metal oxides for
methane sensors: role of noble metals. Journal of Sensors, 2009: 861968.
10.
Al-Hardan, N. H., Abdullah, M. J. and Aziz, A. A. (2013).
Performance of Cr-doped ZnO for acetone sensing. Applied Surface Science,
270: 480-485.
11.
Hjiri, M., Dhahri, R., Omri, K.,
El Mir, L., Leonardi, S. G., Donato, N. and Neri, G. (2014). Effect of indium
doping on ZnO based-gas sensor for CO. Materials Science in
Semiconductor Processing, 27: 319-325.
12.
Al-Khalqi, E. M., Abdul Hamid, M.
A., Al-Hardan, N. H. and Keng, L. K. (2021). Highly sensitive magnesium-doped
ZnO nanorod pH sensors based on electrolyte–insulator–semiconductor (EIS)
sensors. Sensors, 21(6): 2110.
13.
Hjiri, M., El Mir, L., Leonardi,
S. G., Pistone, A., Mavilia, L. and Neri, G. (2014). Al-doped ZnO for highly
sensitive CO gas sensors. Sensors and Actuators B: Chemical, 196:
413-420.
14.
Yang, Z., Huang, Y., Chen, G.,
Guo, Z., Cheng, S. and Huang, S. (2009). Ethanol gas sensor based on Al-doped
ZnO nanomaterial with many gas diffusing channels. Sensors and
Actuators B: Chemical, 140(2): 549-556.
15.
Navale, S. C., Ravi, V., Mulla, I.
S., Gosavi, S. W. and Kulkarni, S. K. (2007). Low temperature synthesis and NOx
sensing properties of nanostructured Al-doped ZnO. Sensors and
Actuators B: Chemical, 126(2): 382-386.
16.
Yoo, R., Güntner, A. T., Park, Y.,
Rim, H. J., Lee, H. S. and Lee, W. (2019). Sensing of acetone by Al-doped
ZnO. Sensors and Actuators B: Chemical, 283: 107-115.
17.
Darvishnejad, M. H., Firooz, A.
A., Beheshtian, J. and Khodadadi, A. A. (2016). Highly sensitive and selective
ethanol and acetone gas sensors by adding some dopants (Mn, Fe, Co, Ni) onto
hexagonal ZnO plates. RSC Advances, 6(10): 7838-7845.
18.
Lee, S. H., Han, S. H., Jung, H.
S., Shin, H., Lee, J., Noh, J. H., ... and Shin, H. (2010). Al-doped ZnO thin
film: a new transparent conducting layer for ZnO nanowire-based dye-sensitized
solar cells. The Journal of Physical Chemistry C, 114(15):
7185-7189.
19.
Miki-Yoshida, M., Morales, J. and
Solis, J. (2000). Influence of Al, In, Cu, Fe and Sn
dopants on the response of thin film ZnO gas sensor to ethanol vapour. Thin
Solid Films, 373(1-2): 137-140.
20.
Zan, L., Wei, Q. and Xiaohong, W. (2015). Controllable
hydrothermal synthesis of Al-doped ZnO with different microstructures, growth
mechanisms, and gas sensing properties. RSC Advances, 5(69):
56325-56332.
21.
Yuliarto, B., Nulhakim, L., Ramadhani, M. F., Iqbal, M. and
Nuruddin, A. (2015). Improved performances of ethanol sensor fabricated on
Al-doped ZnO nanosheet thin films. IEEE Sensors Journal, 15(7): 4114-4120.
22.
Fardindoost, S., Rahimi, F. and Ghasempour, R. (2010). Pd
doped WO3 films prepared by sol–gel process for hydrogen sensing. International
Journal of Hydrogen Energy, 35(2): 854-860.
23.
Grimes, C. A., Ong, K. G.,
Varghese, O. K., Yang, X., Mor, G., Paulose, M., ... and Mason, A. J. (2003). A
sentinel sensor network for hydrogen sensing. Sensors, 3(3):
69-82.
24.
Al-Salman, H. S., Abdullah, M. J. and Al-Hardan, N. (2013).
ZnO thin film nanostructures for hydrogen gas sensing applications. Ceramics
International, 39: S447-S450.
25.
Boon-Brett, L., Bousek, J., Black,
G., Moretto, P., Castello, P., Hübert, T. and Banach, U. (2010). Identifying
performance gaps in hydrogen safety sensor technology for automotive and
stationary applications. International Journal of Hydrogen Energy, 35(1):
373-384.
26.
Kern, W. (1990). The evolution of silicon wafer cleaning
technology. Journal of the Electrochemical Society, 137(6): 1887.
27.
Jeong, S. H., Kho, S., Jung, D., Lee, S. B. and Boo, J. H.
(2003). Deposition of aluminum-doped zinc oxide films by RF magnetron
sputtering and study of their surface characteristics. Surface and Coatings
Technology, 174: 187-192.
28.
Ma, T. Y. and Lee, S. C. (2000). Effects of aluminum content
and substrate temperature on the structural and electrical properties of
aluminum-doped ZnO films prepared by ultrasonic spray pyrolysis. Journal of
Materials Science: Materials in Electronics, 11(4): 305-309.
29.
Lupan, O., Shishiyanu, S., Ursaki, V., Khallaf, H., Chow, L.,
Shishiyanu, T., ... and Railean, S. (2009). Synthesis of nanostructured
Al-doped zinc oxide films on Si for solar cells applications. Solar Energy
Materials and Solar Cells, 93(8), 1417-1422.
30.
Haug, F. J., Geller, Z., Zogg, H.,
Tiwari, A. N., & Vignali, C. (2001). Influence of deposition conditions
on the thermal stability of ZnO: Al films grown by rf magnetron sputtering. Journal
of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 19(1):
171-174.
31.
Sahay, P. P. and Nath, R. K. (2008). Al-doped ZnO thin films
as methanol sensors. Sensors and Actuators B: Chemical, 134(2), 654-659.
32.
Gurlo, A. and Riedel, R. (2007). In situ and operando
spectroscopy for assessing mechanisms of gas sensing. Angewandte Chemie
International Edition, 46(21): 3826-3848.
33.
Nenov, T. G. and Yordanov, S. P. (2020). Ceramic sensors:
technology and applications. CRC press.
34.
Moseley, P. T. (1997). Solid state gas sensors. Measurement
Science And Technology, 8(3): 223.
35.
Krishnakumar, T., Jayaprakash, R., Pinna, N., Donato, N.,
Bonavita, A., Micali, G. and Neri, G. (2009). CO gas sensing of ZnO
nanostructures synthesized by an assisted microwave wet chemical route. Sensors
and Actuators B: Chemical, 143(1): 198-204.
36.
Patil, D. R. and Patil, L. A. (2009). Cr2O3-modified
ZnO thick film resistors as LPG sensors. Talanta, 77(4): 1409-1414.
37.
Xia, H., Wang, Y., Kong, F., Wang, S., Zhu, B., Guo, X., ...
and Wu, S. (2008). Au-doped WO3-based sensor for NO2 detection at
low operating temperature. Sensors and Actuators B: Chemical, 134(1),
133-139.
38.
Ferro, R., Rodriguez, J. A. and Bertrand, P. (2005). Development and characterization
of a sprayed ZnO thin film‐based NO2 sensor. Physica Status
Solidi (C), 2(10): 3754-3757.
39.
Tian, S., Yang, F., Zeng, D. and Xie, C. (2012).
Solution-processed gas sensors based on ZnO nanorods array with an exposed
(0001) facet for enhanced gas-sensing properties. The Journal of Physical
Chemistry C, 116(19): 10586-10591