Malaysian Journal of Analytical Sciences, Vol 26 No 6 (2022): 1394 - 1411

 

 CHEMICAL SYNTHESIS OF METAL OXIDE NANOPARTICLES VIA IONIC LIQUID AS CAPPING AGENT: PRINCIPLE, PREPARATION

AND APPLICATIONS

 

(Sintesis Kimia Logam Oksida Nanozarah Melalui Cecair Ionik Sebagai Ejen Pembekat: Prinsip, Penyediaan dan Aplikasi)

 

Nurul Syafiqah Tapak1,2, Mohd Azizi Nawawi2, Ahmad Husaini Mohamed1, Eddie Tan Ti Tjih3,

Yusairie Mohd2, Ahmad Hazri Bin Ab Rashid4,  Jaafar Abdullah5*, Nor Azah Yusof 5, Nor Monica Ahmad1,6*

 

 1School of Chemistry and Environment,

Faculty of Applied Sciences,

Universiti Teknologi MARA, Cawangan Negeri Sembilan, Kampus Kuala Pilah,

72000 Kuala Pilah, Malaysia

2 School of Chemistry and Environment,

Faculty of Applied Sciences,

Universiti Teknologi MARA, 40450 Shah Alam, Malaysia

3School of Industrial Technology,

Faculty of Applied Sciences,

Universiti Teknologi MARA, Cawangan Negeri Sembilan, Kampus Kuala Pilah,

72000 Kuala Pilah, Malaysia

4Industrial Biotechnology Research Center SIRIM Berhad

No 1, Persiaran Dato’ Menteri Section 2, PO Box 7035 40700 Shah Alam, Selangor

5 Department of Chemistry,

Faculty of Science,

Universiti Putra Malaysia, Serdang, Selangor, Malaysia

6 Biotechnology, Microbiology and Environment Collaborative Sciences,

Universiti Teknologi MARA, Cawangan Negeri Sembilan Kampus Kuala Pilah,

72000 Kuala Pilah, Negeri Sembilan, Malaysia

 

*Corresponding author: normonica@gmail.com , jafar@upm.edu.my

 

Received: 27 January 2022; Accepted: 10 June 2022; Published:  27 December 2022

 

Abstract

Wet chemical synthesis has received much attention to develop a wide array of metal oxide nanoparticles (MONPs) due to its low production cost, simplicity, and ability to produce ultrafine products. In recent years, room temperature ionic liquids (RTILs) as a superior solvent, have managed to produce excellent properties of MONPs that are gaining attention due to excellent physical properties such as small particle size, high surface area, and high porosity. To date, the abundance of available data on MONPs can now be used by researchers to establish suitable methods for producing high-performance materials particularly to suit specific applications. However, there is very limited information on the synthesis mechanisms and common characterization methods used in the preparation of MONPs using RTILs. Therefore, this paper aims to provide a comprehensive review on the MONPs synthesis methods using RTILs via sol gel, hydrothermal, microwave assisted, ultrasonic assisted, and precipitation method alongside the characterization by spectroscopic and microscopic techniques. In this article, various fabrication methods to synthesize MONPs with different morphologies and sizes are reviewed. Also, a step-by-step approach on the mechanisms to improve MONPs properties and impacts of RTILs on the formation of MONPs is highlighted. Finally, the potential of MONPs as antibacterial and catalyst are discussed.

 

Keywords: characterisation, ionic liquid, synthesis, metal oxide

 

Abstrak

Sintesis kimia basah telah mendapat banyak perhatian untuk membangunkan pelbagai jenis nanozarah oksida logam (MONPs) kerana kos pengeluarannya yang rendah, kesederhanaan dan keupayaan untuk menghasilkan produk ultrahalus. Dalam beberapa tahun kebelakangan ini, cecair ionik suhu bilik (RTILs) sebagai pelarut unggul, telah berjaya menghasilkan ciri-ciri  terbaik MONPs yang mendapat perhatian kerana sifat fizikal yang sangat baik seperti saiz zarah yang kecil, luas permukaan yang tinggi, dan keliangan yang tinggi. Sehingga kini, banyaknya data yang tersedia mengenai MONPs kini boleh digunakan oleh penyelidik untuk mewujudkan kaedah yang sesuai untuk menghasilkan bahan berprestasi tinggi terutamanya untuk disesuaikan dengan aplikasi tertentu. Walau bagaimanapun, terdapat maklumat yang sangat terhad mengenai mekanisme sintesis dan kaedah pencirian biasa yang digunakan dalam penyediaan MONPs menggunakan RTILs. Oleh itu, kertas kerja ini bertujuan untuk memberikan ulasan komprehensif tentang kaedah sintesis MONPs menggunakan RTILs melalui sol gel, hidroterma, dibantu gelombang mikro, dibantu ultrasonik, dan kaedah pemendakan di samping pencirian oleh teknik spektroskopi dan mikroskopik. Dalam artikel ini, pelbagai kaedah fabrikasi untuk mensintesis MONP dengan morfologi dan saiz yang berbeza disemak. Juga, pendekatan langkah demi langkah mengenai mekanisme untuk menambah baik sifat MONPs dan kesan RTILs terhadap pembentukan MONPs diserlahkan. Akhir sekali, potensi MONPs untuk menghalang bakteria dibincangkan.

 

Kata kunci: pencirian, cecair ionik, sintesis, logam oksida

 


Graphical Abstract

 

References

1.         Thanh, N. T. K., Maclean, N. and Mahiddine, S. (2014). Mechanisms of nucleation and growth of nanoparticles in solution. Chemical Reviews, 114(15): 7610-7630.

2.         He, Z. and Alexandridis, P. (2017). Ionic liquid and nanoparticle hybrid systems: Emerging applications. Advances in Colloid and Interface Science, 244: 54-70.

3.         McNamara, K. and Tofail, S. A. M. (2017). Nanoparticles in biomedical applications. Advances in Physics: X, 2(1): 54-88.

4.         Nikolova, M. P. and Chavali, M. S. (2020). Metal oxide nanoparticles as biomedical materials. Biomimetics, 5(2): 27.

5.         Stankic, S., Suman, S., Haque, F. and Vidic, J. (2016). Pure and multi metal oxide nanoparticles: Synthesis, antibacterial and cytotoxic properties. Journal of Nanobiotechnology, 14(1): 1-20.

6.         Andreescu, S., Ornatska, M., Erlichman, J. S., Ana, E. and Leiter, J. C. (2011). Biomedical applications of metal oxide nanoparticles. In Fine Particles in Medicine and Pharmacy. (Egon Matijević Editor). Springerlink Book: pp. 57-100.

7.         Joshi, M. and Roy, A. (2018). Antimicrobial textiles based on metal and metal oxide nano-particles. Nanomaterials in the Wet Processing of Textiles, 2018: 71-111.

8.         Raghunath, A. and Perumal, E. (2017). Metal oxide nanoparticles as antimicrobial agents: a promise for the future. International Journal of Antimicrobial Agents, 49(2): 137-152.

9.         Nagajyothi, P. C., Prabhakar Vattikuti, S. V., Devarayapalli, K. C., Yoo, K., Shim, J. and Sreekanth, T. V. M. (2020). Green synthesis: Photocatalytic degradation of textile dyes using metal and metal oxide nanoparticles-latest trends and advancements. Critical Reviews in Environmental Science and Technology, 50(24): 2617-2723.

10.      Khan, M. M., Adil, S. F. and Al-Mayouf, A. (2015). Metal oxides as photocatalysts. Journal of Saudi Chemical Society, 19(5): 462-464.

11.      Veerasingam, M., Murugesan, B. and Mahalingam, S. (2020). Ionic liquid mediated morphologically improved lanthanum oxide nanoparticles by Andrographis paniculata leaves extract and its biomedical applications. Journal of Rare Earths, 38(3): 281-291.

12.      Cheng, Z., Tan, A. L. K., Tao, Y., Shan, D., Ting, K. E. and Yin, X. J. (2012). Synthesis and characterization of iron oxide nanoparticles and applications in the removal of heavy metals from industrial wastewater. International Journal of Photoenergy, 2012: 608298.

13.      Zhu, D., Chen, Y., Yang, H., Wang, S., Wang, X., Zhang, S. and Chen, H. (2020). Synthesis and characterization of magnesium oxide nanoparticle-containing biochar composites for efficient phosphorus removal from aqueous solution. Chemosphere, 247: 125847.

14.      Dang, T. D., Cheney, M. A., Qian, S., Joo, S. W. and Min, B. K. (2013). A novel rapid one-step synthesis of manganese oxide nanoparticles at room temperature using poly(dimethylsiloxane). Industrial and Engineering Chemistry Research, 52(7): 2750-2753.

15.      Dawadi, S., Gupta, A., Khatri, M., Budhathoki, B., Lamichhane, G. and Parajuli, N. (2020). Manganese dioxide nanoparticles: synthesis, application and challenges. Bulletin of Materials Science, 43: 227.

16.      Mahamuni, P. P., Patil, P. M., Dhanavade, M. J., Badiger, M. V., Shadija, P. G., Lokhande, A. C. and Bohara, R. A. (2019). Synthesis and characterization of zinc oxide nanoparticles by using polyol chemistry for their antimicrobial and antibiofilm activity. Biochemistry and Biophysics Reports, 17(9): 71-80.

17.      Elbushra, H., Ahmed, M., Wardi, H. and Eassa, N. (2018). Synthesis and characterization of TiO2 using sol-gel method at different annealing temperatures. MRS Advances, 3(42–43): 2527-2535.

18.      Singh, P. K., Kumar, P., Hussain, M., Das, A. K. and Nayak, G. C. (2016). Synthesis and characterization of CuO nanoparticles using strong base electrolyte through electrochemical discharge process. Bulletin of Materials Science, 39(2): 469-478.

19.      Fathima, J. B., Pugazhendhi, A. and Venis, R. (2017). Synthesis and characterization of ZrO2 nanoparticles-antimicrobial activity and their prospective role in dental care. Microbial Pathogenesis, 110: 245-251.

20.      Dubey, R. S., Rajesh, Y. B. R. D. and More, M. A. (2015). Synthesis and Characterization of SiO2 nanoparticles via sol-gel method for industrial applications. Materials Today: Proceedings, 2(4–5): 3575-3579.

21.      Sakthiraj, K. and Karthikeyan, B. (2020). Synthesis and characterization of cerium oxide nanoparticles using different solvents for electrochemical applications. Applied Physics A: Materials Science and Processing, 126(1): 1-10.

22.      Wang, C., Xu, H., Wang, C., Liu, T., Yang, S., Nie, Y., Guo, X., Ma, X. and Jiang, X. (2021). Preparation of VO2 (M) nanoparticles with exemplary optical performance from VO2 (B) nanobelts by ball milling. Journal of Alloys and Compounds, 877: 159888.

23.      Malevu, T. D. (2021).  Ball Milling synthesis and characterization of highly crystalline TiO2-ZnO hybrids for photovoltaic applications . Physica B: Condensed Matter, 621(7): 413291.

24.      Rashid, T. M., Nayef, U. M., Jabir, M. S., and Mutlak, F. A. H. (2021). Synthesis and characterization of Au:ZnO (core:shell) nanoparticles via laser ablation. Optik, 244(7): 167569.

25.      Altuwirqi, R. M., Albakri, A. S., Al-Jawhari, H. and Ganash, E. A. (2020). Green synthesis of copper oxide nanoparticles by pulsed laser ablation in spinach leaves extract. Optik, 219(4): 165280.

26.      Menazea, A. A. and Awwad, N. S. (2020). Pulsed Nd:YAG laser deposition-assisted synthesis of silver/copper oxide nanocomposite thin film for 4-nitrophenol reduction. Radiation Physics and Chemistry, 177(5): 109112.

27.      Shreema, K., Mathammal, R., Kalaiselvi, V., Vijayakumar, S., Selvakumar, K. and Senthil, K. (2021). Green synthesis of silver doped zinc oxide nanoparticles using fresh leaf extract Morinda citrifoliaand its antioxidant potential. Materials Today: Proceedings, 47: 2126-2131.

28.      Ramzan, M., Obodo, R. M., Mukhtar, S., Ilyas, S. Z., Aziz, F. and Thovhogi, N. (2019). Green synthesis of copper oxide nanoparticles using Cedrus deodara aqueous extract for antibacterial activity. Materials Today: Proceedings, 36: 576-581.

29.      Khan, M. F., Ansari, A. H., Hameedullah, M., Ahmad, E., Husain, F. M., Zia, Q., Baig, U., Zaheer, M. R., Alam, M. M., Khan, A. M., Alothman, Z. A., Ahmad, I., Ashraf, G. M. and Aliev, G. (2016). Sol-gel synthesis of thorn-like ZnO nanoparticles endorsing mechanical stirring effect and their antimicrobial activities: Potential role as nano-Antibiotics. Scientific Reports, 6(5): 1-12.

30.      Atta, A. M., Al-Lohedan, H. A., Ezzat, A. O., Tawfik, A. M. and Hashem, A. I. (2017). Synthesis of zinc oxide nanocomposites using poly (ionic liquids) based on quaternary ammonium acrylamidomethyl propane sulfonate for water treatment. Journal of Molecular Liquids, 236: 38-47.

31.      Wang, Y., Maksimuk, S., Shen, R. and Yang, H. (2007). Synthesis of iron oxide nanoparticles using a freshly-made or recycled imidazolium-based ionic liquid. Green Chemistry, 10: 1051-1056.

32.      Zheng, W., Liu, X., Yan, Z. and Zhu, L. (2009). Ionic liquid-assisted synthesis of large-scale TiO2 nanoparticles with controllable phase by hydrolysis of TiCl4. ACS Nano, 3(1): 115-122.

33.      Bharate, B. G., Hande, P. E., Samui, A. B. and Kulkarni, P. S. (2018). Ionic liquid (IL) capped MnO2 nanoparticles as an electrode material and IL as electrolyte for supercapacitor application. Renewable Energy, 126: 437-444.

34.      Sivanantham, A., Firoz Babu, K., Anbu Kulandainathan, M., Babu, S. G., Suresh Bapu, R. H. and Sreedhar, G. (2014). Capping and catalytic behaviour of lithiated sarcosine TFSI on the formation of hexagonal ZnO micro rods using hydrothermal method. Materials Letters, 128: 195-198.

35.      Qi, K., Yang, J., Fu, J., Wang, G., Zhu, L., Liu, G. and Zheng, W. (2013). Morphology-controllable ZnO rings: Ionic liquid-assisted hydrothermal synthesis, growth mechanism and photoluminescence properties. CrystEngComm, 15(34): 6729-6735.

36.      Kavya, S. H., Kumar, V. V., & Kumar, C. R. (2018). Synthesis and characterization of stable ZnO nanoparticles using imidazolium-based ionic liquids and their applications in esterification reaction. Indian Journal of Chemistry, 57: 1112-1120.

37.      Ahmadi Tehrani, A., Omranpoor, M. M., Vatanara, A., Seyedabadi, M. and Ramezani, V. (2019). Formation of nanosuspensions in bottom-up approach: theories and optimization. DARU Journal of Pharmaceutical Sciences, 27(1): 451-473.

38.      Jalab, J., Abdelwahed, W., Kitaz, A. and Al-kayali, R. (2021). Green synthesis of silver nanoparticles using aqueous extract of Acacia cyanophylla and its antibacterial activity. Heliyon, 7(9): e08033.

39.      Khan, M. A. R., Shamim, M., Mamun, A. and Hosna, M. (2021). Review on platinum nanoparticles : Synthesis , characterization , and applications. Microchemical Journal, 171(9): 106840.

40.      Devatha, C. P. and Thalla, A. K. (2018). Chapter 7 - green synthesis of nanomaterials (pp. 169-184). Elsevier.

41.      Alam, M. M., Asiri, A. M. and Rahman, M. M. (2021). Wet-chemically synthesis of SnO2-doped Ag2O nanostructured materials for sensitive detection of choline by an alternative electrochemical approach. Microchemical Journal, 165(2): 106092.

42.      Nikam, A. V., Prasad, B. L. V. and Kulkarni, A. A. (2018). Wet chemical synthesis of metal oxide nanoparticles: A review. CrystEngComm, 20(35): 5091-5107.

43.      Zhou, Y. (2006). Recent advances in ionic liquids for synthesis of inorganic nanomaterials. Current Nanoscience, 1(1): 35-42.

44.      Irfan, M., Ahmad, T., Moniruzzaman, M., Bhattacharjee, S. and Abdullah, B. (2020). Size and stability modulation of ionic liquid functionalized gold nanoparticles synthesized using Elaeis guineensis (oil palm) kernel extract. Arabian Journal of Chemistry, 13(1): 75-85.

45.      Nishad, K K., Manthrammel, M. A., Shkir, M., AlFaify, S. and Pandey, R. K. (2022). Effect of organic capping on defect induced ferromagnetism in ZnO nanoparticles. Physica B: Condensed Matter, 624: 413379.

46.      Rostami-Tapeh-Esmaeil, E., Golshan, M., Salami-Kalajahi, M. and Roghani-Mamaqani, H. (2021). Synthesis of copper and copper oxide nanoparticles with different morphologies using aniline as reducing agent. Solid State Communications, 334-335(5): 114364.

47.      Yong, N. L., Ahmad, A., & Mohammad, A. W. (2012). Synthesis and characterization of silver nanoparticles by a sonochemical method. Xiyou Jinshu Cailiao Yu Gongcheng/Rare Metal Materials and Engineering, 41(10): 1700-1705.

48.      Saraji, M. and Alijani, S. (2021). A molecularly imprinted polymer on chromium (ΙΙΙ) oxide nanoparticles for spectrofluorometric detection of bisphenol A. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 255: 119711.

49.      Sedlák, J., Kuřitka, I., Machovský, M., Šuly, P., Bažant, P. and Sedláček, T. (2015). Zinc oxide nanoparticles with surface modified by degradation of capping polymers in situ during microwave synthesis. Advanced Powder Technology, 26(4): 1064-1071.

50.      Bomila, R., Venkatesan, A. and Srinivasan, S. (2018). Structural, luminescence and photocatalytic properties of pure and octylamine capped ZnO nanoparticles. Optik, 158: 565-573.

51.      Hajipour, A. R. and Rafiee, F. (2015). Recent progress in ionic liquids and their applications in organic synthesis. Organic Preparations and Procedures International, 47(4): 1-60.

52.      Fang, X. and Song, H. (2019). Synthesis of cerium oxide nanoparticles loaded on chitosan for enhanced auto-catalytic regenerative ability and biocompatibility for the spinal cord injury repair. Journal of Photochemistry and Photobiology B: Biology, 191: 83-87.

53.      Sundrarajan, M., Jegatheeswaran, S., Selvam, S., Sanjeevi, N. and Balaji, M. (2015). The ionic liquid assisted green synthesis of hydroxyapatite nanoplates by Moringa oleifera flower extract: A biomimetic approach. Materials and Design, 88: 1183-1190.

54.      Łuczak, J., Paszkiewicz, M., Krukowska, A., Malankowska, A. and Zaleska-Medynska, A. (2016). Ionic liquids for nano- and microstructures preparation. Part 2: Application in synthesis. Advances in Colloid and Interface Science, 227: 1-52.

55.      Migowski, P., Machado, G., Texeira, S. R., Alves, M. C. M., Morais, J., Traverse, A. and Dupont, J. (2007). Synthesis and characterization of nickel nanoparticles dispersed in imidazolium ionic liquids. Physical Chemistry Chemical Physics, 9(34): 4814-4821.

56.      Vollmer, C. and Janiak, C. (2011). Naked metal nanoparticles from metal carbonyls in ionic liquids: Easy synthesis and stabilization. Coordination Chemistry Reviews, 255(17-18): 2039-2057.

57.      Scheeren, C. W., Machado, G., Teixeira, S. R., Morais, J., Domingos, J. B. and Dupont, J. (2006). Synthesis and characterization of Pt(0) nanoparticles in imidazolium ionic liquids. Journal of Physical Chemistry B, 110(26): 13011-13020.

58.      Zhao, M., Li, N., Zheng, L., Li, G. and Yu, L. (2008). Synthesis of well-dispersed NiO nanoparticles with a room temperature ionic liquid. Journal of Dispersion Science and Technology, 29(8): 1103-1105.


59.      Sakai, K., Okada, K., Uka, A., Misono, T., Endo, T., Sasaki, S., Abe, M. and Sakai, H. (2015). Effects of water on solvation layers of imidazolium-type room temperature ionic liquids on silica and mica. Langmuir, 31(22), 6085–6091.

60.      Ninham, B. W. (1999). On progress in forces since the DLVO theory. Advances in Colloid and Interface Science, 83(1): 1-17.

61.      Obliosca, J. M., Arellano, I. H. J., Huang, M. H. and Arco, S. D. (2010). Double layer micellar stabilization of gold nanocrystals by greener ionic liquid 1-butyl-3-methylimidazolium lauryl sulfate. Materials Letters, 64(9): 1109-1112.

62.      He, Z., & Alexandridis, P. (2015). Nanoparticles in ionic liquids: Interactions and organization. Physical Chemistry Chemical Physics, 17(28): 18238-18261.

63.      Barik, B., Kumar, A., Nayak, P. S., Achary, L. S. K., Rout, L. and Dash, P. (2020). Ionic liquid assisted mesoporous silica-graphene oxide nanocomposite synthesis and its application for removal of heavy metal ions from water. Materials Chemistry and Physics, 239(8): 122028.

64.      Das, M., Aswathy, T. R., Pal, S. and Naskar, K. (2021). Effect of ionic liquid modified graphene oxide on mechanical and self-healing application of an ionic elastomer. European Polymer Journal, 158(7): 110691.

65.      Kargar, S., Elhamifar, D. and Zarnegaryan, A. (2021). Ionic liquid modified graphene oxide supported Mo-complex: A novel, efficient and highly stable catalyst. Surfaces and Interfaces, 23(1): 100946.

66.      Husanu, E., Chiappe, C., Bernardini, A., Cappello, V. and Gemmi, M. (2018). Synthesis of colloidal Ag nanoparticles with citrate based ionic liquids as reducing and capping agents. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 538(11): 506-512.

67.      Sadeghi, S. and Olieaei, S. (2019). Capped cadmium sulfide quantum dots with a new ionic liquid as a fluorescent probe for sensitive detection of florfenicol in meat samples. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 223: 117349.

68.      Krishnan, B. and Mahalingam, S. (2017). Improved surface morphology of silver/copper oxide/bentonite nanocomposite using aliphatic ammonium based ionic liquid for enhanced biological activities. Journal of Molecular Liquids, 241: 1044-1058.

69.      Ahmad, T., Bustam, M. A., Irfan, M., Moniruzzaman, M., Samsudin, M. F. R., Asghar, H. M. A., Muhammad, N., Iqbal, J. and Bhattacharjee, S. (2019). Effect of gold and iron nanoparticles on photocatalytic behaviour of titanium dioxide towards 1-butyl-3-methylimidazolium chloride ionic liquid. Journal of Molecular Liquids, 291: 2–6.

70.      Verma, C., Ebenso, E. E. and Quraishi, M. A. (2019). Transition metal nanoparticles in ionic liquids: Synthesis and stabilization. Journal of Molecular Liquids, 276: 826-849.

71.      Abbott, A. P., Frisch, G., Hartley, J. and Ryder, K. S. (2011). Processing of metals and metal oxides using ionic liquids. Green Chemistry, 13(3): 471-481.

72.      Prechtl, M. H. G. and Campbell, P. S. (2013). Metal oxide and bimetallic nanoparticles in ionic liquids: Synthesis and application in multiphase catalysis. Nanotechnology Reviews, 2(5): 577-595.

73.      Seitkalieva, M. M., Samoylenko, D. E., Lotsman, K. A., Rodygin, K. S. and Ananikov, V. P. (2021). Metal nanoparticles in ionic liquids: Synthesis and catalytic applications. Coordination Chemistry Reviews, 445: 213982.

74.      Gulati, S., Sachdeva, M. and Bhasin, K. K. (2018). Capping agents in nanoparticle synthesis: Surfactant and solvent system. AIP Conference Proceedings, 2018: 1953.

75.      Tapak, N. S., Nawawi, M. A., Tjih, E. T. T., Mohd, Y., Ab Rashid, A. H., Abdullah, J., ... and Ahmad, N. M. (2022). The synthesis of zirconium oxide (ZrO2) nanoparticles (NPs) in 1-butyl-3-methylimidazolium trifluoroacetate (BMIM CF3COO) for an amperometry phenol biosensor. Materials Today Communications, 33: 104142.

76.      Oskam, G. (2006). Metal oxide nanoparticles: Synthesis, characterization and application. Journal of Sol-Gel Science and Technology, 37(3): 161-164.

77.      Hu, H., Huang, X., Deng, C., Chen, X. and Qian, Y. (2007). Hydrothermal synthesis of ZnO nanowires and nanobelts on a large scale. Materials Chemistry and Physics, 106(1): 58-62.

78.      Zhang, S., Zhang, Y., Wang, Y., Liu, S. and Deng, Y. (2012). Sonochemical formation of iron oxide nanoparticles in ionic liquids for magnetic liquid marble. Physical Chemical Chemistry Physics, 15: 5132-5138.

79.      Janiak, C. (2013). Ionic liquids for the synthesis and stabilization of metal nanoparticles. Zeitschrift Fur Naturforschung - Section B Journal of Chemical Sciences, 68(10): 1059-1089.

80.      Alammar, T. and Mudring, A. V. (2011). Sonochemical synthesis of 0D, 1D, and 2D zinc oxide nanostructures in ionic liquids and their photocatalytic activity. ChemSusChem, 4(12): 1796-1804.

81.      Wang, L., Chang, L., Zhao, B., Yuan, Z., Shao, G. and Zheng, W. (2008). Systematic investigation on morphologies, forming mechanism, photocatalytic and photoluminescent properties of ZnO nanostructures constructed in ionic liquids. Inorganic Chemistry, 47(5): 1443-1452.

82.      Zhu, H., Huang, J. F., Pan, Z. and Dai, S. (2006). Ionothermal synthesis of hierarchical ZnO nanostructures from ionic-liquid precursors. Chemistry of Materials, 18(18): 4473-4477.

83.      Ma, B. Z., Yu, J. and Dai, S. (2010). Preparation of inorganic materials using ionic liquids. Advance Materials, 130012: 261-285.

84.      Lian, J., Duan, X., Ma, J., Peng, P., Kim, T., & Zheng, W. (2009). Hematite (α-Fe2O3) with various morphologies: ionic liquid-assisted synthesis, formation mechanism, and properties. ACS Nano, 3(11): 3749-3761.

85.      Zhang, Y., Cheng, X., Zhang, X., Major, Z., Xu, Y., Gao, S., Zhao, H. and Huo, L. (2019). Ionic liquid-assisted synthesis of tungsten oxide nanoparticles with enhanced NO2 sensing properties at near room temperature. Applied Surface Science, 2: 144533.

86.      Sundrarajan, M., Jegatheeswaran, S., Selvam, S., Gowri, R., Balaji, M. and Bharathi, K. (2017). Green approach : Ionic liquid assisted synthesis of nanocrystalline ZnO in phyto medium and their antibacterial investigation. Materials Letters, 201: 31-34.

87.      Fang, X. and Song, H. (2019). Synthesis of cerium oxide nanoparticles loaded on chitosan for enhanced auto-catalytic regenerative ability and biocompatibility for the spinal cord injury repair. Journal of Photochemistry and Photobiology B: Biology, 191: 83-87.

88.      Sundrarajan, M., Gandhi, R. G. R., Suresh, J., Selvam, S. and Gowri, S. (2012). Sol-gel synthesis of MgO nanoparticles using ionic liquid-[BMIM]BF4 as capping agent. Nanoscience and Nanotechnology Letters, 4(1): 100-104.

89.      Yoo, K., Choi, H. and Dionysiou, D. D. (2004). Ionic liquid assisted preparation of nanostructured TiO2 particles. Chemical Communications, 17: 2000-2001.

90.      García Rojas, L. M., Huerta-Aguilar, C. A., Tecuapa-Flores, E. D., Huerta-José, D. S., Thangarasu, P., Sidhu, J. S., Singh, N. and de la Luz Corea Téllez, M. (2020). Why ionic liquids coated ZnO nanocomposites emerging as environmental remediates: Enhanced photo-oxidation of 4-nitroaniline and encouraged antibacterial behavior. Journal of Molecular Liquids, 319: 114107.

91.      Sundrarajan, M. and Muthulakshmi, V. (2021). Green synthesis of ionic liquid mediated neodymium oxide nanoparticles by Andrographis paniculata leaves extract for effective bio-medical applications. Journal of Environmental Chemical Engineering, 9(1): 104716.

92.      Sundrarajan, M., Bama, K., Selvanathan, G. and Prabhu, M. R. (2018). Ionic liquid-mediated: Enhanced surface morphology of silver/manganese oxide/bentonite nanocomposite for improved biological activities. Journal of Molecular Liquids, 249: 1020-1032.

93.      Pandiyan, N., Murugesan, B., Sonamuthu, J., Samayanan, S. and Mahalingam, S. (2019). [BMIM]PF6 ionic liquid mediated green synthesis of ceramic SrO/CeO2 nanostructure using Pedalium murex leaf extract and their antioxidant and antibacterial activities. Ceramics International, 45(9): 12138-12148.

94.      Pandiyan, N., Murugesan, B., Arumugam, M., Chinnaalagu, D., Samayanan, S. and Mahalingam, S. (2021). Ionic liquid mediated green synthesis of Ag-Au/Y2O3 nanoparticles using leaves extracts of Justicia adhatoda: Structural characterization and its biological applications. Advanced Powder Technology, 32(7): 2213-2225.

95.      Muthulakshmi, V. and Sundrarajan, M. (2020). Green synthesis of ionic liquid assisted ytterbium oxide nanoparticles by Couroupita guianensis abul leaves extract for biological applications. Journal of Environmental Chemical Engineering, 8(4): 103992.

96.      Shen, J., Shi, M., Yan, B., Ma, H., Li, N. and Ye, M. (2011). One-pot hydrothermal synthesis of Ag-reduced graphene oxide composite with ionic liquid. Journal of Materials Chemistry, 21(21): 7795-7801.

97.      Lv, J. J., Feng, J. X., Li, S. S., Wang, Y. Y., Wang, A. J., Zhang, Q. L., Chen, J. R. and Feng, J. J. (2014). Ionic liquid crystal-assisted synthesis of PtAg nanoflowers on reduced graphene oxide and their enhanced electrocatalytic activity toward oxygen reduction reaction. Electrochimica Acta, 133: 407-413.

98.      Zhang, J., Wang, J., Zhou, S., Duan, K., Feng, B., Weng, J., Tang, H. and Wu, P. (2010). Ionic liquid-controlled synthesis of ZnO microspheres. Journal of Materials Chemistry, 20(43): 9798-9804.

99.      Kim, T., Lian, J., Ma, J., Duan, X. and Zheng, W. (2010). Morphology controllable synthesis of γ-alumina nanostructures via an ionic liquid-assisted hydrothermal route. Crystal Growth and Design, 10(7): 292-2933.

100.   Muthulakshmi, V., Balaji, M. and Sundrarajan, M. (2020). Biomedical applications of ionic liquid mediated samarium oxide nanoparticles by Andrographis paniculata leaves extract. Materials Chemistry and Physics, 242(11): 122483.

101.   Liu, H., Wang, M., Wang, Y., Liang, Y., Cao, W. and Su, Y. (2011). Ionic liquid-templated synthesis of mesoporous CeO2–TiO2 nanoparticles and their enhanced photocatalytic activities under UV or visible light. Journal of Photochemistry & Photobiology, A: Chemistry, 223(2–3): 157-164.

102.   Liu, H., Liang, Y., Hu, H. and Wang, M. (2009). Hydrothermal synthesis of mesostructured nanocrystalline TiO 2 in an ionic liquid – water mixture and its photocatalytic performance. Solid State Sciences, 11(9): 1655-1660.

103.   Gao, R., Gao, S., Wang, P., Xu, Y., Zhang, X., Cheng, X., Zhou, X., Major, Z., Zhu, H. and Huo, L. (2020). Ionic liquid assisted synthesis of snowflake ZnO for detection of NOx and sensing mechanism. Sensors and Actuators, B: Chemical, 303: 127085.

104.   Goharshadi, E. K., Ding, Y., Namayandeh, M. and Nancarrow, P. (2009). Ultrasound-assisted green synthesis of nanocrystalline ZnO in the ionic liquid [hmim][NTf2]. Ultrasonics Sonochemistry, 16: 120-123.

105.   Inbasekar, C. and Fathima, N. N. (2020). Collagen stabilization using ionic liquid functionalised cerium oxide nanoparticle. International Journal of Biological Macromolecules, 147: 24-28.

106.   Ellateif, T. M. A. and Mitra, S. (2017). Sol gel synthesis and characterization of zirconia containing hydrophobic silica nanoparticles. Journal of Advances in Nanomaterials, 2(4): 185-196.

107.   Lu, Y., Dong, W., Ding, J., Wang, W. and Wang, A. (2019). Hydroxyapatite nanomaterials: synthesis, properties, and functional applications. In Nanomaterials from Clay Minerals. Elsevier Inc.

108.   Lim, H. S., Ahmad, A. and Hamzah, H. (2013). Synthesis of zirconium oxide nanoparticle by sol-gel technique. AIP Conference Proceedings, 1571: 812–816.

109.   Behbahani, A., Rowshanzamir, S. and Esmaeilifar, A. (2012). Hydrothermal synthesis of zirconia nanoparticles from commercial zirconia. Procedia Engineering, 42: 908-917.

110.   Muthulakshmi, V., Kumar, P. and Sundrarajan, M. (2021). Green synthesis of Ionic liquid mediated Ytterbium oxide nanoparticles by Andrographis paniculata leaves extract for structural, morphological and biomedical applications. Journal of Environmental Chemical Engineering, 9(4): 105270.

111.   Jolivet, J. P., Cassaignon, S., Chanéac, C., Chiche, D., Durupthy, O. and Portehault, D. (2010). Design of metal oxide nanoparticles: Control of size, shape, crystalline structure and functionalization by aqueous chemistry. Comptes Rendus Chimie, 13(1–2): 40-51.

112.   Kotresh, M. G., Patil, M. K. and Inamdar, S. R. (2021). Reaction temperature based synthesis of ZnO nanoparticles using co-precipitation method: Detailed structural and optical characterization. Optik, 243(6): 167506.

113.   Wahab, R., Kim, Y. S. and Shin, H. S. (2009). Synthesis, characterization and effect of pH variation on zinc oxide nanostructures. Materials Transactions, 50(8): 2092-2097.

114.   Nair, P. A. K., Vasconcelos, W. L., Paine, K. and Calabria-Holley, J. (2021). A review on applications of sol-gel science in cement. Construction and Building Materials, 291: 123065.

115.   Danks, A. E., Hall, S. R. and Schnepp, Z. (2016). The evolution of ‘sol–gel’ chemistry as a technique for materials synthesis. Materials Horizon, 2: 91-112.

116.   Shandilya, M., Rai, R., Singh, J., Shandilya, M., Rai, R. and Singh, J. (2016). Review: hydrothermal technology for smart materials. Advances in Applied Chemistry, 115: 354-376.

117.   Sahoo, S., Pazhamalai, P., Mariappan, V. K., Veerasubramani, G. K., Nam-Jin Kim, Kim, S.-J. and A. (2020). Hydrothermally synthesized chalcopyrite platelets as electrode material for symmetric supercapacitors. Inorganic Chemistry Frontiers, 2020: 1-30.

118.   Yadav, S. and Sharma, A. (2021). Importance and challenges of hydrothermal technique for synthesis of transition metal oxides and composites as supercapacitor electrode materials. Journal of Energy Storage, 44: 103295.

119.   Ng, H. K. M., Lim, G. K. and Leo, C. P. (2021). Comparison between hydrothermal and microwave-assisted synthesis of carbon dots from biowaste and chemical for heavy metal detection : A review. Microchemical Journal, 165: 106116.

120.   Medeiros, T. V. de, Manioudakis, J., Noun, F., Macairan, J.-R., Victoria, F. and Naccache, R. (2019). Microwave-assisted synthesis of carbon dots and their applications. Materials Chemistry C, 2019: 1-20.

121.   Jusuf, B. N., Sambudi, N. S., Isnaeni, I. and Samsuri, S. (2018). Microwave-assisted synthesis of carbon dots from eggshell membrane ashes by using sodium hydroxide and their usage for degradation of methylene blue. Journal of Environmental Chemical Engineering, 6(6): 7426-7433.

122.   Wang, X., Ahmad, M. and Sun, H. (2017). Three-dimensional ZnO hierarchical nanostructures: solution phase synthesis and applications. Materials, 10(11): 1-23.

123.   Kołodziejczak-radzimska, A., Markiewicz, E. and Jesionowski, T. (2012). Structural characterisation of ZnO particles obtained by the emulsion precipitation method. Journal of Nanomaterials, 2012: 656353.

124.   Kurian, M. and Nair, D. S. (2013). Effect of preparation conditions on nickel zinc ferrite nanoparticles : a comparison between sol – gel auto combustion and co-precipitation methods. Journal of Saudi Chemical Society, 20(1): 557-522.

125.   Sepulveda-guzman, S., Reeja-jayan, B., Rosa, E. De and Torres-castro, A. (2009). Synthesis of assembled ZnO structures by precipitation method in aqueous media. Materials Chemistry and Physics, 115: 172-178.

126.   Bhosale, M. A., Chenna, D. R. and Bhanage, B. M. (2017). Ultrasound assisted synthesis of gold nanoparticles as an efficient catalyst for reduction of various nitro compounds. ChemistrySelect, 2(3): 1225-1231.

127.   Deshmukh, A. R., Gupta, A. and Kim, B. S. (2019). Ultrasound assisted green synthesis of silver and iron oxide nanoparticles using fenugreek seed extract and their enhanced antibacterial and antioxidant activities. Biomed Research International, 2019: 1714358.

128.   Cravotto, G. and Cintas, P. (2006). Power ultrasound in organic synthesis : moving cavitational chemistry from academia to innovative and large-scale applications. Chemical Society Review, 2:180-196.

129.   Naeimi, H. and Farahnak, M. (2018). A facile one‑pot ultrasound‑assisted green synthesis of tetrahydrobenzo[b]pyrans catalyzed by gold nanoparticles supported on thiol ‑ functionalized reduced graphene oxide. Research on Chemical Intermediates, 44(5): 3227-3247.

130.   Hussain, M. (2014). Synthesis, characterization and applications of metal oxide. Dissertation Linköping University.

131.   Khaldakar, M. and Butala, D. (2017). The synthesis and characterization of metal oxide nanoparticles and its application for photo catalysis. International Journal of Scientific and Research Publications, 7(3): 499.

132.   Tushar G, R. and Babita R, A. (2019). Transmission electron microscopy- an overview. International Research Journal for Inventions in Pharmaceutical Sciences, 1(2): 1-7.

133.   Inkson, B. J. (2016). Scanning electron microscopy (SEM) and Transmission electron microscopy (TEM) for materials characterization. In Materials Characterization Using Nondestructive Evaluation (NDE) Methods. Elsevier Ltd.

134.   Mahjoub, A. R., Movahedi, M., Kowsari, E. and Yavari, I. (2014). Narcis-like zinc oxide: Chiral ionic liquid assisted synthesis, photoluminescence and photocatalytic activity. Materials Science in Semiconductor Processing, 22(1): 1-6.

135.   Kowsari, E. and Karimzadeh, A. H. (2012). Fabrication of fern-like, fish skeleton-like, and butterfly-like BaO nanostructures as nanofillers for radar-absorbing nanocomposites. Materials Letters, 74: 33-36.

136.   Mourdikoudis, S., Pallares, R. M. and Thanh, N. T. K. (2018). Characterization techniques for nanoparticles: Comparison and complementarity upon studying nanoparticle properties. Nanoscale, 10(27): 12871-12934.

137.   Tzani, A., Koutsoukos, S., Koukouzelis, D. and Detsi, A. (2017). Synthesis and characterization of silver nanoparticles using biodegradable protic ionic liquids. Journal of Molecular Liquids, 243: 212-218.

138.   Nithya, P., Balaji, M., Jegatheeswaran, S., Selvam, S. and Sundrarajan, M. (2017). Facile biological synthetic strategy to morphologically aligned CeO2/ZrO2 core nanoparticles using Justicia adhatoda extract and ionic liquid: Enhancement of its bio-medical properties. Journal of Photochemistry & Photobiology, B: Biology, 2017:1-34.

139.   Padovini, D. S. S., Pontes, D. S. L., Dalmaschio, C. J., Pontes, F. M. and Longo, E. (2014). Facile synthesis and characterization of ZrO2 nanoparticles prepared by the AOP/hydrothermal route. RSC Advances, 4(73): 38484-38490.

140.   Lu, X., Tao, L., Song, D., Li, Y. and Gao, F. (2018). Bimetallic Pd @ Au nanorods based ultrasensitive acetylcholinesterase biosensor for determination of organophosphate pesticides. Sensors & Actuators: B. Chemical, 255: 2575-2581.

141.   Shyamala, S., Kalaiarasi, S., Karpagavinayagam, P., Vedhi, C., Muthuchudarkodi, R. R., Kulandaivel, S., and Lakshmi, A. (2021). Synthesis of metal oxide nanoparticles doped poly 3 anisidine nanocomposites with enhanced electrocatalytic activity for methanol oxidation. Materials Today: Proceedings, 2021: 3-10.

142.   Rakhimol, K. R., Thomas, S., Kalarikkal, N. and Jayachandran, K. (2020). Casein mediated synthesis of stabilized metal/metal-oxide nanoparticles with varied surface morphology through pH alteration. Materials Chemistry and Physics, 246: 122803.

143.   Itoh, H., Naka, K. and Chujo, Y. (2004). Synthesis of gold nanoparticles modified with ionic liquid based on the imidazolium cation. Journal of American Chemical Society, 26(1): 3026-3027.

144.   Kowsari, E. and Bazri, B. (2014). Synthesis of rose-like ZnO hierarchical nanostructures in the presence of ionic liquid/Mg2+ for air purification and their shape-dependent photodegradation of SO2, NOx, and CO. Applied Catalysis A: General, 475: 325-334.

145.   Husanu, E., Cappello, V., Pomelli, C. S., David, J., Gemmi, M. and Chiappe, C. (2017). Chiral ionic liquid assisted synthesis of some metal oxides. RSC Advances, 7(2): 1154-1160.

146.   Pulskamp, K., Diabaté, S. and Krug, H. F. (2007). Carbon nanotubes show no sign of acute toxicity but induce intracellular reactive oxygen species in dependence on contaminants. Toxicology Letters, 168(1): 58-74.

147.   Liu, H., Wang, M., Wang, Y., Liang, Y., Cao, W. and Su, Y. (2011). Ionic liquid-templated synthesis of mesoporous CeO2-TiO 2 nanoparticles and their enhanced photocatalytic activities under UV or visible light. Journal of Photochemistry and Photobiology A: Chemistry, 223(2-3): 157-164.

148.   Ismail, A. A., van de Voort, F. R. and Sedman, J. (1997). Chapter 4 Fourier transform infrared spectroscopy: Principles and applications. Techniques and Instrumentation in Analytical Chemistry, 18(C): 93-139.

149.   Bodade, A. B., Taiwade, M. A. and Chaudhari, G. N. (2017). Bioelectrode based chitosan-nano copper oxide for application to. Journal of Applied Pharmaceutical Research, 5: 30-39.

150.   Alomairy, S., Al-Buriahi, M. S., Abdel Wahab, E. A., Sriwunkum, C. and Shaaban, K. S. (2021). Synthesis, FTIR, and neutron/charged particle transmission properties of Pb3O4–SiO2–ZnO–WO3 glass system. Ceramics International, 47(12): 17322-17330.

151.   Kumar, A. (2020). Sol gel synthesis of zinc oxide nanoparticles and their application as nano-composite electrode material for supercapacitor. Journal of Molecular Structure, 1220: 128654.

152.   Nithya, P., Balaji, M., Mayakrishnan, A. and Jegatheeswaran, S. (2020). Biogenic approach for the synthesis of Ag-Au doped RuO2 nanoparticles in BMIM-PF6 ionic liquid medium: Structural characterization and its biocidal activity against pathogenic bacteria and HeLa cancerous cells. Journal of Molecular Liquids, 312: 113245.

153.   Goharshadi, E. K., Samiee, S. and Nancarrow, P. (2011). Fabrication of cerium oxide nanoparticles: Characterization and optical properties. Journal of Colloid and Interface Science, 356(2): 473-480.

154.   Rajesh, G. and Nagar, A. (2018). Efficacy of calcination on the optical, structural and photocatalytic properties of Zirconium Oxide via facile precipitation method. Journal of Emerging Technologies and Innovative Research, 5(10): 575-585.

155.   Devanand Venkatasubbu, G., Ramasamy, S., Ramakrishnan, V. and Kumar, J. (2013). Folate targeted PEGylated titanium dioxide nanoparticles as a nanocarrier for targeted paclitaxel drug delivery. Advanced Powder Technology, 24(6): 947-954.

156.   Ramzan, M., Obodo, R. M., Mukhtar, S., Ilyas, S. Z., Aziz, F. and Thovhogi, N. (2019). Green synthesis of copper oxide nanoparticles using Cedrus deodara aqueous extract for antibacterial activity. Materials Today: Proceedings, 36: 576-581.

157.   Garg, S., Gautam, S., Pal, J., Kandasami, A. and Goyal, N. (2021). Materials Characterization Characterizing the defects and ferromagnetism in metal oxides : The case of magnesium oxide. Materials Characterization, 179(5): 111366.

158.   Nair, H., Liszka, M. J., Gatt, J. E. and Baertsch, C. D. (2008). Effects of metal oxide domain size, dispersion, and interaction in mixed WOx / MoOx catalysts supported on Al2O3 for the partial oxidation of ethanol to acetaldehyde. Journal Physical Chemistry, 112: 1612-1620.

159.   Bharate, B. G., Hande, P. E., Samui, A. B. and Kulkarni, P. S. (2018). Ionic liquid (IL) capped MnO2 nanoparticles as an electrode material and IL as electrolyte for supercapacitor application. Renewable Energy, 126: 437-444.

160.   Bunaciu, A. A., Udriştioiu, E. gabriela, and Aboul-Enein, H. Y. (2015). X-ray diffraction: Instrumentation and applications. Critical Reviews in Analytical Chemistry, 45(4): 289-299.

161.   Connolly, J. R. (2005). Introduction to X-ray powder diffraction. Spring, 2005: 1-9.

162.   Zangaro, G. A. C., Carvalho, A. C. S., Ekawa, B., do Nascimento, A. L. C. S., Nunes, W. D. G., Fernandes, R. P., Parkes, G. M. B., Ashton, G. P., Ionashiro, M. and Caires, F. J. (2019). Study of the thermal behavior in oxidative and pyrolysis conditions of some transition metals complexes with Lornoxicam as ligand using the techniques: TG-DSC, DSC, HSM and EGA (TG-FTIR and HSM-MS). Thermochimica Acta, 681(8): 178399.

163.   Amaya, S. L., Alonso-Núñez, G., Díaz De León, J. N., Fuentes, S. and Echavarría, A. (2021). Synthesis and characterization of metal oxides complexes with potential application in HDS reactions. Materials Letters, 291: 129562.

164.   Kowsari, E. and Abdpour, S. (2016). Investigation performance of rod-like ZnO/CdO composites, synthesized in ionic liquid medium as photocatalytic for degradation of air pollutants (SO2 and NOX). Optik, 127(23): 11567-11576.

165.   Singh, N. and Haque, F. Z. (2016). Synthesis of zinc oxide nanoparticles with different pH by aqueous solution growth technique. Optik, 127(1): 174-177.

166.   Kowsari, E. and Abdpour, S. (2017). In-situ functionalization of mesoporous hexagonal ZnO synthesized in task specific ionic liquid as a photocatalyst for elimination of SO2, NOx, and CO. Journal of Solid State Chemistry, 256(9): 141-150.

167.   Salleh, A., Naomi, R., Utami, N. D., Mohammad, A. W., Mahmoudi, E., Mustafa, N. and Fauzi, M. B. (2020). The potential of silver nanoparticles for antiviral and antibacterial applications: A mechanism of action. Nanomaterials, 10(8): 1-20.

168.   Issn, O. P. and Sarkar, S. (2020). Silver nanoparticles with bronchodilators through nebulisation to treat Covid-19 patients. Journal of Current Medical Researcg and Opinion, 3(4): 449-450.

169.   Shereen, M. A., Khan, S., Kazmi, A., Bashir, N. and Siddique, R. (2020). Covid-19 Infection: Origin, transmission, and characteristics of human coronaviruses. Journal of Advanced Research, 24: 91-98.

170.   El-Shishtawy, R. M., Asiri, A. M., Abdelwahed, N. A. M. and Al-Otaibi, M. M. (2011). In situ production of silver nanoparticle on cotton fabric and its antimicrobial evaluation. Cellulose, 18(1): 75-82.

171.   Jia, M., Zhang, W., He, T., Shu, M., Deng, J., Wang, J., Li, W., Bai, J., Lin, Q., Luo, F., Zhou, W. and Zeng, X. (2020). Evaluation of the genotoxic and oxidative damage potential of silver nanoparticles in human NCM460 and HCT116 cells. International Journal of Molecular Sciences, 21(5): 1618.