Malaysian
Journal of Analytical Sciences, Vol 26 No 6 (2022): 1394 - 1411
CHEMICAL
SYNTHESIS OF METAL OXIDE NANOPARTICLES VIA IONIC LIQUID AS CAPPING AGENT:
PRINCIPLE, PREPARATION
AND APPLICATIONS
(Sintesis Kimia Logam Oksida
Nanozarah Melalui Cecair Ionik Sebagai Ejen Pembekat: Prinsip, Penyediaan dan
Aplikasi)
Nurul Syafiqah Tapak1,2,
Mohd Azizi Nawawi2, Ahmad Husaini Mohamed1, Eddie Tan Ti
Tjih3,
Yusairie
Mohd2, Ahmad Hazri Bin Ab Rashid4, Jaafar Abdullah5*, Nor
Azah Yusof 5, Nor Monica Ahmad1,6*
1School
of Chemistry and Environment,
Faculty of Applied Sciences,
Universiti Teknologi MARA,
Cawangan Negeri Sembilan, Kampus Kuala Pilah,
72000 Kuala Pilah, Malaysia
2 School of
Chemistry and Environment,
Faculty of Applied Sciences,
Universiti Teknologi MARA, 40450 Shah Alam, Malaysia
3School
of Industrial Technology,
Faculty of Applied Sciences,
Universiti Teknologi MARA, Cawangan Negeri Sembilan, Kampus
Kuala Pilah,
72000 Kuala Pilah, Malaysia
4Industrial
Biotechnology Research Center SIRIM Berhad
No 1, Persiaran Dato’ Menteri Section 2, PO Box 7035 40700
Shah Alam, Selangor
5 Department
of Chemistry,
Faculty of Science,
Universiti Putra Malaysia, Serdang, Selangor, Malaysia
6 Biotechnology,
Microbiology and Environment Collaborative Sciences,
Universiti Teknologi MARA, Cawangan Negeri Sembilan Kampus
Kuala Pilah,
72000 Kuala Pilah, Negeri Sembilan, Malaysia
*Corresponding author: normonica@gmail.com , jafar@upm.edu.my
Received: 27 January 2022; Accepted:
10 June 2022; Published: 27 December
2022
Abstract
Wet chemical synthesis has received much attention
to develop a wide array of metal oxide nanoparticles (MONPs) due to its low
production cost, simplicity, and ability to produce ultrafine products. In recent years, room temperature ionic liquids (RTILs) as a superior
solvent, have managed to produce excellent properties of MONPs that are gaining
attention due to excellent physical properties such as small particle size,
high surface area, and high porosity. To date, the abundance of available data
on MONPs can now be used by researchers to establish suitable methods for
producing high-performance materials particularly to suit specific
applications. However, there is very limited information on the synthesis
mechanisms and common characterization methods used in the preparation of MONPs
using RTILs. Therefore, this paper aims to provide a comprehensive review on
the MONPs synthesis methods using RTILs via sol gel, hydrothermal, microwave
assisted, ultrasonic assisted, and precipitation method alongside the
characterization by spectroscopic and microscopic techniques. In this article,
various fabrication methods to synthesize MONPs with different morphologies and
sizes are reviewed. Also, a step-by-step approach on the mechanisms to improve
MONPs properties and
impacts of RTILs on the formation of MONPs is highlighted. Finally, the potential of MONPs as antibacterial and
catalyst are discussed.
Keywords: characterisation,
ionic liquid, synthesis, metal oxide
Abstrak
Sintesis kimia basah telah mendapat banyak perhatian untuk
membangunkan pelbagai jenis nanozarah oksida logam (MONPs) kerana kos
pengeluarannya yang rendah, kesederhanaan dan keupayaan untuk menghasilkan
produk ultrahalus. Dalam beberapa tahun kebelakangan ini, cecair ionik suhu
bilik (RTILs) sebagai pelarut unggul, telah berjaya menghasilkan ciri-ciri terbaik MONPs yang mendapat perhatian kerana
sifat fizikal yang sangat baik seperti saiz zarah yang kecil, luas permukaan
yang tinggi, dan keliangan yang tinggi. Sehingga kini, banyaknya data yang
tersedia mengenai MONPs kini boleh digunakan oleh penyelidik untuk mewujudkan
kaedah yang sesuai untuk menghasilkan bahan berprestasi tinggi terutamanya
untuk disesuaikan dengan aplikasi tertentu. Walau bagaimanapun, terdapat
maklumat yang sangat terhad mengenai mekanisme sintesis dan kaedah pencirian
biasa yang digunakan dalam penyediaan MONPs menggunakan RTILs. Oleh itu, kertas
kerja ini bertujuan untuk memberikan ulasan komprehensif tentang kaedah
sintesis MONPs menggunakan RTILs melalui sol gel, hidroterma, dibantu gelombang
mikro, dibantu ultrasonik, dan kaedah pemendakan di samping pencirian oleh
teknik spektroskopi dan mikroskopik. Dalam artikel ini, pelbagai kaedah
fabrikasi untuk mensintesis MONP dengan morfologi dan saiz yang berbeza
disemak. Juga, pendekatan langkah demi langkah mengenai mekanisme untuk
menambah baik sifat MONPs dan kesan RTILs terhadap pembentukan MONPs
diserlahkan. Akhir sekali, potensi MONPs untuk menghalang bakteria
dibincangkan.
Kata kunci: pencirian,
cecair ionik, sintesis, logam oksida
Graphical
Abstract
References
1.
Thanh, N. T. K., Maclean, N. and
Mahiddine, S. (2014). Mechanisms of nucleation and growth of nanoparticles in
solution. Chemical Reviews, 114(15):
7610-7630.
2.
He, Z. and Alexandridis, P. (2017). Ionic liquid and
nanoparticle hybrid systems: Emerging applications. Advances in Colloid and
Interface Science, 244:
54-70.
3.
McNamara, K. and Tofail, S. A. M. (2017). Nanoparticles in
biomedical applications. Advances in Physics: X, 2(1): 54-88.
4.
Nikolova, M. P. and Chavali, M. S. (2020). Metal oxide
nanoparticles as biomedical materials. Biomimetics, 5(2): 27.
5.
Stankic, S., Suman, S., Haque, F. and Vidic, J. (2016). Pure
and multi metal oxide nanoparticles: Synthesis, antibacterial and cytotoxic
properties. Journal of Nanobiotechnology, 14(1): 1-20.
6.
Andreescu, S., Ornatska, M., Erlichman, J. S., Ana, E. and
Leiter, J. C. (2011). Biomedical applications of metal oxide nanoparticles. In Fine
Particles in Medicine and Pharmacy. (Egon Matijević Editor).
Springerlink Book: pp. 57-100.
7.
Joshi, M. and Roy, A. (2018). Antimicrobial textiles based on
metal and metal oxide nano-particles. Nanomaterials in the Wet Processing of
Textiles, 2018: 71-111.
8.
Raghunath, A. and Perumal, E. (2017). Metal oxide
nanoparticles as antimicrobial agents: a promise for the future. International
Journal of Antimicrobial Agents, 49(2):
137-152.
9.
Nagajyothi, P. C., Prabhakar Vattikuti, S. V., Devarayapalli,
K. C., Yoo, K., Shim, J. and Sreekanth, T. V. M. (2020). Green synthesis:
Photocatalytic degradation of textile dyes using metal and metal oxide
nanoparticles-latest trends and advancements. Critical Reviews in
Environmental Science and Technology, 50(24): 2617-2723.
10.
Khan, M. M., Adil, S. F. and Al-Mayouf, A. (2015). Metal
oxides as photocatalysts. Journal of Saudi Chemical Society, 19(5): 462-464.
11.
Veerasingam, M., Murugesan, B. and Mahalingam, S. (2020).
Ionic liquid mediated morphologically improved lanthanum oxide nanoparticles by
Andrographis paniculata leaves extract and its biomedical applications. Journal
of Rare Earths, 38(3): 281-291.
12.
Cheng, Z., Tan, A. L. K., Tao, Y., Shan, D., Ting, K. E. and
Yin, X. J. (2012). Synthesis and characterization of iron oxide nanoparticles
and applications in the removal of heavy metals from industrial wastewater. International
Journal of Photoenergy, 2012: 608298.
13.
Zhu, D., Chen, Y., Yang, H., Wang, S., Wang, X., Zhang, S.
and Chen, H. (2020). Synthesis and characterization of magnesium oxide
nanoparticle-containing biochar composites for efficient phosphorus removal from
aqueous solution. Chemosphere, 247: 125847.
14.
Dang, T. D., Cheney, M. A., Qian, S., Joo, S. W. and Min, B.
K. (2013). A novel rapid one-step synthesis of manganese oxide nanoparticles at
room temperature using poly(dimethylsiloxane). Industrial and Engineering
Chemistry Research, 52(7): 2750-2753.
15.
Dawadi, S., Gupta, A., Khatri, M., Budhathoki, B.,
Lamichhane, G. and Parajuli, N. (2020). Manganese dioxide nanoparticles:
synthesis, application and challenges. Bulletin of Materials Science,
43: 227.
16.
Mahamuni, P. P., Patil, P. M., Dhanavade, M. J., Badiger, M.
V., Shadija, P. G., Lokhande, A. C. and Bohara, R. A. (2019). Synthesis and
characterization of zinc oxide nanoparticles by using polyol chemistry for
their antimicrobial and antibiofilm activity. Biochemistry and Biophysics
Reports, 17(9): 71-80.
17.
Elbushra, H., Ahmed, M., Wardi, H. and Eassa, N. (2018).
Synthesis and characterization of TiO2 using sol-gel method at
different annealing temperatures. MRS Advances, 3(42–43): 2527-2535.
18.
Singh, P. K., Kumar, P., Hussain, M., Das, A. K. and Nayak,
G. C. (2016). Synthesis and characterization of CuO nanoparticles using strong
base electrolyte through electrochemical discharge process. Bulletin of
Materials Science, 39(2): 469-478.
19.
Fathima, J. B., Pugazhendhi, A. and Venis, R. (2017). Synthesis and characterization of
ZrO2 nanoparticles-antimicrobial activity and their prospective role
in dental care. Microbial Pathogenesis, 110: 245-251.
20.
Dubey, R. S., Rajesh, Y. B. R. D. and More, M. A. (2015).
Synthesis and Characterization of SiO2 nanoparticles via sol-gel
method for industrial applications. Materials Today: Proceedings,
2(4–5): 3575-3579.
21.
Sakthiraj, K. and Karthikeyan, B. (2020). Synthesis and
characterization of cerium oxide nanoparticles using different solvents for
electrochemical applications. Applied Physics A: Materials Science and
Processing, 126(1): 1-10.
22.
Wang, C., Xu, H., Wang, C., Liu, T., Yang, S., Nie, Y., Guo,
X., Ma, X. and Jiang, X. (2021). Preparation of VO2 (M) nanoparticles with exemplary optical
performance from VO2 (B) nanobelts by ball milling. Journal of Alloys and
Compounds, 877: 159888.
23.
Malevu, T. D. (2021).
Ball Milling synthesis and characterization of highly crystalline TiO2-ZnO
hybrids for photovoltaic applications . Physica B: Condensed Matter,
621(7): 413291.
24.
Rashid, T. M., Nayef, U. M., Jabir, M. S., and Mutlak, F. A.
H. (2021). Synthesis and characterization of Au:ZnO (core:shell) nanoparticles
via laser ablation. Optik, 244(7): 167569.
25.
Altuwirqi, R. M., Albakri, A. S., Al-Jawhari, H. and Ganash,
E. A. (2020). Green synthesis of copper oxide nanoparticles by pulsed laser
ablation in spinach leaves extract. Optik, 219(4): 165280.
26.
Menazea, A. A. and Awwad, N. S. (2020). Pulsed Nd:YAG laser
deposition-assisted synthesis of silver/copper oxide nanocomposite thin film
for 4-nitrophenol reduction. Radiation Physics and Chemistry, 177(5):
109112.
27.
Shreema, K., Mathammal, R., Kalaiselvi, V., Vijayakumar, S.,
Selvakumar, K. and Senthil, K. (2021). Green synthesis of silver doped zinc
oxide nanoparticles using fresh leaf extract Morinda citrifoliaand its
antioxidant potential. Materials Today: Proceedings, 47: 2126-2131.
28.
Ramzan, M., Obodo, R. M., Mukhtar, S., Ilyas, S. Z., Aziz, F.
and Thovhogi, N. (2019). Green synthesis of copper oxide nanoparticles using
Cedrus deodara aqueous extract for antibacterial activity. Materials Today:
Proceedings, 36: 576-581.
29.
Khan, M. F., Ansari, A. H., Hameedullah, M., Ahmad, E.,
Husain, F. M., Zia, Q., Baig, U., Zaheer, M. R., Alam, M. M., Khan, A. M.,
Alothman, Z. A., Ahmad, I., Ashraf, G. M. and Aliev, G. (2016). Sol-gel
synthesis of thorn-like ZnO nanoparticles endorsing mechanical stirring effect
and their antimicrobial activities: Potential role as nano-Antibiotics. Scientific
Reports, 6(5): 1-12.
30.
Atta, A. M., Al-Lohedan, H. A., Ezzat, A. O., Tawfik, A. M.
and Hashem, A. I. (2017). Synthesis of zinc oxide nanocomposites using poly
(ionic liquids) based on quaternary ammonium acrylamidomethyl propane sulfonate
for water treatment. Journal of Molecular Liquids, 236: 38-47.
31.
Wang, Y., Maksimuk, S., Shen, R. and Yang, H. (2007).
Synthesis of iron oxide nanoparticles using a freshly-made or recycled
imidazolium-based ionic liquid. Green Chemistry, 10: 1051-1056.
32.
Zheng, W., Liu, X., Yan, Z. and Zhu, L. (2009). Ionic
liquid-assisted synthesis of large-scale TiO2 nanoparticles with
controllable phase by hydrolysis of TiCl4. ACS Nano, 3(1): 115-122.
33.
Bharate, B. G., Hande, P. E., Samui, A. B. and Kulkarni, P.
S. (2018). Ionic liquid (IL) capped MnO2 nanoparticles as an
electrode material and IL as electrolyte for supercapacitor application. Renewable
Energy, 126: 437-444.
34.
Sivanantham, A., Firoz Babu, K., Anbu Kulandainathan, M.,
Babu, S. G., Suresh Bapu, R. H. and Sreedhar, G. (2014). Capping and catalytic
behaviour of lithiated sarcosine TFSI on the formation of hexagonal ZnO micro
rods using hydrothermal method. Materials Letters, 128: 195-198.
35.
Qi, K., Yang, J., Fu, J., Wang, G., Zhu, L., Liu, G. and
Zheng, W. (2013). Morphology-controllable ZnO rings: Ionic liquid-assisted
hydrothermal synthesis, growth mechanism and photoluminescence properties. CrystEngComm,
15(34): 6729-6735.
36.
Kavya, S. H., Kumar, V. V., & Kumar, C. R. (2018).
Synthesis and characterization of stable ZnO nanoparticles using
imidazolium-based ionic liquids and their applications in esterification
reaction. Indian Journal of Chemistry, 57: 1112-1120.
37.
Ahmadi Tehrani, A., Omranpoor, M. M., Vatanara, A.,
Seyedabadi, M. and Ramezani, V. (2019). Formation of nanosuspensions in
bottom-up approach: theories and optimization. DARU Journal of
Pharmaceutical Sciences, 27(1): 451-473.
38.
Jalab, J., Abdelwahed, W., Kitaz, A. and Al-kayali, R. (2021).
Green synthesis of silver nanoparticles using aqueous extract of Acacia
cyanophylla and its antibacterial activity. Heliyon, 7(9): e08033.
39.
Khan, M. A. R., Shamim, M., Mamun, A. and Hosna, M. (2021).
Review on platinum nanoparticles : Synthesis , characterization , and
applications. Microchemical Journal, 171(9): 106840.
40.
Devatha, C. P. and Thalla, A. K. (2018). Chapter 7 - green
synthesis of nanomaterials (pp. 169-184). Elsevier.
41.
Alam, M. M., Asiri, A. M. and Rahman, M. M. (2021). Wet-chemically synthesis of SnO2-doped
Ag2O nanostructured materials for sensitive detection of choline by
an alternative electrochemical approach. Microchemical Journal, 165(2):
106092.
42.
Nikam, A. V., Prasad, B. L. V. and Kulkarni, A. A. (2018).
Wet chemical synthesis of metal oxide nanoparticles: A review. CrystEngComm,
20(35): 5091-5107.
43.
Zhou, Y. (2006). Recent advances in ionic liquids for
synthesis of inorganic nanomaterials. Current Nanoscience, 1(1): 35-42.
44.
Irfan, M., Ahmad, T., Moniruzzaman, M., Bhattacharjee, S. and
Abdullah, B. (2020). Size and stability modulation of ionic liquid
functionalized gold nanoparticles synthesized using Elaeis guineensis
(oil palm) kernel extract. Arabian Journal of Chemistry, 13(1): 75-85.
45.
Nishad, K K., Manthrammel, M. A., Shkir, M., AlFaify, S. and
Pandey, R. K. (2022). Effect of organic capping on defect induced
ferromagnetism in ZnO nanoparticles. Physica B: Condensed Matter, 624:
413379.
46.
Rostami-Tapeh-Esmaeil, E., Golshan, M., Salami-Kalajahi, M.
and Roghani-Mamaqani, H. (2021). Synthesis of copper and copper oxide
nanoparticles with different morphologies using aniline as reducing agent. Solid
State Communications, 334-335(5): 114364.
47.
Yong, N. L., Ahmad, A., & Mohammad, A. W. (2012).
Synthesis and characterization of silver nanoparticles by a sonochemical
method. Xiyou Jinshu Cailiao Yu Gongcheng/Rare Metal Materials and
Engineering, 41(10): 1700-1705.
48.
Saraji, M. and Alijani, S. (2021). A molecularly imprinted
polymer on chromium (ΙΙΙ) oxide nanoparticles for
spectrofluorometric detection of bisphenol A. Spectrochimica Acta - Part A:
Molecular and Biomolecular Spectroscopy, 255: 119711.
49.
Sedlák, J., Kuřitka, I., Machovský, M., Šuly, P.,
Bažant, P. and Sedláček, T. (2015). Zinc oxide nanoparticles with surface
modified by degradation of capping polymers in situ during microwave synthesis.
Advanced Powder Technology, 26(4): 1064-1071.
50.
Bomila, R., Venkatesan, A. and Srinivasan, S. (2018).
Structural, luminescence and photocatalytic properties of pure and octylamine
capped ZnO nanoparticles. Optik, 158: 565-573.
51.
Hajipour, A. R. and Rafiee, F. (2015). Recent progress in ionic liquids
and their applications in organic synthesis. Organic Preparations and
Procedures International, 47(4): 1-60.
52.
Fang, X. and Song, H. (2019). Synthesis of cerium oxide
nanoparticles loaded on chitosan for enhanced auto-catalytic regenerative
ability and biocompatibility for the spinal cord injury repair. Journal of
Photochemistry and Photobiology B: Biology, 191: 83-87.
53.
Sundrarajan, M., Jegatheeswaran, S., Selvam, S., Sanjeevi, N.
and Balaji, M. (2015). The ionic liquid assisted green synthesis of
hydroxyapatite nanoplates by Moringa oleifera flower extract: A
biomimetic approach. Materials and Design, 88: 1183-1190.
54.
Łuczak, J., Paszkiewicz, M., Krukowska, A., Malankowska,
A. and Zaleska-Medynska, A. (2016). Ionic liquids for nano- and microstructures
preparation. Part 2: Application in synthesis. Advances in Colloid and
Interface Science, 227: 1-52.
55.
Migowski, P., Machado, G., Texeira, S. R., Alves, M. C. M.,
Morais, J., Traverse, A. and Dupont, J. (2007). Synthesis and characterization
of nickel nanoparticles dispersed in imidazolium ionic liquids. Physical
Chemistry Chemical Physics, 9(34): 4814-4821.
56.
Vollmer, C. and Janiak, C. (2011). Naked metal nanoparticles
from metal carbonyls in ionic liquids: Easy synthesis and stabilization. Coordination
Chemistry Reviews, 255(17-18): 2039-2057.
57.
Scheeren, C. W., Machado, G., Teixeira, S. R., Morais, J.,
Domingos, J. B. and Dupont, J. (2006). Synthesis and characterization of Pt(0)
nanoparticles in imidazolium ionic liquids. Journal of Physical Chemistry B,
110(26): 13011-13020.
58.
Zhao, M., Li, N., Zheng, L., Li, G. and Yu, L. (2008).
Synthesis of well-dispersed NiO nanoparticles with a room temperature ionic
liquid. Journal of Dispersion Science and Technology, 29(8): 1103-1105.
59.
Sakai, K., Okada, K., Uka, A., Misono, T., Endo, T., Sasaki,
S., Abe, M. and Sakai, H. (2015). Effects of water on solvation layers of
imidazolium-type room temperature ionic liquids on silica and mica. Langmuir,
31(22), 6085–6091.
60.
Ninham, B. W. (1999). On progress in forces since the DLVO
theory. Advances in Colloid and Interface Science, 83(1): 1-17.
61.
Obliosca, J. M., Arellano, I. H. J., Huang, M. H. and Arco,
S. D. (2010). Double layer micellar stabilization of gold nanocrystals by
greener ionic liquid 1-butyl-3-methylimidazolium lauryl sulfate. Materials
Letters, 64(9): 1109-1112.
62.
He, Z., & Alexandridis, P. (2015). Nanoparticles in ionic
liquids: Interactions and organization. Physical Chemistry Chemical Physics,
17(28): 18238-18261.
63.
Barik, B., Kumar, A., Nayak, P. S., Achary, L. S. K., Rout,
L. and Dash, P. (2020). Ionic liquid assisted mesoporous silica-graphene oxide
nanocomposite synthesis and its application for removal of heavy metal ions
from water. Materials Chemistry and Physics, 239(8): 122028.
64.
Das, M., Aswathy, T. R., Pal, S. and Naskar, K. (2021).
Effect of ionic liquid modified graphene oxide on mechanical and self-healing
application of an ionic elastomer. European Polymer Journal, 158(7):
110691.
65.
Kargar, S., Elhamifar, D. and Zarnegaryan, A. (2021). Ionic
liquid modified graphene oxide supported Mo-complex: A novel, efficient and
highly stable catalyst. Surfaces and Interfaces, 23(1): 100946.
66.
Husanu, E., Chiappe, C., Bernardini, A., Cappello, V. and
Gemmi, M. (2018). Synthesis of colloidal Ag nanoparticles with citrate based
ionic liquids as reducing and capping agents. Colloids and Surfaces A:
Physicochemical and Engineering Aspects, 538(11): 506-512.
67.
Sadeghi, S. and Olieaei, S. (2019). Capped cadmium sulfide
quantum dots with a new ionic liquid as a fluorescent probe for sensitive
detection of florfenicol in meat samples. Spectrochimica Acta - Part A:
Molecular and Biomolecular Spectroscopy, 223: 117349.
68.
Krishnan, B. and Mahalingam, S. (2017). Improved surface
morphology of silver/copper oxide/bentonite nanocomposite using aliphatic
ammonium based ionic liquid for enhanced biological activities. Journal of
Molecular Liquids, 241: 1044-1058.
69.
Ahmad, T., Bustam, M. A., Irfan, M., Moniruzzaman, M.,
Samsudin, M. F. R., Asghar, H. M. A., Muhammad, N., Iqbal, J. and
Bhattacharjee, S. (2019). Effect of gold and iron nanoparticles on
photocatalytic behaviour of titanium dioxide towards
1-butyl-3-methylimidazolium chloride ionic liquid. Journal of Molecular
Liquids, 291: 2–6.
70.
Verma, C., Ebenso, E. E. and Quraishi, M. A. (2019). Transition metal nanoparticles in
ionic liquids: Synthesis and stabilization. Journal of Molecular Liquids,
276: 826-849.
71.
Abbott, A. P., Frisch, G., Hartley, J. and Ryder, K. S.
(2011). Processing of metals and metal oxides using ionic liquids. Green
Chemistry, 13(3): 471-481.
72.
Prechtl, M. H. G. and Campbell, P. S. (2013). Metal oxide and
bimetallic nanoparticles in ionic liquids: Synthesis and application in
multiphase catalysis. Nanotechnology Reviews, 2(5): 577-595.
73.
Seitkalieva, M. M., Samoylenko, D. E., Lotsman, K. A.,
Rodygin, K. S. and Ananikov, V. P. (2021). Metal nanoparticles in ionic
liquids: Synthesis and catalytic applications. Coordination Chemistry
Reviews, 445: 213982.
74.
Gulati, S., Sachdeva, M. and Bhasin, K. K. (2018). Capping
agents in nanoparticle synthesis: Surfactant and solvent system. AIP
Conference Proceedings, 2018: 1953.
75.
Tapak, N. S., Nawawi, M. A., Tjih, E. T. T., Mohd, Y., Ab
Rashid, A. H., Abdullah, J., ... and Ahmad, N. M. (2022). The synthesis of
zirconium oxide (ZrO2) nanoparticles (NPs) in
1-butyl-3-methylimidazolium trifluoroacetate (BMIM CF3COO) for an
amperometry phenol biosensor. Materials Today Communications, 33:
104142.
76.
Oskam, G. (2006). Metal oxide nanoparticles: Synthesis,
characterization and application. Journal of Sol-Gel Science and Technology,
37(3): 161-164.
77.
Hu, H., Huang, X., Deng, C., Chen, X. and Qian, Y. (2007).
Hydrothermal synthesis of ZnO nanowires and nanobelts on a large scale. Materials
Chemistry and Physics, 106(1): 58-62.
78.
Zhang, S., Zhang, Y., Wang, Y., Liu, S. and Deng, Y. (2012).
Sonochemical formation of iron oxide nanoparticles in ionic liquids for
magnetic liquid marble. Physical Chemical Chemistry Physics, 15:
5132-5138.
79.
Janiak, C. (2013). Ionic liquids for the synthesis and
stabilization of metal nanoparticles. Zeitschrift Fur Naturforschung -
Section B Journal of Chemical Sciences, 68(10): 1059-1089.
80.
Alammar, T. and Mudring, A. V. (2011). Sonochemical synthesis
of 0D, 1D, and 2D zinc oxide nanostructures in ionic liquids and their
photocatalytic activity. ChemSusChem, 4(12): 1796-1804.
81.
Wang, L., Chang, L., Zhao, B., Yuan, Z., Shao, G. and Zheng,
W. (2008). Systematic investigation on morphologies, forming mechanism,
photocatalytic and photoluminescent properties of ZnO nanostructures
constructed in ionic liquids. Inorganic Chemistry, 47(5): 1443-1452.
82.
Zhu, H., Huang, J. F., Pan, Z. and Dai, S. (2006).
Ionothermal synthesis of hierarchical ZnO nanostructures from ionic-liquid precursors.
Chemistry of Materials, 18(18): 4473-4477.
83.
Ma, B. Z., Yu, J. and Dai, S. (2010). Preparation of inorganic materials
using ionic liquids. Advance Materials, 130012:
261-285.
84.
Lian, J., Duan, X., Ma, J., Peng, P.,
Kim, T., & Zheng, W. (2009). Hematite (α-Fe2O3) with various
morphologies: ionic liquid-assisted synthesis, formation mechanism, and
properties. ACS Nano, 3(11): 3749-3761.
85.
Zhang, Y., Cheng, X., Zhang, X., Major, Z., Xu, Y., Gao, S.,
Zhao, H. and Huo, L. (2019). Ionic liquid-assisted synthesis of tungsten oxide
nanoparticles with enhanced NO2 sensing properties at near room
temperature. Applied Surface Science, 2: 144533.
86.
Sundrarajan, M., Jegatheeswaran, S., Selvam, S., Gowri, R.,
Balaji, M. and Bharathi, K. (2017). Green approach : Ionic liquid
assisted synthesis of nanocrystalline ZnO in phyto medium and their
antibacterial investigation. Materials Letters, 201: 31-34.
87.
Fang, X. and Song, H. (2019). Synthesis of cerium oxide
nanoparticles loaded on chitosan for enhanced auto-catalytic regenerative
ability and biocompatibility for the spinal cord injury repair. Journal of
Photochemistry and Photobiology B: Biology, 191: 83-87.
88.
Sundrarajan, M., Gandhi, R. G. R., Suresh, J., Selvam, S. and
Gowri, S. (2012). Sol-gel synthesis of MgO nanoparticles using ionic
liquid-[BMIM]BF4 as capping agent. Nanoscience and Nanotechnology
Letters, 4(1): 100-104.
89.
Yoo, K., Choi, H. and Dionysiou, D. D. (2004). Ionic liquid
assisted preparation of nanostructured TiO2 particles. Chemical
Communications, 17: 2000-2001.
90.
García Rojas, L. M., Huerta-Aguilar,
C. A., Tecuapa-Flores, E. D., Huerta-José, D. S., Thangarasu, P., Sidhu, J. S.,
Singh, N. and de la Luz Corea Téllez, M. (2020). Why ionic liquids coated ZnO
nanocomposites emerging as environmental remediates: Enhanced photo-oxidation
of 4-nitroaniline and encouraged antibacterial behavior. Journal of
Molecular Liquids, 319: 114107.
91.
Sundrarajan, M. and Muthulakshmi, V. (2021). Green synthesis
of ionic liquid mediated neodymium oxide nanoparticles by Andrographis
paniculata leaves extract for effective bio-medical applications. Journal of
Environmental Chemical Engineering, 9(1): 104716.
92.
Sundrarajan, M., Bama, K., Selvanathan, G. and Prabhu, M. R.
(2018). Ionic liquid-mediated: Enhanced surface morphology of silver/manganese
oxide/bentonite nanocomposite for improved biological activities. Journal of
Molecular Liquids, 249: 1020-1032.
93.
Pandiyan, N., Murugesan, B., Sonamuthu, J., Samayanan, S. and
Mahalingam, S. (2019). [BMIM]PF6 ionic liquid mediated green
synthesis of ceramic SrO/CeO2 nanostructure using Pedalium murex
leaf extract and their antioxidant and antibacterial activities. Ceramics
International, 45(9): 12138-12148.
94.
Pandiyan, N., Murugesan, B., Arumugam, M., Chinnaalagu, D.,
Samayanan, S. and Mahalingam, S. (2021). Ionic liquid mediated green synthesis
of Ag-Au/Y2O3 nanoparticles using leaves extracts of
Justicia adhatoda: Structural characterization and its biological applications.
Advanced Powder Technology, 32(7): 2213-2225.
95.
Muthulakshmi, V. and Sundrarajan, M. (2020). Green synthesis
of ionic liquid assisted ytterbium oxide nanoparticles by Couroupita guianensis
abul leaves extract for biological applications. Journal of Environmental
Chemical Engineering, 8(4): 103992.
96.
Shen, J., Shi, M., Yan, B., Ma, H., Li, N. and Ye, M. (2011).
One-pot hydrothermal synthesis of Ag-reduced graphene oxide composite with
ionic liquid. Journal of Materials Chemistry, 21(21): 7795-7801.
97.
Lv, J. J., Feng, J. X., Li, S. S., Wang, Y. Y., Wang, A. J.,
Zhang, Q. L., Chen, J. R. and Feng, J. J. (2014). Ionic liquid crystal-assisted
synthesis of PtAg nanoflowers on reduced graphene oxide and their enhanced
electrocatalytic activity toward oxygen reduction reaction. Electrochimica
Acta, 133: 407-413.
98.
Zhang, J., Wang, J., Zhou, S., Duan, K., Feng, B., Weng, J.,
Tang, H. and Wu, P. (2010). Ionic liquid-controlled synthesis of ZnO
microspheres. Journal of Materials Chemistry, 20(43): 9798-9804.
99.
Kim, T., Lian, J., Ma, J., Duan, X. and Zheng, W. (2010). Morphology controllable synthesis
of γ-alumina nanostructures via an ionic liquid-assisted hydrothermal
route. Crystal Growth and Design, 10(7): 292-2933.
100.
Muthulakshmi, V., Balaji, M. and Sundrarajan, M. (2020).
Biomedical applications of ionic liquid mediated samarium oxide nanoparticles
by Andrographis paniculata leaves extract. Materials Chemistry and
Physics, 242(11): 122483.
101.
Liu, H., Wang, M., Wang, Y., Liang, Y., Cao, W. and Su, Y.
(2011). Ionic liquid-templated synthesis of mesoporous CeO2–TiO2
nanoparticles and their enhanced photocatalytic activities under UV or visible
light. Journal of Photochemistry & Photobiology, A: Chemistry, 223(2–3):
157-164.
102.
Liu, H., Liang, Y., Hu, H. and Wang, M. (2009). Hydrothermal synthesis of
mesostructured nanocrystalline TiO 2 in an ionic liquid – water mixture and its
photocatalytic performance. Solid State Sciences, 11(9): 1655-1660.
103.
Gao, R., Gao, S., Wang, P., Xu, Y., Zhang, X., Cheng, X.,
Zhou, X., Major, Z., Zhu, H. and Huo, L. (2020). Ionic liquid assisted synthesis
of snowflake ZnO for detection of NOx and sensing mechanism. Sensors and
Actuators, B: Chemical, 303: 127085.
104.
Goharshadi, E. K., Ding, Y., Namayandeh, M. and Nancarrow, P.
(2009). Ultrasound-assisted green synthesis of nanocrystalline ZnO in the ionic
liquid [hmim][NTf2]. Ultrasonics Sonochemistry, 16: 120-123.
105.
Inbasekar, C. and Fathima, N. N. (2020). Collagen
stabilization using ionic liquid functionalised cerium oxide nanoparticle. International
Journal of Biological Macromolecules, 147: 24-28.
106.
Ellateif, T. M. A. and Mitra, S. (2017). Sol gel synthesis and
characterization of zirconia containing hydrophobic silica nanoparticles. Journal
of Advances in Nanomaterials, 2(4): 185-196.
107.
Lu, Y., Dong, W., Ding, J., Wang, W. and Wang, A. (2019).
Hydroxyapatite nanomaterials: synthesis, properties, and functional
applications. In Nanomaterials from Clay Minerals. Elsevier Inc.
108.
Lim, H. S., Ahmad, A. and Hamzah, H. (2013). Synthesis of
zirconium oxide nanoparticle by sol-gel technique. AIP Conference
Proceedings, 1571: 812–816.
109.
Behbahani, A., Rowshanzamir, S. and Esmaeilifar, A. (2012).
Hydrothermal synthesis of zirconia nanoparticles from commercial zirconia. Procedia
Engineering, 42: 908-917.
110.
Muthulakshmi, V., Kumar, P. and Sundrarajan, M. (2021). Green
synthesis of Ionic liquid mediated Ytterbium oxide nanoparticles by Andrographis
paniculata leaves extract for structural, morphological and biomedical
applications. Journal of Environmental Chemical Engineering, 9(4):
105270.
111.
Jolivet, J. P., Cassaignon, S., Chanéac, C., Chiche, D.,
Durupthy, O. and Portehault, D. (2010). Design of metal oxide
nanoparticles: Control of size, shape, crystalline structure and
functionalization by aqueous chemistry. Comptes
Rendus Chimie, 13(1–2): 40-51.
112.
Kotresh, M. G., Patil, M. K. and Inamdar, S. R. (2021). Reaction temperature based
synthesis of ZnO nanoparticles using co-precipitation method: Detailed
structural and optical characterization. Optik, 243(6): 167506.
113.
Wahab, R., Kim, Y. S. and Shin, H. S. (2009). Synthesis,
characterization and effect of pH variation on zinc oxide nanostructures. Materials
Transactions, 50(8): 2092-2097.
114.
Nair, P. A. K., Vasconcelos, W. L., Paine, K. and
Calabria-Holley, J. (2021). A review on applications of sol-gel science in
cement. Construction and Building Materials, 291: 123065.
115.
Danks, A. E., Hall, S. R. and Schnepp, Z. (2016). The
evolution of ‘sol–gel’ chemistry as a technique for materials synthesis. Materials
Horizon, 2: 91-112.
116.
Shandilya, M., Rai, R., Singh, J., Shandilya, M., Rai, R. and
Singh, J. (2016). Review: hydrothermal technology for smart materials. Advances
in Applied Chemistry, 115: 354-376.
117.
Sahoo, S., Pazhamalai, P., Mariappan, V. K., Veerasubramani,
G. K., Nam-Jin Kim, Kim, S.-J. and A. (2020). Hydrothermally synthesized
chalcopyrite platelets as electrode material for symmetric supercapacitors. Inorganic
Chemistry Frontiers, 2020: 1-30.
118.
Yadav, S. and Sharma, A. (2021). Importance and challenges of
hydrothermal technique for synthesis of transition metal oxides and composites
as supercapacitor electrode materials. Journal of Energy Storage, 44:
103295.
119.
Ng, H. K. M., Lim, G. K. and Leo, C. P. (2021). Comparison
between hydrothermal and microwave-assisted synthesis of carbon dots from
biowaste and chemical for heavy metal detection : A review. Microchemical
Journal, 165: 106116.
120.
Medeiros, T. V. de, Manioudakis, J., Noun, F., Macairan,
J.-R., Victoria, F. and Naccache, R. (2019). Microwave-assisted synthesis of
carbon dots and their applications. Materials Chemistry C, 2019: 1-20.
121.
Jusuf, B. N., Sambudi, N. S., Isnaeni, I. and Samsuri, S.
(2018). Microwave-assisted synthesis of carbon dots from eggshell membrane
ashes by using sodium hydroxide and their usage for degradation of methylene
blue. Journal of Environmental Chemical Engineering, 6(6): 7426-7433.
122.
Wang, X., Ahmad, M. and Sun, H. (2017). Three-dimensional ZnO
hierarchical nanostructures: solution phase synthesis and applications. Materials,
10(11): 1-23.
123.
Kołodziejczak-radzimska, A., Markiewicz, E. and Jesionowski,
T. (2012). Structural characterisation of ZnO particles obtained by the
emulsion precipitation method. Journal of Nanomaterials, 2012: 656353.
124.
Kurian, M. and Nair, D. S. (2013). Effect of preparation conditions on
nickel zinc ferrite nanoparticles : a comparison between sol – gel auto
combustion and co-precipitation methods. Journal of Saudi Chemical Society,
20(1): 557-522.
125.
Sepulveda-guzman, S., Reeja-jayan, B., Rosa, E. De and
Torres-castro, A. (2009). Synthesis of assembled ZnO structures by
precipitation method in aqueous media. Materials Chemistry and Physics, 115:
172-178.
126.
Bhosale, M. A., Chenna, D. R. and Bhanage, B. M. (2017).
Ultrasound assisted synthesis of gold nanoparticles as an efficient catalyst
for reduction of various nitro compounds. ChemistrySelect, 2(3):
1225-1231.
127.
Deshmukh, A. R., Gupta, A. and Kim, B. S. (2019). Ultrasound
assisted green synthesis of silver and iron oxide nanoparticles using fenugreek
seed extract and their enhanced antibacterial and antioxidant activities. Biomed
Research International, 2019: 1714358.
128.
Cravotto, G. and Cintas, P. (2006). Power ultrasound in
organic synthesis : moving cavitational chemistry from academia to
innovative and large-scale applications. Chemical Society Review, 2:180-196.
129.
Naeimi, H. and Farahnak, M. (2018). A facile one‑pot
ultrasound‑assisted green synthesis of tetrahydrobenzo[b]pyrans catalyzed
by gold nanoparticles supported on thiol ‑ functionalized reduced
graphene oxide. Research on Chemical Intermediates, 44(5): 3227-3247.
130.
Hussain, M. (2014). Synthesis, characterization and
applications of metal oxide. Dissertation Linköping University.
131.
Khaldakar, M. and Butala, D. (2017). The synthesis and
characterization of metal oxide nanoparticles and its application for photo
catalysis. International Journal of Scientific and Research Publications,
7(3): 499.
132.
Tushar G, R. and Babita R, A. (2019). Transmission electron
microscopy- an overview. International Research Journal for Inventions in
Pharmaceutical Sciences, 1(2): 1-7.
133.
Inkson, B. J. (2016). Scanning electron microscopy (SEM) and
Transmission electron microscopy (TEM) for materials characterization. In Materials
Characterization Using Nondestructive Evaluation (NDE) Methods. Elsevier
Ltd.
134.
Mahjoub, A. R., Movahedi, M., Kowsari, E. and Yavari, I.
(2014). Narcis-like zinc oxide: Chiral ionic liquid assisted synthesis,
photoluminescence and photocatalytic activity. Materials Science in
Semiconductor Processing, 22(1): 1-6.
135.
Kowsari, E. and Karimzadeh, A. H. (2012). Fabrication of
fern-like, fish skeleton-like, and butterfly-like BaO nanostructures as
nanofillers for radar-absorbing nanocomposites. Materials Letters, 74:
33-36.
136.
Mourdikoudis, S., Pallares, R. M. and Thanh, N. T. K. (2018).
Characterization techniques for nanoparticles: Comparison and complementarity
upon studying nanoparticle properties. Nanoscale, 10(27): 12871-12934.
137.
Tzani, A., Koutsoukos, S., Koukouzelis, D. and Detsi, A.
(2017). Synthesis and characterization of silver nanoparticles using biodegradable
protic ionic liquids. Journal of Molecular Liquids, 243: 212-218.
138.
Nithya, P., Balaji, M., Jegatheeswaran, S., Selvam, S. and
Sundrarajan, M. (2017). Facile biological synthetic strategy to morphologically
aligned CeO2/ZrO2 core nanoparticles using Justicia
adhatoda extract and ionic liquid: Enhancement of its bio-medical
properties. Journal of Photochemistry & Photobiology, B: Biology,
2017:1-34.
139.
Padovini, D. S. S., Pontes, D. S. L., Dalmaschio, C. J.,
Pontes, F. M. and Longo, E. (2014). Facile synthesis and characterization of ZrO2 nanoparticles
prepared by the AOP/hydrothermal route. RSC Advances, 4(73):
38484-38490.
140.
Lu, X., Tao, L., Song, D., Li, Y. and Gao, F. (2018).
Bimetallic Pd @ Au nanorods based ultrasensitive acetylcholinesterase biosensor
for determination of organophosphate pesticides. Sensors & Actuators: B.
Chemical, 255: 2575-2581.
141.
Shyamala, S., Kalaiarasi, S., Karpagavinayagam, P., Vedhi,
C., Muthuchudarkodi, R. R., Kulandaivel, S., and Lakshmi, A. (2021). Synthesis
of metal oxide nanoparticles doped poly 3 anisidine nanocomposites with
enhanced electrocatalytic activity for methanol oxidation. Materials Today:
Proceedings, 2021: 3-10.
142.
Rakhimol, K. R., Thomas, S., Kalarikkal, N. and Jayachandran,
K. (2020). Casein mediated synthesis of stabilized metal/metal-oxide
nanoparticles with varied surface morphology through pH alteration. Materials
Chemistry and Physics, 246: 122803.
143.
Itoh, H., Naka, K. and Chujo, Y. (2004). Synthesis of gold
nanoparticles modified with ionic liquid based on the imidazolium cation. Journal
of American Chemical Society, 26(1): 3026-3027.
144.
Kowsari, E. and Bazri, B. (2014). Synthesis of rose-like ZnO
hierarchical nanostructures in the presence of ionic liquid/Mg2+ for air
purification and their shape-dependent photodegradation of SO2, NOx,
and CO. Applied Catalysis A: General, 475: 325-334.
145.
Husanu, E., Cappello, V., Pomelli, C. S., David, J., Gemmi,
M. and Chiappe, C. (2017). Chiral ionic liquid assisted synthesis of some metal
oxides. RSC Advances, 7(2): 1154-1160.
146.
Pulskamp, K., Diabaté, S. and Krug, H. F. (2007). Carbon
nanotubes show no sign of acute toxicity but induce intracellular reactive
oxygen species in dependence on contaminants. Toxicology Letters,
168(1): 58-74.
147.
Liu, H., Wang, M., Wang, Y., Liang, Y., Cao, W. and Su, Y.
(2011). Ionic liquid-templated synthesis of mesoporous CeO2-TiO 2 nanoparticles
and their enhanced photocatalytic activities under UV or visible light. Journal
of Photochemistry and Photobiology A: Chemistry, 223(2-3): 157-164.
148.
Ismail, A. A., van de Voort, F. R. and Sedman, J. (1997).
Chapter 4 Fourier transform infrared spectroscopy: Principles and applications.
Techniques and Instrumentation in Analytical Chemistry, 18(C): 93-139.
149.
Bodade, A. B., Taiwade, M. A. and Chaudhari, G. N. (2017). Bioelectrode based chitosan-nano
copper oxide for application to. Journal of Applied Pharmaceutical Research,
5: 30-39.
150.
Alomairy, S., Al-Buriahi, M. S., Abdel Wahab, E. A., Sriwunkum,
C. and Shaaban, K. S. (2021). Synthesis, FTIR, and neutron/charged particle
transmission properties of Pb3O4–SiO2–ZnO–WO3
glass system. Ceramics International, 47(12): 17322-17330.
151.
Kumar, A. (2020). Sol gel synthesis of zinc oxide
nanoparticles and their application as nano-composite electrode material for
supercapacitor. Journal of Molecular Structure, 1220: 128654.
152.
Nithya, P., Balaji, M., Mayakrishnan, A. and Jegatheeswaran,
S. (2020). Biogenic approach for the synthesis of Ag-Au doped RuO2
nanoparticles in BMIM-PF6 ionic liquid medium: Structural
characterization and its biocidal activity against pathogenic bacteria and HeLa
cancerous cells. Journal of Molecular Liquids, 312: 113245.
153.
Goharshadi, E. K., Samiee, S. and Nancarrow, P. (2011). Fabrication
of cerium oxide nanoparticles: Characterization and optical properties. Journal
of Colloid and Interface Science, 356(2): 473-480.
154.
Rajesh, G. and Nagar, A. (2018). Efficacy of calcination on
the optical, structural and photocatalytic properties of Zirconium Oxide via
facile precipitation method. Journal of Emerging Technologies and Innovative
Research, 5(10): 575-585.
155.
Devanand Venkatasubbu, G., Ramasamy, S., Ramakrishnan, V. and
Kumar, J. (2013). Folate targeted PEGylated titanium dioxide nanoparticles as a
nanocarrier for targeted paclitaxel drug delivery. Advanced Powder
Technology, 24(6): 947-954.
156.
Ramzan, M., Obodo, R. M., Mukhtar, S., Ilyas, S. Z., Aziz, F.
and Thovhogi, N. (2019). Green synthesis of copper oxide nanoparticles using
Cedrus deodara aqueous extract for antibacterial activity. Materials Today:
Proceedings, 36: 576-581.
157.
Garg, S., Gautam, S., Pal, J., Kandasami, A. and Goyal, N.
(2021). Materials Characterization Characterizing the defects and
ferromagnetism in metal oxides : The case of magnesium oxide. Materials
Characterization, 179(5): 111366.
158.
Nair, H., Liszka, M. J., Gatt, J. E. and Baertsch, C. D.
(2008). Effects of metal oxide domain size, dispersion, and interaction in
mixed WOx / MoOx catalysts supported on Al2O3 for the
partial oxidation of ethanol to acetaldehyde. Journal Physical Chemistry, 112:
1612-1620.
159.
Bharate, B. G., Hande, P. E., Samui, A. B. and Kulkarni, P.
S. (2018). Ionic liquid (IL) capped MnO2 nanoparticles as an
electrode material and IL as electrolyte for supercapacitor application. Renewable
Energy, 126: 437-444.
160.
Bunaciu, A. A., Udriştioiu, E. gabriela, and
Aboul-Enein, H. Y. (2015). X-ray diffraction: Instrumentation and applications. Critical
Reviews in Analytical Chemistry, 45(4): 289-299.
161.
Connolly, J. R. (2005). Introduction to X-ray powder
diffraction. Spring, 2005: 1-9.
162.
Zangaro, G. A. C., Carvalho, A. C. S., Ekawa, B., do
Nascimento, A. L. C. S., Nunes, W. D. G., Fernandes, R. P., Parkes, G. M. B.,
Ashton, G. P., Ionashiro, M. and Caires, F. J. (2019). Study of the thermal
behavior in oxidative and pyrolysis conditions of some transition metals
complexes with Lornoxicam as ligand using the techniques: TG-DSC, DSC, HSM and
EGA (TG-FTIR and HSM-MS). Thermochimica Acta, 681(8): 178399.
163.
Amaya, S. L., Alonso-Núñez, G., Díaz De León, J. N., Fuentes,
S. and Echavarría, A. (2021). Synthesis and characterization of metal oxides complexes with
potential application in HDS reactions. Materials Letters, 291: 129562.
164.
Kowsari, E. and Abdpour, S. (2016). Investigation performance
of rod-like ZnO/CdO composites, synthesized in ionic liquid medium as
photocatalytic for degradation of air pollutants (SO2 and NOX).
Optik, 127(23): 11567-11576.
165.
Singh, N. and Haque, F. Z. (2016). Synthesis of zinc oxide
nanoparticles with different pH by aqueous solution growth technique. Optik,
127(1): 174-177.
166.
Kowsari, E. and Abdpour, S. (2017). In-situ functionalization
of mesoporous hexagonal ZnO synthesized in task specific ionic liquid as a
photocatalyst for elimination of SO2, NOx, and CO. Journal of Solid State
Chemistry, 256(9): 141-150.
167.
Salleh, A., Naomi, R., Utami, N. D., Mohammad, A. W.,
Mahmoudi, E., Mustafa, N. and Fauzi, M. B. (2020). The potential of silver
nanoparticles for antiviral and antibacterial applications: A mechanism of
action. Nanomaterials, 10(8): 1-20.
168.
Issn, O. P. and Sarkar, S. (2020). Silver nanoparticles with
bronchodilators through nebulisation to treat Covid-19 patients. Journal of
Current Medical Researcg and Opinion, 3(4): 449-450.
169.
Shereen, M. A., Khan, S., Kazmi, A., Bashir, N. and Siddique,
R. (2020). Covid-19 Infection: Origin, transmission, and characteristics of
human coronaviruses. Journal of Advanced Research, 24: 91-98.
170.
El-Shishtawy, R. M., Asiri, A. M., Abdelwahed, N. A. M. and
Al-Otaibi, M. M. (2011). In situ production of silver nanoparticle on cotton
fabric and its antimicrobial evaluation. Cellulose, 18(1): 75-82.
171.
Jia, M., Zhang, W., He, T., Shu, M., Deng, J., Wang, J., Li,
W., Bai, J., Lin, Q., Luo, F., Zhou, W. and Zeng, X. (2020). Evaluation of the
genotoxic and oxidative damage potential of silver nanoparticles in human
NCM460 and HCT116 cells. International Journal of Molecular Sciences,
21(5): 1618.