Malaysian
Journal of Analytical Sciences, Vol 26 No 6 (2022): 1378 - 1393
A REVIEW ON LIPID OXIDATION IN EDIBLE OILS
(Ulasan Mengenai Pengoksidaan Lelemak salam Minyak Masak)
Radhika Loganathan1,2*, Azmil Haizam Ahmad Tarmizi1,
Shireene Ratna Vethakkan2, Kim-Tiu Teng1
1 Malaysian Palm Oil Board,
Bandar Baru Bangi, 43000 Kajang,
Selangor, Malaysia
2 Department of Medicine,
Faculty of Medicine, University of Malaya,
50603 Kuala Lumpur, Malaysia
*Correspondence
author: radhika@mpob.gov.my
Received: 28 February 2022; Accepted:
3 July 2022; Published: 27 December 2022
Abstract
Lipid oxidation is the main quandary that causes
deterioration of cooking oil quality resulting in off-flavours and an
unpleasant odour called rancidity. Oxidative stability can directly affect oil
quality and shelf life. Edible oil gets oxidised during processing and storage stages through auto- and photo-oxidations. In addition
to this, cooking causes chemical reactions such as hydrolysis, oxidation, and
polymerization. Hence, it is imperative to evaluate methods and measures that
could maintain the quality of the oil. In addition, it is vital to evaluate the
conditions or processes with potentially deleterious effects on oil quality and
nutritional benefits to enable avoidance of these negative variables. The rate
of oxidation depends on several factors including the presence of oxygen and
light, unfavourable storage temperature, fatty acid composition, and cooking
conditions and practices. This article reviews the mechanism of
auto-oxidation and photo-oxidation, the role of pro-oxidants and antioxidants as
well as chemical reactions induced by conventional heating techniques.
Keywords: lipid oxidation, storage
conditions, thermal oxidation, oxidative stability, phytonutrient stability
Abstrak
Pengoksidaan lelemak adalah masalah utama yang menyebabkan kemerosotan
kualiti minyak masak yang mengakibatkan rasa dan bau (tengik) yang tidak
menyenangan. Kestabilan oksidatif secara langsung boleh menjejaskan kualiti
minyak dan jangka hayat. Minyak masak akan teroksida semasa pemprosesan dan
penyimpanan melalui auto- dan foto-oksida. Di samping itu, proses memasak
melibatkan tindak balas kimia seperti hidrolisis, pengoksidaan, dan
pempolimeran. Oleh itu, adalah penting untuk menilai kaedah dan langkah-langkah
pencegahan bagi mengekalkan kualiti minyak masak. Tambahan lagi, adalah penting
untuk menilai keadaan atau proses yang boleh menjejaskan kualiti minyak dan
faktor nutrisi untuk mengelakkan pembolehubah negatif ini. Kadar pengoksidaan
bergantung kepada beberapa faktor, diantaranya adalah kehadiran oksigen dan cahaya,
suhu penyimpanan yang tidak sesuai, komposisi asid lemak, serta keadaan dan
amalan memasak. Artikel ini mengkaji mekanisme auto-oksida dan foto-oksida,
peranan pro-oksidan dan antioksida serta tindak balas kimia yang disebabkan
oleh teknik masakan konvensional.
Kata kunci: pengoksidaan
lelemak, keadaan penyimpanan, pengoksidaan terma, kestabilan oksidatif,
kestabilan fitonutrien
Graphical Abstract
References
1.
Choe, E.
and Min, D. B. (2006). Mechanisms
and factors for edible oil oxidation. Comprehensive
Reviews in Food Science and Food Safety, 5(4): 169-186.
2.
Ahmad Tarmizi, A. H. and
Ismail, R. (2008). Comparison of the frying stability of standard palm olein
and special quality palm olein. Journal
of the American Oil Chemists' Society, 85(3): 245-251.
3.
Ahmad Tarmizi, A. H. and
Siew, W. L. (2008). Quality assessment of palm products upon prolonged heat
treatment. Journal Oleo Science, 57(12): 639-648.
4.
Vrbiková, L., Schmidt, Š.,
Kreps, F., Tmakova, L., Čertík, M. and Sekretar, S. (2014). Degradation of
selected nutrients in sunflower oils during long-term storage. Czech Journal of Food Sciences, 32(6): 595-600.
5.
Gupta, M. K. (2005). Frying oils. Bailey's industrial oil and fat
products, John Wiley & Sons Inc., New Jersey: pp 4: 1.
6.
Saha, S. and Mondal, S.
(2018). Photochemistry and
photophysics: Fundamentals to applications: BoD–Books on Demand.
7.
Daskalaki, D., Kefi, G.,
Kotsiou, K. and Tasioula-Margari, M. (2009). Evaluation of phenolic compounds
degradation in virgin olive oil during storage and heating. Journal of Food and Nutrition Research, 48 (1): 31-41.
8.
Henry, L. N. (2016). Effect
of light and air on the quality and stability of selected vegetable oils. International Journal of Innovative Research
in Science, Engineering and Technology, 5: 6609-6616.
9.
Shankar, R., Shim, W. J., An,
J. G. and Yim, U. H. (2015). A practical review on photooxidation of crude oil:
Laboratory lamp setup and factors affecting it. Water Research, 68:
304-315.
10.
Mishra, R. and Sharma, H.
(2011). Effect of packaging materials on the storage stability of physically
refined rice bran oil and its blends. African
Journal of Food Science, 5(12):
676-685.
11.
Gulla, S. and Waghray, K.
(2011). Effect of storage on physico-chemical characteristics and fatty acid
composition of selected oil blends. Journal
of Life Sciences, 3(1): 35-46.
12.
Ngassapa, F., Nyandoro, S.
and Mwaisaka, T. (2012). Effects of temperature on the physicochemical
properties of traditionally processed vegetable oils and their blends. Tanzania Journal of Science, 38(3): 166-176.
13.
Li, Y., Ma,
W. J., Qi, B. K., Rokayya, S., Li, D., Wang, J. and Jiang, L. Z. (2014). Blending of soybean oil with
selected vegetable oils: impact on oxidative stability and radical scavenging
activity. Asian Pacific Journal of Cancer
Prevention, 15(6): 2583-2589.
14.
Andarwulan, N., Gitapratiwi,
D., Laillou, A., Fitriani, D., Hariyadi, P., Moench-Pfanner, R. and Martianto,
D. (2014). Quality of vegetable oil prior to fortification is an important
criteria to achieve a health impact. Nutrients, 6(11): 5051-5060.
15.
Silalahi,
D. K. N., Yuliyanti, D., da Silva, M., Christianti, I., Mulyono, K. and
Wassell, P. (2017). The
stability of vitamin A in fortified palm olein during extended storage and
thermal treatment. International Journal
of Food Science & Technology, 52(8): 1869-1877.
16.
Augustin, G., Anne, M. N.,
Armand, A. B. and Moses, M. C. (2015). Some physicochemical characteristics and
storage stability of crude palm oils (Elaeis guineensis Jacq). American Journal of Food Science and
Technology, 3(4): 97-102.
17.
Azeez, O. T., Ejeta, K. O.,
Frank, E. O. and Gerald, N. E. (2013). Effects of antioxidants on the oxidative
stability of vegetable oil at elevated temperature. International Journal of Applied Science and Technology, 3(5): 107-115.
18.
Amariei, S., Sănduleac,
E. and Ciornei, S. (2016). Comparative study of oxidative stability for
different types of vegetable oils. Food
and Environment Safety Journal, 12(2):
156-160.
19.
Mezouari, S. and Eichner, K.
(2007). Comparative study on the stability of crude and refined rice bran oil
during long term storage at room temperature. European Journal of Lipid Science and Technology, 109 (3): 198-205.
20.
Tihomir, M., Drago, Š.,
Jurislav, B., Antonija, Š., Dubravka, V. Č. and Antun, J. (2019).
Production and stabilisation of peanut oil. Nutrition
and Dietetics, 8(1): 40-45.
21.
Santos, C.
S., Cruz, R., Cunha, S. C. and Casal, S. (2013). Effect of cooking on olive
oil quality attributes. Food Research
International, 54(2): 2016-2024.
22.
Loganathan, R., Tarmizi, A.
H. A., Vethakkan, S. R. and Teng, K.-T. (2020). Retention of carotenes and vitamin
E, and physico-chemical changes occurring upon heating red palm olein using
deep-fat fryer, microwave oven and conventional oven. Journal Oleo Sciences, 69(3):
167-183.
23.
Tang, J. and Resurreccion Jr,
F. (2009). Electromagnetic basis of microwave heating. Development of packaging
and products for use in microwave ovens. Elsevier. pp. 3-38e.
24.
Yahyaoui,
A., Rigane, G. and Salem, R. B. (2014). Microwave heating of different
commercial tunisian olive oil: Regarding to exposure times on physical and
chemical parameters properties. Biochemistry
and Physiology, 3(2): 1-5.
25.
Malheiro, R., Oliveira, I.,
Vilas-Boas, M., Falcăo, S., Bento, A. and Pereira, J. A. (2009). Effect of
microwave heating with different exposure times on physical and chemical
parameters of olive oil. Food and
Chemical Toxicology, 47(1): 92-97.
26.
Ghosh, J., Banerjee, A.,
Gupta, S., Sengupta, A. and Ghosh, M. (2014). Comparative degradation effects
of sesame and soybean oil during heating using microwave irradiation. Journal of Scientific and Industrial
Research, 73(8): 547-552.
27.
Ahmad Tarmizi, A. H.,
Hishamuddin, E. and Abd Razak, R. A. (2019). Impartial assessment of oil
degradation through partitioning of polar compounds in vegetable oils under
simulated frying practice of fast food restaurants. Food Control, 96: 445-455.
28.
Ahmad Tarmizi, A. H., Ismail,
R. and Kuntom, A. (2016). Effect of frying on the palm oil quality attributes–A
Review. Journal of Oil Palm Research, 28(2):
143-153.
29.
Choe, E. and Min, D. (2007). Chemistry
of deep-fat frying oils. Jornal Food
Sciences, 72(5): 77-86.
30.
Andrikopoulos, N. K.,
Kalogeropoulos, N., Falirea, A. and Barbagianni, M. N. (2002). Performance of
virgin olive oil and vegetable shortening during domestic deep-frying and
pan-frying of potatoes. International
Journal of Food Science and Technology, 37(2): 177-190.
31.
Ahmad Tarmizi, A. H., Ahmad,
K., Sahri, M. M. and May, C. Y. (2016). Rancimat test for measuring the
oxidative stability of cooking oils upon prolonged frying. Journal of Oil Palm Research, 28(4): 531-535.
32.
Hu, M., Pan;, K., Niu;, Y.,
Chen;, S., Yoong;, J. H., Tarmizi;, A. H. A. and Zhang, G. (2020). Comparative
assessment of thermal resistance of palm stearin and high oleic blended oil
when subjected to frying practice in fast food restaurants. Journal of Oil Palm Research, 32(1):
90-102.
33. Dostalova,
J., Hanzlik, P., Reblova, Z., Pokorny, J. and Sakurai, H. (2005). Oxidative
changes of vegetable oils during microwave heating. Czech Journal of Food Sciences, 23(6): 230-239.
34.
Casal, S., Malheiro, R.,
Sendas, A., Oliveira, B. P. and Pereira, J. A. (2010). Olive oil stability
under deep-frying conditions. Food and
Chemical Toxicology, 48(10): 2972-2979.
35.
Cardoso-Ugarte, G. A.,
Morlan-Palmas, C. C. and Sosa-Morales, M. E. (2013). Effect of the addition of
basil essential oil on the degradation of palm olein during repeated deep
frying of French fries. Journal of Food
Science, 78(7): 978-984.
36.
Megahed, M. G. (2011). Effect
of microwave heating of linseed oil on the formation of primary and secondary
oxidation products. Agriculture and
Biology Journal of North America, 2: 673-679.
37.
Poiana, M. A. (2012).
Enhancing oxidative stability of sunflower oil during convective and microwave
heating using grape seed extract. International
Journal of Molecule Sciences, 13(7): 9240-9259.
38.
Mahmoud, E. A. E.-M.,
Dostálová, J., Pokornў, J., Lukešová, D. and Doležal, M. (2009).
Oxidation of olive oils during microwave and conventional heating for fast food
preparation. Czech Journal of Food
Sciences, 27: 173-177.
39.
Cheikhousman, R., Zude, M.,
Bouveresse, D. J.-R., Léger, C. L., Rutledge, D. N. and Birlouez-Aragon, I.
(2005). Fluorescence spectroscopy for monitoring deterioration of extra virgin
olive oil during heating. Analytical
Bioanalytical Chemistry, 382(6): 1438-1443.
40.
Kreps, F., Vrbiková, L.,
Schmidt, Š., Sekretár, S. and Híreš, O. (2014). Chemical changes in microwave
heated vegetable oils. European Journal
of Lipid Science and Technology, 116(12): 1685-1693.
41.
Ali, M. A., Nouruddeen, Z.
B., Muhamad, I., Latip, R. and Othman, N. H. (2014). Effect of microwave
heating on oxidative degradation of sunflower oil in the presence of palm
olein. Sains Malaysiana, 43 (8):
1189-1195.
42.
Abdulkarim, S. and Ghazali,
H. (2012). Fatty acid ratios and their relative amounts as indicators of oil
stability and extent of oil deterioration during frying. Journal of Food, Agriculture and Environment, 10: 33-38.
43.
Ahmad Tarmizi, A. H., Abd
Razak, R. A., Abdul Hammid, A. N. and Kuntom, A. (2019). Effect of
anti-clouding agent on the fate of 3-monochloropropane-1, 2-diol esters and
glycidyl esters in palm olein during repeated frying. Molecules, 24(12): 1-13.
44.
Choi, H., Lee, E. and Lee,
K.-G. (2014). Quality evaluation of noble mixed oil blended with palm and
canola oil. Journal of Oleo Sciences, 63(7):
653-660.
45.
Chen, W. A., Chiu, C. P.,
Cheng, W. C., Hsu, C. K. and Kuo, M. I. (2013). Total polar compounds and acid
values of repeatedly used frying oils measured by standard and rapid methods. Journal of Food and Drug Analysis, 21(1):
58-65.
46.
Liu, W. and Lu, G. (2018).
Cis-trans isomerization of unsaturated fatty acids in edible oils to prepare
trans fat. Grasas y Aceites, 69(3):
268.
47.
Aladedunye, F. and
Przybylski, R. (2014). Performance of palm olein and modified rapeseed, sunflower,
and soybean oils in intermittent deep‐frying. European Journal of Lipid Science and Technology, 116 (2): 144-152.
48.
Ahmad Tarmizi, A. H., Niranjan,
K. and Gordon, M. (2013). Physico-chemical changes occurring in oil when
atmospheric frying is combined with post-frying vacuum application. Food Chemistry, 136(2): 902-908.
49.
Procida,
G., Cichelli, A., Compagnone, D., Maggio, R. M., Cerretani, L. and Del Carlo,
M. (2009). Influence of chemical composition
of olive oil on the development of volatile compounds during frying. European Food Research and Technology, 230(2):
217-229.