Malaysian Journal of Analytical Sciences, Vol 26 No 6 (2022): 1378 - 1393

 

 A REVIEW ON LIPID OXIDATION IN EDIBLE OILS

 

(Ulasan Mengenai Pengoksidaan Lelemak salam Minyak Masak)

 

Radhika Loganathan1,2*, Azmil Haizam Ahmad Tarmizi1, Shireene Ratna Vethakkan2, Kim-Tiu Teng1

                                                                                                           

1 Malaysian Palm Oil Board,

Bandar Baru Bangi, 43000 Kajang, Selangor, Malaysia

2 Department of Medicine,

Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia

 

*Correspondence author: radhika@mpob.gov.my

 

 

Received: 28 February 2022; Accepted: 3 July 2022; Published:  27 December 2022

 

 

Abstract

Lipid oxidation is the main quandary that causes deterioration of cooking oil quality resulting in off-flavours and an unpleasant odour called rancidity. Oxidative stability can directly affect oil quality and shelf life. Edible oil gets oxidised during processing and storage stages through auto- and photo-oxidations. In addition to this, cooking causes chemical reactions such as hydrolysis, oxidation, and polymerization. Hence, it is imperative to evaluate methods and measures that could maintain the quality of the oil. In addition, it is vital to evaluate the conditions or processes with potentially deleterious effects on oil quality and nutritional benefits to enable avoidance of these negative variables. The rate of oxidation depends on several factors including the presence of oxygen and light, unfavourable storage temperature, fatty acid composition, and cooking conditions and practices. This article reviews the mechanism of auto-oxidation and photo-oxidation, the role of pro-oxidants and antioxidants as well as chemical reactions induced by conventional heating techniques.

 

Keywords: lipid oxidation, storage conditions, thermal oxidation, oxidative stability, phytonutrient stability

 

Abstrak

Pengoksidaan lelemak adalah masalah utama yang menyebabkan kemerosotan kualiti minyak masak yang mengakibatkan rasa dan bau (tengik) yang tidak menyenangan. Kestabilan oksidatif secara langsung boleh menjejaskan kualiti minyak dan jangka hayat. Minyak masak akan teroksida semasa pemprosesan dan penyimpanan melalui auto- dan foto-oksida. Di samping itu, proses memasak melibatkan tindak balas kimia seperti hidrolisis, pengoksidaan, dan pempolimeran. Oleh itu, adalah penting untuk menilai kaedah dan langkah-langkah pencegahan bagi mengekalkan kualiti minyak masak. Tambahan lagi, adalah penting untuk menilai keadaan atau proses yang boleh menjejaskan kualiti minyak dan faktor nutrisi untuk mengelakkan pembolehubah negatif ini. Kadar pengoksidaan bergantung kepada beberapa faktor, diantaranya adalah kehadiran oksigen dan cahaya, suhu penyimpanan yang tidak sesuai, komposisi asid lemak, serta keadaan dan amalan memasak. Artikel ini mengkaji mekanisme auto-oksida dan foto-oksida, peranan pro-oksidan dan antioksida serta tindak balas kimia yang disebabkan oleh teknik masakan konvensional.

 

Kata kunci: pengoksidaan lelemak, keadaan penyimpanan, pengoksidaan terma, kestabilan oksidatif, kestabilan fitonutrien



Graphical Abstract

 

References

1.         Choe, E. and Min, D. B. (2006). Mechanisms and factors for edible oil oxidation. Comprehensive Reviews in Food Science and Food Safety, 5(4): 169-186.

2.         Ahmad Tarmizi, A. H. and Ismail, R. (2008). Comparison of the frying stability of standard palm olein and special quality palm olein. Journal of the American Oil Chemists' Society, 85(3): 245-251.

3.         Ahmad Tarmizi, A. H. and Siew, W. L. (2008). Quality assessment of palm products upon prolonged heat treatment. Journal Oleo Science, 57(12): 639-648.

4.         Vrbiková, L., Schmidt, Š., Kreps, F., Tmakova, L., Čertík, M. and Sekretar, S. (2014). Degradation of selected nutrients in sunflower oils during long-term storage. Czech Journal of Food Sciences, 32(6): 595-600.

5.         Gupta, M. K. (2005). Frying oils. Bailey's industrial oil and fat products, John Wiley & Sons Inc., New Jersey: pp 4: 1.

6.         Saha, S. and Mondal, S. (2018). Photochemistry and photophysics: Fundamentals to applications: BoD–Books on Demand.

7.         Daskalaki, D., Kefi, G., Kotsiou, K. and Tasioula-Margari, M. (2009). Evaluation of phenolic compounds degradation in virgin olive oil during storage and heating. Journal of Food and Nutrition Research, 48 (1): 31-41.

8.         Henry, L. N. (2016). Effect of light and air on the quality and stability of selected vegetable oils. International Journal of Innovative Research in Science, Engineering and Technology, 5: 6609-6616.

9.         Shankar, R., Shim, W. J., An, J. G. and Yim, U. H. (2015). A practical review on photooxidation of crude oil: Laboratory lamp setup and factors affecting it. Water Research, 68: 304-315.

10.      Mishra, R. and Sharma, H. (2011). Effect of packaging materials on the storage stability of physically refined rice bran oil and its blends. African Journal of Food Science, 5(12): 676-685.

11.      Gulla, S. and Waghray, K. (2011). Effect of storage on physico-chemical characteristics and fatty acid composition of selected oil blends. Journal of Life Sciences, 3(1): 35-46.

12.      Ngassapa, F., Nyandoro, S. and Mwaisaka, T. (2012). Effects of temperature on the physicochemical properties of traditionally processed vegetable oils and their blends. Tanzania Journal of Science, 38(3): 166-176.

13.      Li, Y., Ma, W. J., Qi, B. K., Rokayya, S., Li, D., Wang, J. and Jiang, L. Z. (2014). Blending of soybean oil with selected vegetable oils: impact on oxidative stability and radical scavenging activity. Asian Pacific Journal of Cancer Prevention, 15(6): 2583-2589.

14.      Andarwulan, N., Gitapratiwi, D., Laillou, A., Fitriani, D., Hariyadi, P., Moench-Pfanner, R. and Martianto, D. (2014). Quality of vegetable oil prior to fortification is an important criteria to achieve a health impact. Nutrients, 6(11): 5051-5060.

15.      Silalahi, D. K. N., Yuliyanti, D., da Silva, M., Christianti, I., Mulyono, K. and Wassell, P. (2017). The stability of vitamin A in fortified palm olein during extended storage and thermal treatment. International Journal of Food Science & Technology, 52(8): 1869-1877.

16.      Augustin, G., Anne, M. N., Armand, A. B. and Moses, M. C. (2015). Some physicochemical characteristics and storage stability of crude palm oils (Elaeis guineensis Jacq). American Journal of Food Science and Technology, 3(4): 97-102.

17.      Azeez, O. T., Ejeta, K. O., Frank, E. O. and Gerald, N. E. (2013). Effects of antioxidants on the oxidative stability of vegetable oil at elevated temperature. International Journal of Applied Science and Technology, 3(5): 107-115.

18.      Amariei, S., Sănduleac, E. and Ciornei, S. (2016). Comparative study of oxidative stability for different types of vegetable oils. Food and Environment Safety Journal, 12(2): 156-160.

19.      Mezouari, S. and Eichner, K. (2007). Comparative study on the stability of crude and refined rice bran oil during long term storage at room temperature. European Journal of Lipid Science and Technology, 109 (3): 198-205.

20.      Tihomir, M., Drago, Š., Jurislav, B., Antonija, Š., Dubravka, V. Č. and Antun, J. (2019). Production and stabilisation of peanut oil. Nutrition and Dietetics, 8(1): 40-45.

21.      Santos, C. S., Cruz, R., Cunha, S. C. and Casal, S. (2013). Effect of cooking on olive oil quality attributes. Food Research International, 54(2): 2016-2024.

22.      Loganathan, R., Tarmizi, A. H. A., Vethakkan, S. R. and Teng, K.-T. (2020). Retention of carotenes and vitamin E, and physico-chemical changes occurring upon heating red palm olein using deep-fat fryer, microwave oven and conventional oven. Journal Oleo Sciences, 69(3): 167-183.

23.      Tang, J. and Resurreccion Jr, F. (2009). Electromagnetic basis of microwave heating. Development of packaging and products for use in microwave ovens. Elsevier. pp. 3-38e.

24.      Yahyaoui, A., Rigane, G. and Salem, R. B. (2014). Microwave heating of different commercial tunisian olive oil: Regarding to exposure times on physical and chemical parameters properties. Biochemistry and Physiology, 3(2): 1-5.

25.      Malheiro, R., Oliveira, I., Vilas-Boas, M., Falcăo, S., Bento, A. and Pereira, J. A. (2009). Effect of microwave heating with different exposure times on physical and chemical parameters of olive oil. Food and Chemical Toxicology, 47(1): 92-97.

26.      Ghosh, J., Banerjee, A., Gupta, S., Sengupta, A. and Ghosh, M. (2014). Comparative degradation effects of sesame and soybean oil during heating using microwave irradiation. Journal of Scientific and Industrial Research, 73(8): 547-552.

27.      Ahmad Tarmizi, A. H., Hishamuddin, E. and Abd Razak, R. A. (2019). Impartial assessment of oil degradation through partitioning of polar compounds in vegetable oils under simulated frying practice of fast food restaurants. Food Control, 96: 445-455.

28.      Ahmad Tarmizi, A. H., Ismail, R. and Kuntom, A. (2016). Effect of frying on the palm oil quality attributes–A Review. Journal of Oil Palm Research, 28(2): 143-153.

29.      Choe, E. and Min, D. (2007). Chemistry of deep-fat frying oils. Jornal Food Sciences, 72(5): 77-86.

30.      Andrikopoulos, N. K., Kalogeropoulos, N., Falirea, A. and Barbagianni, M. N. (2002). Performance of virgin olive oil and vegetable shortening during domestic deep-frying and pan-frying of potatoes. International Journal of Food Science and Technology, 37(2): 177-190.

31.      Ahmad Tarmizi, A. H., Ahmad, K., Sahri, M. M. and May, C. Y. (2016). Rancimat test for measuring the oxidative stability of cooking oils upon prolonged frying. Journal of Oil Palm Research, 28(4): 531-535.

32.      Hu, M., Pan;, K., Niu;, Y., Chen;, S., Yoong;, J. H., Tarmizi;, A. H. A. and Zhang, G. (2020). Comparative assessment of thermal resistance of palm stearin and high oleic blended oil when subjected to frying practice in fast food restaurants. Journal of Oil Palm Research, 32(1): 90-102.

33.      Dostalova, J., Hanzlik, P., Reblova, Z., Pokorny, J. and Sakurai, H. (2005). Oxidative changes of vegetable oils during microwave heating. Czech Journal of Food Sciences, 23(6): 230-239.

34.      Casal, S., Malheiro, R., Sendas, A., Oliveira, B. P. and Pereira, J. A. (2010). Olive oil stability under deep-frying conditions. Food and Chemical Toxicology, 48(10): 2972-2979.

35.      Cardoso-Ugarte, G. A., Morlan-Palmas, C. C. and Sosa-Morales, M. E. (2013). Effect of the addition of basil essential oil on the degradation of palm olein during repeated deep frying of French fries. Journal of Food Science, 78(7): 978-984.

36.      Megahed, M. G. (2011). Effect of microwave heating of linseed oil on the formation of primary and secondary oxidation products. Agriculture and Biology Journal of North America, 2: 673-679.

37.      Poiana, M. A. (2012). Enhancing oxidative stability of sunflower oil during convective and microwave heating using grape seed extract. International Journal of Molecule Sciences, 13(7): 9240-9259.

38.      Mahmoud, E. A. E.-M., Dostálová, J., Pokornў, J., Lukešová, D. and Doležal, M. (2009). Oxidation of olive oils during microwave and conventional heating for fast food preparation. Czech Journal of Food Sciences, 27: 173-177.

39.      Cheikhousman, R., Zude, M., Bouveresse, D. J.-R., Léger, C. L., Rutledge, D. N. and Birlouez-Aragon, I. (2005). Fluorescence spectroscopy for monitoring deterioration of extra virgin olive oil during heating. Analytical Bioanalytical Chemistry, 382(6): 1438-1443.

40.      Kreps, F., Vrbiková, L., Schmidt, Š., Sekretár, S. and Híreš, O. (2014). Chemical changes in microwave heated vegetable oils. European Journal of Lipid Science and Technology, 116(12): 1685-1693.

41.      Ali, M. A., Nouruddeen, Z. B., Muhamad, I., Latip, R. and Othman, N. H. (2014). Effect of microwave heating on oxidative degradation of sunflower oil in the presence of palm olein. Sains Malaysiana, 43 (8): 1189-1195.

42.      Abdulkarim, S. and Ghazali, H. (2012). Fatty acid ratios and their relative amounts as indicators of oil stability and extent of oil deterioration during frying. Journal of Food, Agriculture and Environment, 10: 33-38.

43.      Ahmad Tarmizi, A. H., Abd Razak, R. A., Abdul Hammid, A. N. and Kuntom, A. (2019). Effect of anti-clouding agent on the fate of 3-monochloropropane-1, 2-diol esters and glycidyl esters in palm olein during repeated frying. Molecules, 24(12): 1-13.

44.      Choi, H., Lee, E. and Lee, K.-G. (2014). Quality evaluation of noble mixed oil blended with palm and canola oil. Journal of Oleo Sciences, 63(7): 653-660.

45.      Chen, W. A., Chiu, C. P., Cheng, W. C., Hsu, C. K. and Kuo, M. I. (2013). Total polar compounds and acid values of repeatedly used frying oils measured by standard and rapid methods. Journal of Food and Drug Analysis, 21(1): 58-65.

46.      Liu, W. and Lu, G. (2018). Cis-trans isomerization of unsaturated fatty acids in edible oils to prepare trans fat. Grasas y Aceites, 69(3): 268.

47.      Aladedunye, F. and Przybylski, R. (2014). Performance of palm olein and modified rapeseed, sunflower, and soybean oils in intermittent deepfrying. European Journal of Lipid Science and Technology, 116 (2): 144-152.

48.      Ahmad Tarmizi, A. H., Niranjan, K. and Gordon, M. (2013). Physico-chemical changes occurring in oil when atmospheric frying is combined with post-frying vacuum application. Food Chemistry, 136(2): 902-908.

49.      Procida, G., Cichelli, A., Compagnone, D., Maggio, R. M., Cerretani, L. and Del Carlo, M. (2009). Influence of chemical composition of olive oil on the development of volatile compounds during frying. European Food Research and Technology, 230(2): 217-229.