Malaysian Journal of Analytical Sciences, Vol 26 No 6 (2022): 1344 - 1377

 

MAGNETIC NANOPARTICLES AS EFFECTIVE ADSORBENTS FOR THE REMOVAL OF HEAVY METALS FROM WATER: A REVIEW OF SURFACE MODIFICATION (2015-2022)

 

(Nanozarah Bermagnet Sebagai Penjerap yang Berkesan untuk Penyingkiran Logam Berat daripada Air: Tinjauan Kajian Pengubahsuaian Permukaan (2015-2022))

 

Gimba Joshua Dagil1,2, Ng Nyuk-Ting1, Aemi Syazwani Abdul Keyon1,3*, Sheela Chandren1,3,

Wan Aini Wan Ibrahim1,3*

 

1Department of Chemistry,

Faculty of Science,

Universiti Teknologi Malaysia, 81310, Johor Bahru, Johor, Malaysia

2Department of Science, Plateau State Polytechnic, Barkin Ladi,

P.M.B 02023, Bukuru, Jos Nigeria

3Centre for Sustainable Nanomaterials,

Ibnu Sina Institute for Scientific and Industrial Research,

Universiti Teknologi Malaysia, 81310, Johor Bahru, Johor, Malaysia

 

*Corresponding author e-mail: aemi@utm.my; waini@utm.my

 

 

Received: 17 July 2022; Accepted: 27 September 2022; Published:  27 December 2022

 

 

Abstract

The use of biopolymer composite materials in the usage of magnetic nanoparticles for the removal of heavy metal pollutants has received little attention, despite their remarkable physical and chemical properties that suggested their huge potential as promising adsorbents. . Therefore, various sorbents for heavy metals removal have been prepared including surface-modified magnetic nanoparticles (MNPs). MNPs are susceptible to oxidation in the air and agglomeration in solvents rendering them to lose their essential adsorbent properties. Silica coating has proven to prevent degradation of the MNP and functionalizes the surface with silanol groups. A fundamental understanding of various surface modifications would be beneficial for near future research as well as industrial applications. Thus, this article aims in reviewing the most recent advances for surface modification of MNPs materials, including biopolymer materials, focusing on the chemistry preparation, characterization, optimization, mechanisms of adsorption, isotherms and kinetic models in order to  remove  various metals in water.

 

Keywords: magnetic nanoparticles, functionalization, modification biopolymer, heavy metals, water environment

 

Abstrak

Pengunaan komposit bioplimer sebagai nanozarah bermagnet untuk penjerapan logam berat kurang mendapat perhatian,   walaupun ianya mempunyai ciri fizikal dan kimia yang luar biasa yang menjadikan komposit bioplimer sebagai penjerap berkesan. Oleh itu, pelbagai penjerap untuk penyingkiran logam berat telah disediakan termasuk permukaan  nanopartikel bermagnet yang diubah suai (MNPs). MNPs mudah teroksida di udara dan mudah bergumpal dalam pelarut menyebabkan bahan ini kehilangan ciri-ciri penjerapan yang penting. Salutan silika telah dibuktikan menghalang kemerosotan MNPs serta menyebabkan permukaan tersebut berfungsi dengan kumpulan silanol. Pemahaman yang baik tentang pelbagai pengubahsuaian permukaan akan memberi manfaat untuk penyelidikan masa hadapan serta aplikasi industri. Maka, artikel ini bertujuan untuk membincangkan dengan lebih mendalam kemajuan terkini dalam pengubahsuaian permukaan MNP termasuk bahan biopolimer,  fokus terhadap penyediaan secara kimia, pencirian, keadaan penjerapan optimum, mekanisme penjerapan, model isoterma penjerapan dan model kinetik yang digunakan untuk penyingkiran bahan pencemar ion logam yang berbeza dalam persekitaran air.

 

Kata kunci: nanopartikel bermagnet, kefungsian, biopolimer pengubahsuaian, logam berat, persekitaran air


 


Graphical Abstract

 

References

1.      Sayato, Y. (1989). WHO guidelines for drinking-water quality. Eisei Kagaku, 35(5): 307-12.

2.      WHO (‎2003)‎. Lead in drinking-water: background document for development of WHO guidelines for drinking-water quality. WHO. Available from https://apps.who.int/iris/handle/10665/75370.

3.      WHO (2017). Guidelines for drinking-water quality: first addendum to the fourth edition. World Health Organisation. Available from: https://apps.who.int/iris/bitstream/handle/10665/254636/9789241550017-eng.pdf

4.      Ali, H., Khan, E. and Ilahi, I. (2019), Environmental chemistry and ecotoxicology of hazardous heavy metals: Environmental persistence, toxicity, and bioaccumulation. Journal of Chemistry, 2019: 6730305.

5.      Zhang, Y. and Duan, X. (2020). Chemical precipitation of heavy metals from wastewater by using the synthetical magnesium hydroxy carbonate. Water Science Technology; 81(6):1130-1136.

6.      Bashir, A., Malik, L. A., Ahad, S., Manzoor, T., Bhat, M. A., Dar, G. N., et al. (2019). Removal of heavy metal ions from aqueous system by ion-exchange and biosorption methods. Environmental Chemistry Letters, 17(2): 729-754.

7.      Al-Shannag, M., Al-Qodah, Z., Bani-Melhem, K., Qtaishat, M. R. and Alkasrawi, M. (2015). Heavy metal ions removal from metal plating wastewater using electrocoagulation: Kinetic study and process performance. Chemical Engineering Journal, 260: 749-756.

8.      Deliyanni, E. A., Kyzas, G. Z., Matis, K. A., (2017). Various flotation techniques for metal ions removal. Journal Molecular Liquids, 225: 260-264.

9.      Yee, L. Y., Asrul, N. M., Kamarulzaman, F. F., Ali, T. G., Zulkifli, N. S. E., Kamaruddin, A. F., et al. (2021). Recent advances in agricultural waste-based adsorbents for the removal of pollutants in water (2017-2020). Malaysian Journal Analytical Sciences, 25(3): 415-431.

10.    Fouda-Mbanga, B. G., Prabakaran, E. and Pillay, K., (2021). Carbohydrate biopolymers, lignin-based adsorbents for removal of heavy metals (Cd2+, Pb2+, Zn) from wastewater, regeneration, and reuse for spent adsorbents including latent fingerprint detection: A review. Biotechnology Reports, 30:e00609.

11.    Cheng, T. H., Sankaran, R., Show, P. L., Ooi, C. W., Liu, B. L., Chai, W. S., et al. (2021). Removal of protein wastes by cylinder-shaped NaY zeolite adsorbents decorated with heavy metal wastes. International Journal Biology Macromolecules, 185(May):761-772.

12.    Khalfa, L., Sdiri, A., Bagane, M. and Cervera, M. L. (2021). A calcined clay fixed-bed adsorption studies for the removal of heavy metals from aqueous solutions. Journal Clean Production, 278:123935.

13.    Zhang, Z., Wang, T., Zhang, H., Liu, Y. and Xing, B. (2021). Adsorption of Pb(II) and Cd(II) by magnetic-activated carbon and its mechanism. Science Total Environment, 757:143910.

14.    Liu, Z. H. and Yi, J. (2002), Falling film evaporation heat transfer of water/salt mixtures from roll-worked enhanced tubes and tube bundle. Applied Thermal Engineering, 22(1): 83-95.

15.    Yaacob, S. F. F. S., Razak, N. S. A., Aun, T. T., Rozi, S. K. M., Jamil, A. K. M. and Mohamad, S. (2018). Synthesis and characterizations of magnetic bio-material sporopollenin for the removal of oil from aqueous environment. Industrial Crops Production,124(July): 442-448.

16.    Abd Razak, N. F., Shamsuddin, M. and Lee, S. L. (2018). Adsorption kinetics and thermodynamics studies of gold(III) ions using thioctic acid-functionalized silica coated magnetite nanoparticles. Chemical Engineering Research Design, 130:18-28.

17.    Ding, J., Gao, Q., Luo, D., Shi, Z. G. and Feng, Y. Q. (2010). n-Octadecylphosphonic acid grafted mesoporous magnetic nanoparticle: Preparation, characterization, and application in magnetic solid-phase extraction. Journal of Chromatography A, 1217: 7351-7358.

18.    Shen, Y., Zhao, P. and Shao, Q., (2014). Porous silica and carbon derived materials from rice husk pyrolysis char. Microporous Mesoporous Materials, 188: 46-76.

19.    Sutirman, Z. A., Sanagi, M. M., Abd Karim, K. J., Wan Ibrahim, W. A., Jume, B. H. (2018).  Equilibrium, kinetic and mechanism studies of Cu(II) and Cd(II) ions adsorption by modified chitosan beads. International Journal Biology Macromolecules,116: 255-263.

20.    Poon, L., Wilson, L. D. and Headley, J. V. (2014). Chitosan-glutaraldehyde copolymers and their sorption properties. Carbohydrate Polymers, 109: 92-101.

21.    Song, X., Li, L., Zhou, L. and Chen, P., (2018). Magnetic thiolated/quaternized-chitosan composites design and application for various heavy metal ions removal, including cation and anion. Chemical Engineering Research Design, 136: 581-592.

22.    Sun, P., Zhang, W., Zou, B., Zhou, L., Ye, Z. and Zhao, Q. (2021). Preparation of EDTA-modified magnetic attapulgite chitosan gel bead adsorbent for the removal of Cu(II), Pb(II), and Ni(II). International Journal Biology Macromolecules, 182:1138-1149.

23.    Chen, X., Huang, Z., Luo, S. Y., Zong, M. H. and Lou, W. Y., (2021). Multi-functional magnetic hydrogels based on Millettia speciosa champ residue cellulose and chitosan: Highly efficient and reusable adsorbent for Congo red and Cu2+ removal. Chemical Engineering Journal, 423(5): 130198.

24.    Elanchezhiyan, S. S., Karthikeyan, P., Rathinam, K., Hasmath Farzana, M. and Park, C. M. (2021). Magnetic kaolinite immobilized chitosan beads for the removal of Pb(II) and Cd(II) ions from an aqueous environment. Carbohydrate Polymers, 261(3):117892.

25.    Huang, Y., Hu, C., An, Y., Xiong, Z., Hu, X., Zhang, G., et al. (2021). Magnetic phosphorylated chitosan composite as a novel adsorbent for highly effective and selective capture of lead from aqueous solution. Journal Hazardous Materials, 405(7): 124195.

26.    Liu, T., Han, X., Wang, Y., Yan, L., Du, B., Wei, Q., et al. (2017). Magnetic chitosan/anaerobic granular sludge composite: Synthesis, characterization, and application in heavy metal ions removal. Journal Colloid Interface Sciences, 508:405-414.

27.    Zhang, Q., Zhuang, S. and Wang, J. (2020). Biosorptive removal of cobalt(II) from aqueous solutions using magnetic cyanoethyl chitosan beads. Journal Environmental Chemical Engineering, 8(6):104531.

28     Sutirman, Z. A., Sanagi, M. M., Abd Karim, K. J., Wan Ibrahim, W. A. and Jume, B. H. (2018). Equilibrium, kinetic and mechanism studies of Cu(II) and Cd(II) ions adsorption by modified chitosan beads. International Journal of Biological Macromolecules, 116: 255-263.

29.    Pooladi, A. and Bazargan-Lari, R. (2020). Simultaneous removal of copper and zinc ions by Chitosan/hydroxyapatite/nano-magnetite composite. Journal Materials Resesearch Technology, 9(6):14841-14852.

30.    Feng, G., Ma, J., Zhang, X., Zhang, Q., Xiao, Y., Ma, Q., et al. (2019). Magnetic natural composite Fe3O4-chitosan@bentonite for removal of heavy metals from acid mine drainage. Journal Colloid Interface Sciences,538:132-141.

31.    Sun, H., Xia, N., Liu, Z., Kong, F. and Wang, S. (2019). Removal of copper and cadmium ions from alkaline solutions using chitosan-tannin functional paper materials as adsorbent. Chemosphere,  236: 124370.

32.    Huang, H., Yang, Q., Zhang, L., Huang, C. and Liang, Y., (2022). Polyacrylamide modified kaolin enhances the adsorption of sodium alginate/carboxymethyl chitosan hydrogel beads for copper ions. Chemical Engineering Research Design, 180 :296-305.

33.    Zhang, H., Li, R. and Zhang, Z., (2022). A versatile EDTA and chitosan bi-functionalized magnetic bamboo biochar for simultaneous removal of methyl orange and heavy metals from complex wastewater. Environmental Pollution, 293(11):118517.

34.    Karimi, F., Ayati, A., Tanhaei, B., Sanati, A. L., Afshar, S., Kardan, A., et al. (2022). Removal of metal ions using a new magnetic chitosan nano-bio-adsorbent; A powerful approach in water treatment. Environmental Research, 203(5): 111753.

36.    Nasirimoghaddam, S., Zeinali, S. and Sabbaghi, S., (2015). Chitosan coated magnetic nanoparticles as nano-adsorbent for efficient removal of mercury contents from industrial aqueous and oily samples. Journal Industrial Engineering Chemistry, 27(2014): 79-87.

37.    Jiang, Y., Cai, W., Tu, W. and Zhu, M., (2019). Facile cross-link method to synthesize magnetic Fe3O4@SiO2-chitosan with high adsorption capacity toward hexavalent chromium. Journal Chemical  Engineering Data,  64(1): 226-233.

38    Kim, H. S., Lee, C. G. and Lee, E. Y. (2011). Alginate lyase: Structure, property, and application. Biotechnology and Bioprocess Engineering, 16(5): 843-851.

39.    Ren, H., Gao, Z., Wu, D., Jiang, J., Sun, Y. and Luo, C. (2016). Efficient Pb(II) removal using sodium alginate-carboxymethyl cellulose gel beads: Preparation, characterization, and adsorption mechanism. Carbohydrate Polymers, 137: 402-409.

40.    Córdova, B. M., Venâncio, T., Olivera, M. and Huamani-Palomino, R. G. (2021). Xanthation of alginate for heavy metal ions removal. Characterization of xanthate-modified alginates and their metal derivatives. International Journal Biology Macromoleclues, 169: 130-142.

41.    Fuks, L., Herdzik-Koniecko, I., Polkowska-Motrenko, H. and Oszczak, A. (2018). Novel procedure for removal of the radioactive metals from aqueous wastes by the magnetic calcium alginate. International Journal Environmental Science Technology, 15(12): 2657-2668.

42.    Lee, H. K., Choi, J. W., Kim, J. H., Kim, C. R. and Choi, S. J. (2021). Simultaneous selective removal of cesium and cobalt from water using calcium alginate-zinc ferrocyanide-Cyanex 272 composite beads. Environmental Science Pollution Ressearch, 28: 42014-42023.

43.    Song, D., Park, S., Kang, H. W., Park, S. and Bin Han, J. (2013). Recovery of lithium (I), strontium (II), and lanthanum (III) using Ca-alginate beads. Journal Chemical Engineering Data, 58: 2455-2464.

44.    Dai, M., Liu, Y., Ju, B. and Tian, Y. (2019). Preparation of thermoresponsive alginate/starch ether composite hydrogel and its application to the removal of Cu(II) from aqueous solution. Bioresource Technology, 294(7):122192.

45.    Ahmed, A., Mohamed, F., Elzanaty, A. M. and Abdel-Gawad, O. F. (2021). Synthesis and characterization of diphenylamine grafted onto sodium alginate for metal removal. International Journal Biology Macromolecules, 167:766-776.

46.    Allouss, D., Essamlali, Y., Chakir, A., Khadhar, S. and Zahouily, M. (2020). Effective removal of Cu(II) from aqueous solution over graphene oxide encapsulated carboxymethylcellulose-alginate hydrogel microspheres: towards real wastewater treatment plants. Environmental Science Pollution Ressearch, 27(7):7476-7492.

47.    Hassan, R. M. (2021). Novel synthesis of natural cation exchange resin by crosslinking the sodium alginate as a natural polymer with 1,6-hexamethylene diisocyanate in inert solvents: Characteristics and application. International Journal Biology Macromolecules, 184:926-935.

48.    Córdova, B. M., Infantas, G. C., Mayta, S., Huamani-Palomino, R. G., Kock, F. V. C., Montes de Oca, J., et al. (2021). Xanthate-modified alginates for the removal of Pb(II) and Ni(II) from aqueous solutions: A brief analysis of alginate xanthation. International Journal Biology Macromolecules, 179:557-566.

49.    Ibrahim, W. A. W., Hassan, A. A. M., Sutirman, Z. A. and Bakar, M. B. (2020). A mini review on sporopollenin-based materials for removal of heavy metal ions from aqueous solution. Malaysian Journal of Analytical Sciences, 24(3): 300-312.

50.    Ahmad, N. F., Kamboh, M. A., Nodeh, H. R., Nadiah, S., Abd, B. and Mohamad, S. (2017). Synthesis of piperazine functionalized magnetic sporopollenin: a new organic-inorganic hybrid material for the removal of lead (II) and arsenic (III) from aqueous solution. Environmental Science and Pollution Research, 24(27): 21846-21858.

51.    Sayin, S., Gubbuk, I. H. and Yilmaz, M. (2013). Preparation of calix[4]arene-based sporopollenin and examination of its dichromate sorption ability. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 75(1–2):111-118.

52.    Ünlü, N. and Ersoz, M., (2007). Removal of heavy metal ions by using dithiocarbamate-sporopollenin. Separaction and Purification Technology, 52(3): 461-469.

53.    Hassan, A. M., Wan Ibrahim, W. A., Bakar, M. B., Sanagi, M. M., Sutirman, Z. A., Nodeh, H. R., et al. (2020). New effective 3-aminopropyltrimethoxysilane functionalized magnetic sporopollenin-based silica coated graphene oxide adsorbent for removal of Pb(II) from aqueous environment. Journal Environental Management, 253(10):109658.

54     Ren, Y., Abbood, H. A., He, F., Peng, H., Huang, K. (2013). Magnetic EDTA-modified chitosan/SiO2/Fe3O4 adsorbent: Preparation, characterization, and application in heavy metal adsorption. Chemical Engineering Journal, 226: 300-311.

55.    Bilgic, A., Cimen, A., Bastug, E. and Kursunlu, A. N. (2022). Fluorescent sporopollenin microcapsule modified by BODIPY for sensitive&selective recognition and efficient removal of Cu(II) from aqueous solution. Chemical Engineering Research Design,178: 61-72.

56.    Ahmad, N. F., Kamboh, M. A., Nodeh, H. R., Halim, S. N. B. A. and Mohamad, S., (2017). Synthesis of piperazine functionalized magnetic sporopollenin: a new organic-inorganic hybrid material for the removal of lead(II) and arsenic(III) from aqueous solution. Environmental Science Pollution Research, 24(27): 21846-21858.

57     Sargin I, Arslan G. (2015). Chitosan/sporopollenin microcapsules: Preparation, characterization, and application in heavy metal removal. International Journal Biology Macromolecules, 75: 230-238.

58.    Sargin, İ. And Arslan, G., (2016). Effect of glutaraldehyde cross-linking degree of chitosan/sporopollenin microcapsules on the removal of copper(II) from aqueous solution. Desalination Water Treatment, 57(23): 10664-10676.

59.    Şener, M., Reddy, D. H. K. and Kayan, B. (2014). Biosorption properties of pretreated sporopollenin biomass for lead(II) and copper(II): Application of response surface methodology. Ecological Engineering, 68: 200-208.

60.    Ersoz, M., Pehlivan, E., Duncan, H. J., Yildiz, S. and Pehlivan, M. (1995), Ion exchange equilibria of heavy metals in aqueous solution on new chelating resins of sporopollenin. Reaction Polymers, 24(3): 195-202.

61.    Bagtash, M., Yamini, Y., Tahmasebi, E., Zolgharnein, J. and Dalirnasab, Z., (2016). Magnetite nanoparticles coated with tannic acid as a viable sorbent for solid-phase extraction of Cd2+, Co2+, and Cr3+. Microchimica Acta, 183(1): 449-456.

62.    Makeswari, M. (2013). Tannin gel derived from leaves of Ricinus communis as an adsorbent for the removal of Cu(II) and Ni(II) ions from aqueous solution. International Journal of Modern Engineering Research, 3(5): 3255-3266.

63.    Kavitha, V. U. and Kandasubramanian, B. (2020). Tannins for wastewater treatment. SN Applied Sciences, 2: 1081.

64.    Zou, L., Shao, P., Zhang, K., Yang, L., You, D., Shi, H., et al. (2018). Tannic acid-based adsorbent with a superior selectivity for lead(II) capture: Adsorption site and selective mechanism. Chemical Engineering Journal, 364: 160-166.

65.    Huang, L., Shuai, Q. and Hu, S. (2019), Tannin-based magnetic porous organic polymers as robust scavengers for methylene blue and lead ions. Journal Cleaner Production, 215: 280-289.

66.    Huang, Q., Zhao, J., Liu, M., Chen, J., Zhu, X., Wu, T., et al. (2018). Preparation of polyethylene polyamine@tannic acid encapsulated MgAl-layered double hydroxide for the efficient removal of copper (II) ions from aqueous solution. Journal Taiwan Institute Chemical Engineering, 82:92-101.

67.    Shi, P., Hu, X., Duan, M. (2021). A UIO-66/tannic acid/chitosan/polyethersulfone hybrid membrane-like adsorbent for the dynamic removal of dye and Cr(VI) from water. Journal Cleaner Production, 290: 125794.

68.    Liu, Q., Liu, Q., Liu, B., Hu, T., Li,u W. and Yao, J., (2018), Green synthesis of tannin-hexamethylenediamine based adsorbents for efficient removal of Cr(VI). Journal Hazardous Materials, 352(3):27-35.

69.    Gao, J., Lei, H., Han, Z., Shi, Q., Chen, Y. and Jiang, Y., (2017). Dopamine functionalized tannic-acid-templated mesoporous silica nanoparticles as a new sorbent for the efficient removal of Cu2+ from aqueous solution. Scientific Reports, 7(7): 1-11.

70.    Zhang, Y., He, F. and Li, X. (2016). Three-dimensional composite hydrogel based on polyamine zirconium oxide, alginate, and tannic acid with high performance for Pb(II), Hg(II), and Cr(VI) trapping. Journal Taiwan Institute Chemical Engineering, 65: 304-311.

71.    Deng, X., Wang, L., Xiu, Q., Wang, Y., Han, H., Dai, D., et al. (2021). Adsorption performance and physicochemical mechanism of MnO2-polyethyleneimine-tannic acid composites for the removal of Cu(II) and Cr(VI) from aqueous solution. Frontier Chemical Science Engineering, 15(3): 538-551.

72.    Zhu, Y. H., Zhang, Q., Sun, G. T., Chen, C. Z., Zhu, M. Q. and Huang, X. H. (2022), The synthesis of tannin-based graphene aerogel by hydrothermal treatment for removal of heavy metal ions. Industrial Crops and Production, 176:114304.

73.    Üçer, A., Uyanik, A. and Aygün, Ş. F. (2006). Adsorption of Cu(II), Cd(II), Zn(II), Mn(II), and Fe(III) ions by tannic acid immobilized activated carbon. Separation Purification Technology, 47(3): 113-118.

74.    Fan, R., Min, H., Hong, X., Yi, Q., Liu, W., Zhang, Q., et al. (2019). Plant tannin immobilized Fe3O4@SiO2 microspheres: A novel and green magnetic bio-sorbent with superior adsorption capacities for gold and palladium. Journal Hazardous Materials, 364:780-790.

75.    Zhang, S., Zhang, Y., Liu, J., Xu, Q., Xiao, H., Wang, X., et al. (2013). Thiol modified Fe3O4@SiO2 as a robust, high effective, and recycling magnetic sorbent for mercury removal. Chemical Engineering Journal, 226: 30-38.

76     Egodawatte, S., Datt, A., Burns, E. A. and Larsen, S. C. ( 2015)  Chemical insight into the adsorption of chromium(III) on iron oxide/mesoporous silica nanocomposites. Langmuir, 31(27): 7553-7562.

77     Sabermahani F., Irannejad,  L. and Mahani, N. M. (2018). Using polyaniline/maghemit magnetic nanocomposite for removal of lead from aqueous solutions. Iranian Journal of Analytical Chemistry, 5(1): 33-38.

78.    Lin, Y., Chen, H., Lin, K., Chen, B. and Chiou, C., (2011). Application of magnetic particles modified with amino groups to adsorb copper ions in aqueous solution. Journal Environmental Sciences, 23(1):44-50.

79.    Jin, S., Park, B. C., Ham, W. S., Pan, L. and Kim, Y. K. (2017). Effect of the magnetic core size of amino-functionalized Fe3O4-mesoporous SiO2 core-shell nanoparticles on the removal of heavy metal ions. Colloids Surfaces A Physicochemical Engineering Aspects, 531(8):133-140.

80.    Nodeh, H. R., Aini, W., Ibrahim, W. and Sanagi, M. M. (2016). Development of magnetic graphene oxide adsorbent for the removal and preconcentration of As (III) and As (V) species from environmental water samples. Environmental Science Pollution Research, 23: 9759-9773.

81.    Purwanto, A., Putri, E. A. and Rosyidah, D. (2017). Adsorption of Pb (II) using silica gel composite from rice husk ash modified 3-aminopropyltriethoxysilane (APTES) - activated carbon from coconut shell. AIP Conference Proceedings, 1823: 020034.

82.    Ahmad, N., Sereshti, H., Mousazadeh, M., Rashid Nodeh, H., Kamboh, M. A., Mohamad, S. (2019), New magnetic silica-based hybrid organic-inorganic nanocomposite for the removal of lead(II) and nickel(II) ions from aqueous solutions. Materials Chemistry and Physics, 226: 73-81.

83.    Wang Z, Xu J, Hu Y, Zhao H, Zhou J, Liu Y, et al. (2015). Functional nanomaterials: Study on aqueous Hg(II) adsorption by magnetic Fe3O4@SiO2-SH nanoparticles. Journal Taiwan Institute Chemical Engineering, 60: 394-402.

84.    Ghorbani, M., Shams, A., l Seyedin, I. and Lahoori, O. N. (2018). Magnetic ethylene diamine-functionalized graphene oxide as a novel sorbent for removal of lead and cadmium ions from wastewater samples. Environmental Science and Pollution Research, 25: 5655-5667.

85.    Santhosh, C., Daneshgar, E.,  Kollu, P., Peräniemi, S.,  Nirmala,  G., A., Bhatnagar, A. (2017). Magnetic SiO2@CoFe2O4 nanoparticles decorated on graphene oxide as efficient adsorbents for the removal of anionic pollutants from water. Chemical Engineering Journal, 322: 472-487.