Malaysian
Journal of Analytical Sciences, Vol 26 No 6 (2022): 1332 - 1343
CHARACTERIZATION AND PHYSICOCHEMICAL
STUDY OF β -CYCLODEXTRIN- ANGELWING CLAM HYDROLYSATE COMPLEXES
(Pencirian dan Kajian Fisikokimia bagi
β-Siklodekstrin-Mentarang Hidrolisat Kompleks)
Nurul Fasihah Razak*,
Atikah Mansor, Nur Adila Basari, Normah Ismail
Department of
Chemical and Food Technology,
Politeknik
Tun Syed Nasir Syed Ismail, 84600 Pagoh, Johor, Malaysia
*Corresponding
author:nurul.fasihah@ptsn.edu.my
Received: 12 December 2021; Accepted:
23 November 2022; Published: 27 December
2022
Abstract
The formed β-cyclodextrin- angelwing complexes were characterized
using Fourier transform infrared spectrometry (FTIR) and sodium dodecyl
sulfate-polyacrylamide electrophoresis (SDS-PAGE) to mask the bitterness of
angelwing clam protein hydrolysate. The shift of O-H stretching to a lower
wavenumber and the reduction of the intensity of band C=O and C-H indicated the
formation of β-cyclodextrin- angelwing clam hydrolysate complexes.
SDS-PAGE analysis showed a lower number of band distributions, revealing the
effects of β-cyclodextrin on the mobility of protein during gel
electrophoresis. The physicochemical properties of angelwing clam hydrolysate
(BH), kneading method hydrolysate (KMH), and physical mixture hydrolysate (PMH)
were studied. When compared to functional properties, BH outperformed KMH and
PMH. Meanwhile, KMH and PMH showed a higher water holding capacity and a lower
oil holding capacity than BH. While the solubility, foaming properties and
emulsifying properties of KMH and PMH were lower than BH, the values were still
comparable with others of higher sources of protein hydrolysate. Therefore, KMH
and PMH can be one of recent potential functional food ingredients.
Keywords: physicochemical analysis, functional properties, angelwing clam,
β-cyclodextrin, inclusion complex
Abstrak
β-siklodekstrin-mentarang-hidrolisat
kompleks yang terbentuk dicirikan menggunakan spektrometer transformasi
inframerah Fourier (FTIR) dan elektroforesis gel poliakrilamida-sodium dodekil
sulfat (SDS-PAGE). Peralihan peregangan bilangan gelombang O-H yang lebih
rendah dan pengurangan intensiti pada gelombang C=O dan C-H menunjukkan
pembentukan kompleks hidrolisat β-siklodekstrin-mentarang hidrolisat. Analisis
SDS-PAGE menunjukkan jumlah pengedaran bilangan jalur yang lebih rendah
membuktikan pengaruh β-siklodekstrin pada pergerakan protein dalam
elektroforesis gel. Sifat fizikokimia mentarang hidrolisat (BH), Kaedah menguli
hidrolisat (KMH) dan campuran fizikal hidrolisat (PMH) telah dikaji. Dalam
membezakan ciri-ciri fungsi, BH menunjukkan ciri-ciri fungsi yang lebih baik
daripada KMH dan PMH. KMH dan PMH menunjukkan daya tahan air yang lebih tinggi
dan daya tahan minyak yang lebih rendah berbanding BH. Keterlarutan, sifat
berbuih dan sifat pengemulsi KMH dan PMH adalah lebih rendah daripada BH,
walaubagaimanapun nilainya masih boleh dibandingkan dengan sumber hidrolisat
protein yang tinggi. KMH dan PMH dianggap sebagai salah satu potensi ramuan
makanan.
Kata kunci: analisis
fizikokimia, sifat kefungsian, mentarang, β-siklodekstrin, kemasukan
kompleks
Graphical Abstract
References
1.
Del Valle. E. (2004). Cyclodextrins and their uses: a
review. Process Biochemistry, 39: 1033-1046.
2.
Sambasevam, K. P., Sharifah,
M., Norazilawati, M. S. and Nor Atiqah,
I. (2013). Synthesis and characterization of the inclusion complex of
β-cyclodextrin and azomethine. International
Journal Molecular Science, 14: 3671-3682.
3.
Hou, L., Wang, J. and Zhang, D. (2013). Optimization
of debittering of soybean antioxidant hydrolysates with β-cyclodextrin
using surface response methodology. Journal
of Food Science and Technology 50: 521-527.
4.
Nazeer, R. A., Prabha, K. R., Divya
Kumar, N. S., Sampath, G. and Jai, R. (2011). Isolation of antioxidant peptides
from clam, Meretrix casta (Chemnitz). Journal of Food Science and Technology
50: 777-783.
5.
Normah, I. and Nurul Fasihah, R. (2014). Sensory, amino acids composition and flavour compounds of angelwing clam (Pholas
orientalis) hydrolysates produced using two
different enzymes. Science Letters, 8:1, 25-33.
6.
Normah, I. and Nurul Fasihah, R. (2017). Evaluation of β-cyclodextrin
masking effect on the bitterness of angelwing clam (Pholas orientalis) hydrolysate. International Food Research Journal,
24(4): 1500-1506.
7.
Szejtli J. (1998).
Introduction and general overview of cyclodextrin chemistry. Chemistry
Reviews, 98:1743-1753.
8.
Schmid G. (1989). Cyclodextrin glucanotransferse
production: yield enhancement by overexpression of cloned genes. Trends Biotechnologies, 7: 244-248.
9.
Normah, I and Nurul Fasihah, R. (2016). Bitterness and physichochemical
properties of angelwing clam (Pholas orientalis) hydrolysate. Malaysian Journal of Analytical Sciences, 20: 594-600.
10. Klompong, V., Benjakul, S., Kantachote, D and
Shahidi. (2007). Antioxidative activity and functional properties of protein hydrolysate of yellow stripe trevally
(Selaroids leptolepis)
as influenced by the degree of hydrolysis and enzyme type. Food Chemistry, 102: 317-327.
11. Diniz, F. M. and
Martin, A. M. (1997). Effects of the extent of enzymatic hydrolysis on the
functional properties of shark protein hydrolysate. Lebensmittel Wissenschaft and Technologies 30:
266-272.
12. Shahidi, F.,
Xiao-Qing, H. and Synowiecki, J. (1995). Production
and characteristics of protein hydrolysates from capelin (Mallotus
villosus). Food
Chemistry 53: 285-293.
13. Sathe, S. K. and Salunkhe, D. K. (1981). Functional properties of the Great
Northern bean (Phaseolus vulgaris L.) proteins: emulsion, foaming,
viscosity and gelation properties. Journal
of Food Science, 46: 71-74.
14. IBM Corporation (2011). IBM
SPSS Statistics for Windows, Version 20.0. Armonk, NY: IBM Corp.
15. Crupi, V., Ficarra, R.,
Guardo, M., Majolino, D., Stancanelli, R. and Venuti, V. (2007). UV-vis and FTIR-ATR
spectroscopic technique to study the inclusion complexes of genistein with
β-cyclodextrin. Journal of
Pharmaceutical and Biomedical Analysis, 44: 110-117.
16. Simon, B. W., Adi,
N. and Teti, E. (2011). Functional
interaction components of protein isolates and glucomannan in food bars by FTIR
and SEM studies. African Journal of Food
Science, 5: 12-21.
17. Robinson, N. C. and Tanford, C. (1975). The
binding of deoxycholate, triton X-100, sodium dodecyl sulfate, and
phosphatidylcholine vesicles to cytochrome b5. Biochemistry, 14: 369-378.
18. Aachmann, F.
L., Otzen, D. E., Larsen, K. L. and Wimmer, R. (2003). Structural background of
cyclodextrin-protein interactions. Protein
Engineering,16: 905-912.
19. Rozema, D
and Gellman, S. H. (1996). Artificial chaperone-assisted refolding of carbonicanhydrase. Biological
Chemistry, 271: 3478-3487.
20. Muo, X and Hua, Y. (2012).
Composition, structure and functional properties of protein concentrates and
isolates produced from walnut (Juglans regia L.). International Journal of Molecular Sciences, 13: 1561-1581.
21. Yin, Y. R., Liu, W. Q and Xiao, K.
J. (1996). The study of Sesame protein solubility and emulsification. Food Science, 17: 3-6.
22. Tang, L., Sun, J., Zhang, H. C., Zhang, C. S., Yu,
L. N. and Bi, J. (2012). Evaluation of
physicochemical and antioxidant properties of peanut protein hydrolysate. PLoS One 7(5): e37863.
23. Amiza, M.
A., Ow, Y. W. and Faazaz A. L. (2013).
Physicochemical properties of silver catfish (Pangasius sp.) frame
hydrolysate. International Food Research
Journal, 20(3):1255-1262.
24. Rahman, M. S. (2007). Hand book of food preservation. 2nd edition, Boca Raton, FL, USA, CRC Press: pp.
519.
25. Sanjoy Kumar D., Rajabalaya, R., Sheba, D., Nasimul, G., Jasmina, K and
Nanda, A. (2013). Cyclodextrins-the molecular container. Research Journal of Pharmaceutical, Biological and Chemical Sciences,
4: 1694-1720.
26. Chaplin, M. F. (2003). Fibre and water binding. Proceeding of Nutritional Society, 62: 223-227.
27. Popovic, l., Peričin, D., Vaštag, Z. and Popovic, S. (2011). Optimization of
enzymatic hydrolysis of cucurbitin using response
surface methodology: improvement of the functional properties. International Journal of Food, 7, 5:
1556-3758.
28. Kristinsson, H.
G. and Rasco, B. A. (2000). Fish protein hydrolysates:
Production, biochemical and functional properties. Critical Reviews in Food Science and Nutrition, 40: 43-81.
29. Mutilangi, W. A. M., Panyam, D. and Kilara, A. (1996).
Functional properties of hydrolysates from proteolysis of heat-denatured whey
protein isolate. Journal of Food Science,
61: 270-274.
30. Wagner, J. R., Sorgentini, D. A and Anon M. C.
(2000). Relation between solubility and surface hydrophobicity as an indicator of
modifications during preparation processes of commercial and laboratory-prepared
soy protein isolates. Journal of Agricltural Food
Chemistry, 48, 3159-3165.
31. Mentink, L.
(1999). β-cyclodextrin emulsion: Mechanism of emulsification and
application to the preparation of green metalworking fluids. Netherlands,
Springers: pp. 693-696.
32. Gbogouri, G.
A., Linder, M., Fanni, J, and Parmentier,
M. (2004). The influence of hydrolysis degree on the functional properties of
salmon byproducts hydrolysates. Journal
of Food Sciences, 69: 615-622.
33. Cho, D-Y., Jo, K., Cho, S. Y.,
Kim, J. M., Lim, K., Suh, H. J
and Oh, S. (2014). Antioxidant effect and functional properties of hydrolysates
derived from egg-white protein. Korean
Journal Food Sciences of Animal Resources, 34(3): 362-371.