Malaysian Journal of Analytical Sciences, Vol 26 No 6 (2022): 1332 - 1343

 

CHARACTERIZATION AND PHYSICOCHEMICAL STUDY OF β -CYCLODEXTRIN- ANGELWING CLAM HYDROLYSATE COMPLEXES

 

(Pencirian dan Kajian Fisikokimia bagi β-Siklodekstrin-Mentarang Hidrolisat Kompleks)

 

Nurul Fasihah Razak*, Atikah Mansor, Nur Adila Basari, Normah Ismail

 

Department of Chemical and Food Technology,

Politeknik Tun Syed Nasir Syed Ismail, 84600 Pagoh, Johor, Malaysia

 

*Corresponding author:nurul.fasihah@ptsn.edu.my

 

 

Received: 12 December 2021; Accepted: 23 November 2022; Published:  27 December 2022

 

Abstract

The formed β-cyclodextrin- angelwing complexes were characterized using Fourier transform infrared spectrometry (FTIR) and sodium dodecyl sulfate-polyacrylamide electrophoresis (SDS-PAGE) to mask the bitterness of angelwing clam protein hydrolysate. The shift of O-H stretching to a lower wavenumber and the reduction of the intensity of band C=O and C-H indicated the formation of β-cyclodextrin- angelwing clam hydrolysate complexes. SDS-PAGE analysis showed a lower number of band distributions, revealing the effects of β-cyclodextrin on the mobility of protein during gel electrophoresis. The physicochemical properties of angelwing clam hydrolysate (BH), kneading method hydrolysate (KMH), and physical mixture hydrolysate (PMH) were studied. When compared to functional properties, BH outperformed KMH and PMH. Meanwhile, KMH and PMH showed a higher water holding capacity and a lower oil holding capacity than BH. While the solubility, foaming properties and emulsifying properties of KMH and PMH were lower than BH, the values were still comparable with others of higher sources of protein hydrolysate. Therefore, KMH and PMH can be one of recent potential functional food ingredients.

 

Keywords: physicochemical analysis, functional properties, angelwing clam, β-cyclodextrin, inclusion complex

 

Abstrak

β-siklodekstrin-mentarang-hidrolisat kompleks yang terbentuk dicirikan menggunakan spektrometer transformasi inframerah Fourier (FTIR) dan elektroforesis gel poliakrilamida-sodium dodekil sulfat (SDS-PAGE). Peralihan peregangan bilangan gelombang O-H yang lebih rendah dan pengurangan intensiti pada gelombang C=O dan C-H menunjukkan pembentukan kompleks hidrolisat β-siklodekstrin-mentarang hidrolisat. Analisis SDS-PAGE menunjukkan jumlah pengedaran bilangan jalur yang lebih rendah membuktikan pengaruh β-siklodekstrin pada pergerakan protein dalam elektroforesis gel. Sifat fizikokimia mentarang hidrolisat (BH), Kaedah menguli hidrolisat (KMH) dan campuran fizikal hidrolisat (PMH) telah dikaji. Dalam membezakan ciri-ciri fungsi, BH menunjukkan ciri-ciri fungsi yang lebih baik daripada KMH dan PMH. KMH dan PMH menunjukkan daya tahan air yang lebih tinggi dan daya tahan minyak yang lebih rendah berbanding BH. Keterlarutan, sifat berbuih dan sifat pengemulsi KMH dan PMH adalah lebih rendah daripada BH, walaubagaimanapun nilainya masih boleh dibandingkan dengan sumber hidrolisat protein yang tinggi. KMH dan PMH dianggap sebagai salah satu potensi ramuan makanan.

 

Kata kunci: analisis fizikokimia, sifat kefungsian, mentarang, β-siklodekstrin, kemasukan kompleks


 


Graphical Abstract

 

References

1.         Del Valle. E. (2004). Cyclodextrins and their uses: a review. Process Biochemistry, 39: 1033-1046.

2.         Sambasevam, K. P., Sharifah, M., Norazilawati, M. S. and Nor Atiqah, I. (2013). Synthesis and characterization of the inclusion complex of β-cyclodextrin and azomethine. International Journal Molecular Science, 14: 3671-3682.

3.         Hou, L., Wang, J. and Zhang, D. (2013). Optimization of debittering of soybean antioxidant hydrolysates with β-cyclodextrin using surface response methodology. Journal of Food Science and Technology 50: 521-527.

4.         Nazeer, R. A., Prabha, K. R., Divya Kumar, N. S., Sampath, G. and Jai, R. (2011). Isolation of antioxidant peptides from clam, Meretrix casta (Chemnitz). Journal of Food Science and Technology 50: 777-783.

5.         Normah, I. and Nurul Fasihah, R. (2014). Sensory, amino acids composition and flavour compounds of angelwing clam (Pholas orientalis) hydrolysates produced using two different enzymes. Science Letters, 8:1, 25-33.

6.         Normah, I. and Nurul Fasihah, R. (2017). Evaluation of β-cyclodextrin masking effect on the bitterness of angelwing clam (Pholas orientalis) hydrolysate. International Food Research Journal, 24(4): 1500-1506.

7.         Szejtli J. (1998). Introduction and general overview of cyclodextrin chemistry. Chemistry Reviews, 98:1743-1753.

8.         Schmid G. (1989). Cyclodextrin glucanotransferse production: yield enhancement by overexpression of cloned genes. Trends Biotechnologies, 7: 244-248.

9.         Normah, I and Nurul Fasihah, R. (2016). Bitterness and physichochemical properties of angelwing clam (Pholas orientalis) hydrolysate. Malaysian Journal of Analytical Sciences, 20: 594-600.

10.      Klompong, V., Benjakul, S., Kantachote, D and Shahidi. (2007). Antioxidative activity and functional properties of  protein hydrolysate of yellow stripe trevally (Selaroids leptolepis) as influenced by the degree of hydrolysis and enzyme type. Food Chemistry, 102: 317-327.

11.      Diniz, F. M. and Martin, A. M. (1997). Effects of the extent of enzymatic hydrolysis on the functional properties of shark protein hydrolysate. Lebensmittel Wissenschaft and Technologies 30: 266-272.

12.      Shahidi, F., Xiao-Qing, H. and Synowiecki, J. (1995). Production and characteristics of protein hydrolysates from capelin (Mallotus villosus). Food Chemistry 53: 285-293.

13.      Sathe, S. K. and Salunkhe, D. K. (1981). Functional properties of the Great Northern bean (Phaseolus vulgaris L.) proteins: emulsion, foaming, viscosity and gelation properties. Journal of Food Science, 46: 71-74.

14.      IBM Corporation (2011). IBM SPSS Statistics for Windows, Version 20.0. Armonk, NY: IBM Corp.

15.      Crupi, V., Ficarra, R., Guardo, M., Majolino, D., Stancanelli, R. and Venuti, V. (2007). UV-vis and FTIR-ATR spectroscopic technique to study the inclusion complexes of genistein with β-cyclodextrin. Journal of Pharmaceutical and Biomedical Analysis, 44: 110-117.

16.      Simon, B. W., Adi, N. and Teti, E. (2011).  Functional interaction components of protein isolates and glucomannan in food bars by FTIR and SEM studies. African Journal of Food Science, 5: 12-21.

17.      Robinson, N. C. and Tanford, C. (1975). The binding of deoxycholate, triton X-100, sodium dodecyl sulfate, and phosphatidylcholine vesicles to cytochrome b5. Biochemistry, 14: 369-378.

18.      Aachmann, F. L., Otzen, D. E., Larsen, K. L. and Wimmer, R. (2003). Structural background of cyclodextrin-protein interactions. Protein Engineering,16: 905-912.

19.      Rozema, D and Gellman, S. H. (1996). Artificial chaperone-assisted refolding of carbonicanhydrase. Biological Chemistry, 271: 3478-3487.

20.      Muo, X and Hua, Y. (2012). Composition, structure and functional properties of protein concentrates and isolates produced from walnut (Juglans regia L.). International Journal of Molecular Sciences, 13: 1561-1581.

21.      Yin, Y. R., Liu, W. Q and  Xiao, K. J. (1996). The study of Sesame protein solubility and emulsification. Food Science, 17: 3-6.

22.      Tang, L., Sun, J., Zhang, H. C., Zhang, C. S., Yu, L. N. and Bi, J. (2012). Evaluation of physicochemical and antioxidant properties of peanut protein hydrolysate. PLoS One 7(5): e37863.

23.      Amiza, M. A., Ow, Y. W. and Faazaz A. L. (2013). Physicochemical properties of silver catfish (Pangasius sp.) frame hydrolysate. International Food Research Journal, 20(3):1255-1262.

24.      Rahman, M. S. (2007). Hand book of food preservation. 2nd  edition, Boca Raton, FL, USA, CRC Press: pp. 519.

25.      Sanjoy Kumar D., Rajabalaya, R., Sheba, D., Nasimul, G., Jasmina, K and Nanda, A. (2013). Cyclodextrins-the molecular container. Research Journal of Pharmaceutical, Biological and Chemical Sciences, 4: 1694-1720.

26.      Chaplin, M. F. (2003).  Fibre and water binding. Proceeding of  Nutritional  Society, 62: 223-227.

27.      Popovic, l., Peričin, D., Vaštag, Z. and Popovic, S. (2011). Optimization of enzymatic hydrolysis of cucurbitin using response surface methodology: improvement of the functional properties. International Journal of Food, 7, 5: 1556-3758.

28.      Kristinsson, H. G. and Rasco, B. A. (2000). Fish protein hydrolysates: Production, biochemical and functional properties. Critical Reviews in Food Science and Nutrition, 40: 43-81.

29.      Mutilangi, W. A. M., Panyam, D. and Kilara, A. (1996). Functional properties of hydrolysates from proteolysis of heat-denatured whey protein isolate. Journal of Food Science, 61: 270-274.

30.      Wagner, J. R., Sorgentini, D. A and Anon M. C. (2000). Relation between solubility and surface hydrophobicity as an indicator of modifications during preparation processes of commercial and laboratory-prepared soy protein isolates. Journal  of Agricltural Food Chemistry, 48, 3159-3165.

31.      Mentink, L. (1999). β-cyclodextrin emulsion: Mechanism of emulsification and application to the preparation of green metalworking fluids. Netherlands, Springers: pp. 693-696.

32.      Gbogouri, G. A., Linder, M., Fanni, J, and Parmentier, M. (2004). The influence of hydrolysis degree on the functional properties of salmon byproducts hydrolysates. Journal of Food Sciences, 69: 615-622.

33.      Cho, D-Y.,  Jo, K.,  Cho, S. Y.,  Kim, J. M.,  Lim, K., Suh, H. J and Oh, S. (2014). Antioxidant effect and functional properties of hydrolysates derived from egg-white protein. Korean Journal Food Sciences of Animal Resources, 34(3): 362-371.