Malaysian
Journal of Analytical Sciences, Vol 26 No 6 (2022): 1303 - 1312
TRANSESTERIFICATION OF Calophyllum inophyllum
OIL USING CaO-K2CO3 CATALYST FROM Corbicula
fluminea SHELLS AND
BANANA PEELS
(Transesterifikasi Minyak Calophyllum inophyllum
Menggunakan Mangkin, CaO-K2CO3 daripada Cangkerang Corbicula
fluminea dan Kulit Pisang)
Lee Wei Zhen1, Siti
Norhafiza Mohd Khazaai2*, Gaanty Pragas Maniam1,
Liliwirianis Nawi2
1Faculty of Industrial Sciences
& Technology,
Universiti Malaysia Pahang,
Lebuhraya Tun Razak, 26300 Gambang,
Kuantan, Pahang, Malaysia
2Faculty of Applied Sciences,
Universiti Teknologi MARA Pahang, 26400
Jengka, Pahang, Malaysia
*Corresponding
author: ctnorhafiza03@yahoo.com
Received: 10 May 2022; Accepted: 27
September 2022; Published: 27 December
2022
Abstract
Utilizing
Calophyllum inophyllum
oil (CIO) and waste-based calcium oxide-potassium carbonate (CaO-K2CO3)
catalyst can bring down the biodiesel production cost and this has become the
main issue. CIO is a non-edible feedstock that has the potential to be used as
biodiesel feedstock. The acid value and free fatty acid (FFA) content of CIO
were 124.54 mg KOH/g and 62.64%, respectively. The acid values were reduced to
11.21 mg KOH/g with 5.60% of free fatty acid (FFA) by acid-catalyzed
esterification reaction using a 12:1 methanol to oil ratio. CIO had iodine
value of 94.33 mg I2/g, 1.37% moisture content, a density of 929.1
kg/m3, and viscosity of 119.5 mm2/s. It was extracted
using a cold maceration method and was found to be predominantly made up of
oleic acid. CaO-K2CO3 was used to avoid the problems
faced by the single metallic catalysts (CaO and K2CO3).
It was synthesized using physical mixing and used as a heterogeneous catalyst
for the transesterification of CIO to produce biodiesel. The base heterogeneous
catalyst was characterized and analyzed using TGA, FTIR, XRD, FESEM-EDX, BET,
and Hammett indicators. These analyses have proven that calcium oxide (CaO) and potassium carbonate (K2CO3)
were well incorporated catalyst. CaO-K2CO3 is a moderate
catalyst with the basic strength of H ≤9.3. Two parameters, which are
methanol to oil ratio and reaction time, were optimized to obtain a higher
methyl ester yield. The maximum yield of methyl ester obtained from
transesterification of CIO at 65 ℃ was 86.7% using 6 wt.% of 1:1 CaO- K2CO3 and 9:1 methanol to oil
ratio within 4 h reaction time. CaO-K2CO3 appeared as a
promising catalyst in converting CIO to biodiesel.
Keyword: banana peels, corbicula fluminea
shells, methyl ester
Abstrak
Kegunaan minyak Calophyllum
inophyllum (CIO) dan pemangkin kalsium oksida-potasium
karbonat (CaO-K2CO3) berasaskan sisa boleh mengurangkan
kos pengeluaran biodiesel yang telah menjadi isu utama. CIO adalah bahan mentah
tidak boleh dimakan yang berpotensi untuk digunakan sebagai bahan mentah biodiesel.
Kandungan nilai asid dan asid lemak bebas bagi CIO adalah 124.54 mg KOH/g dan
62.64%. Penurunan nilai asid telah berkurang kepada 11.21 mg KOH/g dengan 5.60%
of asid lemak bebas melalui tindakbalas esterifikasi asid dengan menggunakan
metanol pada minyak (12:1). CIO mempunyai nilai iodin value 94.33 mg I2/g,
1.37% kandungan lembapan, ketumpatan 929.1 kg/m3, dan kelikatan
119.5 mm2/s. Ia diekstrak dengan kaedah pemekatan sejuk dan
kebanyakannya terdiri daripada asid oleik. CaO-K2CO3
digunakan untuk mengelakkan masalah yang dihadapi oleh pemangkin logam tunggal
(CaO dan K2CO3). Ia disintesis dengan pencampuran
fizikal. Pemangkin heterogen telah dicirikan dan dianalisis dengan menggunakan
TGA, FTIR, XRD, FESEM-EDX, BET dan Hemmett. Analisis ini telah membuktikan
bahawa kalsium oksida (CaO dan K2CO3) telah digabungkan
dengan baik. CaO-K2CO3 merupakan mangkin sederhana dengan
kekuatan alkali H_≤9.3. Dua parameter iaitu nisbah metanol kepada minyak
dan masa tindak balas telah dioptimumkan untuk mendapatkan hasil metil ester
yang lebih tinggi. Hasil maksimum metil ester yang diperoleh daripada
transesterifikasi minyak biji CIO pada 65 ℃ ialah 86.7% menggunakan 6
wt.% CaO- K2CO3, nisbah metanol kepada minyak 9:1 selama
4 j masa tindak balas. CaO-K2CO3 sebagai mangkin yang
dijanjikan dalam perubahan CIO kepada biodiesel.
Kata kunci: Kulit pisang, cangkerang corbicula fluminea, metil ester
Graphical
Abstract
References
1. Ogunkunle, O.
and Ahmed, N. A. (2019). A review of global current scenario of biodiesel
adoption and combustion in vehicular diesel engines. Energy Reports,
5:1560-1579.
2. Hajjari, M. Ardjmand, M. and Tabatabaei,
M. (2014). Experimental investigation of the effect of cerium oxide
nanoparticles as a combustion-improving additive on biodiesel oxidative
stability: Mechanism. RSC Advances, 4(28): 14352-14356.
3. Tabatabaei, M. Karimi, K. Kumar, R. and
Horvátah, I. (2015). Renewable energy and alternative fuel technologies neural
computation for rehabilitation. BioMed Research International, 2015:
2-4.
4. Demirbas, A. Bafail, A. Ahmad, W. and
Sheikh, M. (2016). Biodiesel production from non-edible plant oils. Energy
Exploration and Exploitation, 34(2): 290-318.
5. Friday, J. B. and Okano, D. (2006). Calophyllum
inophyllum (kamani) Clusiaceae (syn. Guttiferae)
(mangosteen family) species profiles for Pacific Island Agroforestry
www.traditionaltree.org. Doc-Developpement-Durable.Org, April.
6. Niju, S. Vishnupriya, G. and Balajii, M.
(2019). Process optimization of Calophyllum inophyllum-waste cooking oil
mixture for biodiesel production using Donax deltoides shells as
heterogeneous catalyst. Sustainable Environment Research, 1(1): 1-12.
7. Jahirul, M. I. Brown, R. J. Senadeera, W. Ashwath,
N. Rasul, M. G. Rahman, M. M. Hossain, F. M. Moghaddam, L., Islam, M. A. and
O’Hara, I. M. (2015). Physio-chemical assessment of beauty leaf (Calophyllum
inophyllum) as second-generation biodiesel feedstock. Energy Reports,
1: 204-215.
8. Fadhlullah, M. Widiyanto, S. N. B. and
Restiawaty, E. (2015). The potential of nyamplung (Calophyllum inophyllum L.)
seed oil as biodiesel feedstock: Effect of seed moisture content and particle
size on oil yield. Energy Procedia, 68 : 177-185.
9. Azam, M. M. Waris, A. and Nahar, N. M.
(2005). Prospects and potential of fatty acid methyl esters of some
non-traditional seed oils for use as biodiesel in India. Biomass and
Bioenergy, 29(4): 293-302.
10. Koehle, M. and Mhadeshwar, A. (2013).
Nanoparticle catalysis for reforming of biomass-derived fuels. In New and
Future Developments in Catalysis: Catalysis by Nanoparticles. Elsevier.
11. García-Diéguez, M., Pieta, I. S. Herrera, M.
C., Larrubia, M. A. and Alemany, L. J. (2010). Nanostructured Pt- and Ni-based
catalysts for CO2-reforming of methane. Journal of Catalysis,
270(1): 136-145.
12. Faruque, M. O. Razzak, S. A. and Hossain, M.
M. (2020). Application of heterogeneous catalysts for biodiesel production from
microalgal oil—a review. Catalysts, 10(9): 1-25.
13. Atabani, A. E. (2011). Calophyllum
inophyllum L . as a potential feedstock for bio-diesel production. 6th
International Green Energy Conference, 2011: 1-8.
14. Rajendran, N. Gurunathan, B. and I., A. E. S.
(2021). Optimization and technoeconomic analysis of biooil extraction from
Calophyllum inophyllum L. seeds by ultrasonic assisted solvent oil extraction. Industrial
Crops and Products, 162: 113273.
15. Vaimakis, T. C. (2013). Thermogravimetry (TG)
or thermogravimetric analysis (TGA). University of Ioannina, 4(7): 11419-11426.
16. Biswas, B. Singh, R. Kumar, J. Khan, A. A.
Krishna, B. B. and Bhaskar, T. (2016). Slow pyrolysis of prot, alkali and
dealkaline lignins for production of chemicals. Bioresource Technology,
213: 319-326.
17. Chaiwong, K. Kiatsiriroat, T. Vorayos, N. and
Thararax, C. (2013). Study of bio-oil and bio-char production from algae by
slow pyrolysis. Biomass and Bioenergy, 56: 600-606.
18. Sait, H. H. Hussain, A. Salema, A. A. and
Ani, F. N. (2012). Pyrolysis and combustion kinetics of date palm biomass using
thermogravimetric analysis. Bioresource Technology, 118: 382-389.
19. Lokman Nolhakim, M. A. H. Shohaimi, N. A. M.
Mokhtar, W. N. A. W. Ibrahim, M. L. and Abdullah, R. F. (2021). Immobilization
of potassium-based heterogeneous catalyst over alumina beads and powder support
in the transesterification of waste cooking oil. Catalysts, 11(8): 976.
20. Correia, L. M. Saboya, R. M. A. de Sousa
Campelo, N. Cecilia, J. A. Rodríguez-Castellón, E. Cavalcante, C. L. and
Vieira, R. S. (2014). Characterization of calcium oxide catalysts from natural
sources and their application in the transesterification of sunflower oil. Bioresource
Technology, 151: 207-213.
21. Suprapto, Fauziah, T. R. Sangi, M. S. Oetami,
T. P. Qoniah, I. and Prasetyoko, D. (2016). Calcium oxide from limestone as
solid base catalyst in transesterification of Reutealis trisperma oil. Indonesian
Journal of Chemistry, 16(2): 208-213.
22. Ngaosuwan, K. Chaiyariyakul, W. Inthong, O.
Kiatkittipong, W., Wongsawaeng, D. and Assabumrungrat, S. (2021). La2O3/CaO
catalyst derived from eggshells: Effects of preparation method and La content
on textural properties and catalytic activity for transesterification. Catalysis
Communications, 149: 106247.
23. Ruhul, A. M. Kalam, M. A. Masjuki, H. H.
Fattah, I. M. R. Reham, S. S. and Rashed, M. M. (2015). State of the art of
biodiesel production processes: A review of the heterogeneous catalyst. RSC
Advances, 5(122): 101023-101044.
24. Degfie, T. A. Mamo, T. T. and Mekonnen, Y. S.
(2019). Optimized biodiesel production from waste cooking oil (WCO) using
calcium oxide (CaO) nano-catalyst. Scientific Reports, 9(1): 1-8.
25. Leung, D. Y. C. Wu, X. and Leung, M. K. H.
(2010). A review on biodiesel production using catalyzed transesterification.
Applied Energy, 87(4): 1083-1095.
26. Khazaai, S. N. M. Embong, N. H. Hasshim, H.
Rahim, M. H. A. and Maniam, G. P. (2018). Transesterification of Karanja (Pongammia
Pinnata) oil using barnacle derived CaO mixed ZnO. AIP
Conference Proceedings, 2016: 020097.