Malaysian Journal of Analytical Sciences, Vol 26 No 6 (2022): 1303 - 1312

 

TRANSESTERIFICATION OF Calophyllum inophyllum OIL USING CaO-K2CO3 CATALYST FROM Corbicula fluminea SHELLS AND

BANANA PEELS

 

(Transesterifikasi Minyak Calophyllum inophyllum Menggunakan Mangkin, CaO-K2CO3 daripada Cangkerang Corbicula fluminea dan Kulit Pisang)

 

Lee Wei Zhen1, Siti Norhafiza Mohd Khazaai2*, Gaanty Pragas Maniam1, Liliwirianis Nawi2

 

1Faculty of Industrial Sciences & Technology,

Universiti Malaysia Pahang,

Lebuhraya Tun Razak, 26300 Gambang, Kuantan, Pahang, Malaysia

2Faculty of Applied Sciences,

Universiti Teknologi MARA Pahang, 26400 Jengka, Pahang, Malaysia

 

*Corresponding author: ctnorhafiza03@yahoo.com

 

 

Received: 10 May 2022; Accepted: 27 September 2022; Published:  27 December 2022

 

 

Abstract

Utilizing Calophyllum inophyllum oil (CIO) and waste-based calcium oxide-potassium carbonate (CaO-K2CO3) catalyst can bring down the biodiesel production cost and this has become the main issue. CIO is a non-edible feedstock that has the potential to be used as biodiesel feedstock. The acid value and free fatty acid (FFA) content of CIO were 124.54 mg KOH/g and 62.64%, respectively. The acid values were reduced to 11.21 mg KOH/g with 5.60% of free fatty acid (FFA) by acid-catalyzed esterification reaction using a 12:1 methanol to oil ratio. CIO had iodine value of 94.33 mg I2/g, 1.37% moisture content, a density of 929.1 kg/m3, and viscosity of 119.5 mm2/s. It was extracted using a cold maceration method and was found to be predominantly made up of oleic acid. CaO-K2CO3 was used to avoid the problems faced by the single metallic catalysts (CaO and K2CO3). It was synthesized using physical mixing and used as a heterogeneous catalyst for the transesterification of CIO to produce biodiesel. The base heterogeneous catalyst was characterized and analyzed using TGA, FTIR, XRD, FESEM-EDX, BET, and Hammett indicators. These analyses have proven that calcium oxide (CaO) and potassium carbonate (K2CO3) were well incorporated catalyst. CaO-K2CO3 is a moderate catalyst with the basic strength of H ≤9.3. Two parameters, which are methanol to oil ratio and reaction time, were optimized to obtain a higher methyl ester yield. The maximum yield of methyl ester obtained from transesterification of CIO at 65 ℃ was 86.7% using 6 wt.% of 1:1 CaO- K2CO3 and 9:1 methanol to oil ratio within 4 h reaction time. CaO-K2CO3 appeared as a promising catalyst in converting CIO to biodiesel.

 

Keyword: banana peels, corbicula fluminea shells, methyl ester

 

Abstrak

Kegunaan minyak Calophyllum inophyllum (CIO) dan pemangkin kalsium oksida-potasium karbonat (CaO-K2CO3) berasaskan sisa boleh mengurangkan kos pengeluaran biodiesel yang telah menjadi isu utama. CIO adalah bahan mentah tidak boleh dimakan yang berpotensi untuk digunakan sebagai bahan mentah biodiesel. Kandungan nilai asid dan asid lemak bebas bagi CIO adalah 124.54 mg KOH/g dan 62.64%. Penurunan nilai asid telah berkurang kepada 11.21 mg KOH/g dengan 5.60% of asid lemak bebas melalui tindakbalas esterifikasi asid dengan menggunakan metanol pada minyak (12:1). CIO mempunyai nilai iodin value 94.33 mg I2/g, 1.37% kandungan lembapan, ketumpatan 929.1 kg/m3, dan kelikatan 119.5 mm2/s. Ia diekstrak dengan kaedah pemekatan sejuk dan kebanyakannya terdiri daripada asid oleik. CaO-K2CO3 digunakan untuk mengelakkan masalah yang dihadapi oleh pemangkin logam tunggal (CaO dan K2CO3). Ia disintesis dengan pencampuran fizikal. Pemangkin heterogen telah dicirikan dan dianalisis dengan menggunakan TGA, FTIR, XRD, FESEM-EDX, BET dan Hemmett. Analisis ini telah membuktikan bahawa kalsium oksida (CaO dan K2CO3) telah digabungkan dengan baik. CaO-K2CO3 merupakan mangkin sederhana dengan kekuatan alkali H_≤9.3. Dua parameter iaitu nisbah metanol kepada minyak dan masa tindak balas telah dioptimumkan untuk mendapatkan hasil metil ester yang lebih tinggi. Hasil maksimum metil ester yang diperoleh daripada transesterifikasi minyak biji CIO pada 65 ℃ ialah 86.7% menggunakan 6 wt.% CaO- K2CO3, nisbah metanol kepada minyak 9:1 selama 4 j masa tindak balas. CaO-K2CO3 sebagai mangkin yang dijanjikan dalam perubahan CIO kepada biodiesel.

 

Kata kunci: Kulit pisang, cangkerang corbicula fluminea, metil ester

 

Graphical Abstract

 

References

1.      Ogunkunle, O. and Ahmed, N. A. (2019). A review of global current scenario of biodiesel adoption and combustion in vehicular diesel engines. Energy Reports, 5:1560-1579.

2.      Hajjari, M. Ardjmand, M. and Tabatabaei, M. (2014). Experimental investigation of the effect of cerium oxide nanoparticles as a combustion-improving additive on biodiesel oxidative stability: Mechanism. RSC Advances, 4(28): 14352-14356.

3.      Tabatabaei, M. Karimi, K. Kumar, R. and Horvátah, I. (2015). Renewable energy and alternative fuel technologies neural computation for rehabilitation. BioMed Research International, 2015: 2-4.

4.      Demirbas, A. Bafail, A. Ahmad, W. and Sheikh, M. (2016). Biodiesel production from non-edible plant oils. Energy Exploration and Exploitation, 34(2): 290-318.

5.      Friday, J. B. and Okano, D. (2006). Calophyllum inophyllum (kamani) Clusiaceae (syn. Guttiferae) (mangosteen family) species profiles for Pacific Island Agroforestry www.traditionaltree.org. Doc-Developpement-Durable.Org, April.

6.      Niju, S. Vishnupriya, G. and Balajii, M. (2019). Process optimization of Calophyllum inophyllum-waste cooking oil mixture for biodiesel production using Donax deltoides shells as heterogeneous catalyst. Sustainable Environment Research, 1(1): 1-12.

7.      Jahirul, M. I. Brown, R. J. Senadeera, W. Ashwath, N. Rasul, M. G. Rahman, M. M. Hossain, F. M. Moghaddam, L., Islam, M. A. and O’Hara, I. M. (2015). Physio-chemical assessment of beauty leaf (Calophyllum inophyllum) as second-generation biodiesel feedstock. Energy Reports, 1: 204-215.

8.      Fadhlullah, M. Widiyanto, S. N. B. and Restiawaty, E. (2015). The potential of nyamplung (Calophyllum inophyllum L.) seed oil as biodiesel feedstock: Effect of seed moisture content and particle size on oil yield. Energy Procedia, 68 : 177-185.

9.      Azam, M. M. Waris, A. and Nahar, N. M. (2005). Prospects and potential of fatty acid methyl esters of some non-traditional seed oils for use as biodiesel in India. Biomass and Bioenergy, 29(4): 293-302.

10.    Koehle, M. and Mhadeshwar, A. (2013). Nanoparticle catalysis for reforming of biomass-derived fuels. In New and Future Developments in Catalysis: Catalysis by Nanoparticles. Elsevier.

11.    García-Diéguez, M., Pieta, I. S. Herrera, M. C., Larrubia, M. A. and Alemany, L. J. (2010). Nanostructured Pt- and Ni-based catalysts for CO2-reforming of methane. Journal of Catalysis, 270(1): 136-145.

12.    Faruque, M. O. Razzak, S. A. and Hossain, M. M. (2020). Application of heterogeneous catalysts for biodiesel production from microalgal oil—a review. Catalysts, 10(9): 1-25. 

13.    Atabani, A. E. (2011). Calophyllum inophyllum L . as a potential feedstock for bio-diesel production. 6th International Green Energy Conference, 2011: 1-8.

14.    Rajendran, N. Gurunathan, B. and I., A. E. S. (2021). Optimization and technoeconomic analysis of biooil extraction from Calophyllum inophyllum L. seeds by ultrasonic assisted solvent oil extraction. Industrial Crops and Products, 162: 113273.

15.    Vaimakis, T. C. (2013). Thermogravimetry (TG) or thermogravimetric analysis (TGA). University of Ioannina, 4(7): 11419-11426.

16.    Biswas, B. Singh, R. Kumar, J. Khan, A. A. Krishna, B. B. and Bhaskar, T. (2016). Slow pyrolysis of prot, alkali and dealkaline lignins for production of chemicals. Bioresource Technology, 213: 319-326.

17.    Chaiwong, K. Kiatsiriroat, T. Vorayos, N. and Thararax, C. (2013). Study of bio-oil and bio-char production from algae by slow pyrolysis. Biomass and Bioenergy, 56: 600-606.

18.    Sait, H. H. Hussain, A. Salema, A. A. and Ani, F. N. (2012). Pyrolysis and combustion kinetics of date palm biomass using thermogravimetric analysis. Bioresource Technology, 118: 382-389.

19.    Lokman Nolhakim, M. A. H. Shohaimi, N. A. M. Mokhtar, W. N. A. W. Ibrahim, M. L. and Abdullah, R. F. (2021). Immobilization of potassium-based heterogeneous catalyst over alumina beads and powder support in the transesterification of waste cooking oil. Catalysts, 11(8): 976.

20.    Correia, L. M. Saboya, R. M. A. de Sousa Campelo, N. Cecilia, J. A. Rodríguez-Castellón, E. Cavalcante, C. L. and Vieira, R. S. (2014). Characterization of calcium oxide catalysts from natural sources and their application in the transesterification of sunflower oil. Bioresource Technology, 151: 207-213.

21.    Suprapto, Fauziah, T. R. Sangi, M. S. Oetami, T. P. Qoniah, I. and Prasetyoko, D. (2016). Calcium oxide from limestone as solid base catalyst in transesterification of Reutealis trisperma oil. Indonesian Journal of Chemistry, 16(2): 208-213.

22.    Ngaosuwan, K. Chaiyariyakul, W. Inthong, O. Kiatkittipong, W., Wongsawaeng, D. and Assabumrungrat, S. (2021). La2O3/CaO catalyst derived from eggshells: Effects of preparation method and La content on textural properties and catalytic activity for transesterification. Catalysis Communications, 149: 106247.

23.    Ruhul, A. M. Kalam, M. A. Masjuki, H. H. Fattah, I. M. R. Reham, S. S. and Rashed, M. M. (2015). State of the art of biodiesel production processes: A review of the heterogeneous catalyst. RSC Advances, 5(122): 101023-101044.

24.    Degfie, T. A. Mamo, T. T. and Mekonnen, Y. S. (2019). Optimized biodiesel production from waste cooking oil (WCO) using calcium oxide (CaO) nano-catalyst. Scientific Reports, 9(1): 1-8.

25.    Leung, D. Y. C. Wu, X. and Leung, M. K. H. (2010). A review on biodiesel production using catalyzed transesterification. Applied Energy, 87(4): 1083-1095.

26.    Khazaai, S. N. M. Embong, N. H. Hasshim, H. Rahim, M. H. A. and Maniam, G. P. (2018). Transesterification of Karanja (Pongammia Pinnata) oil using barnacle derived CaO mixed ZnO. AIP Conference Proceedings, 2016: 020097.