Malaysian
Journal of Analytical Sciences, Vol 26 No 6 (2022): 1288 – 1302
IN HUMAN PLASMA
Mohd Shafie
Zabidi1, Ruzilawati Abu Bakar1, Nurfadhlina Musa2,
Suzana Mustafa3, Wan Nazirah Wan Yusuf1*
1Department of Pharmacology,
School of Medical Sciences, Health
Campus,
Universiti Sains Malaysia, Kubang
Kerian, Kelantan, Malaysia
2Human Genome Centre, School of
Medical Sciences, Health Campus,
Universiti Sains Malaysia, Kubang
Kerian, Kelantan, Malaysia.
3Department of Pharmacy,
Hospital Raja Perempuan Zainab II,
Kota Bharu, Kelantan, Malaysia
*Corresponding
author: wnazirah@usm.my
Received: 27 July 2022; Accepted: 29
September 2022; Published: 27 December
2022
Abstract
Colistin is an antibiotic used as a last option to
treat bacterial infections; it has a limited therapeutic window and needs to be
monitored for dose optimization. This study aimed to optimize liquid
chromatography-mass spectrometry conditions for colistin determination in human
plasma. The parameters that affect the performance of liquid chromatography and
mass spectrometry were investigated by modifying the composition of the mobile
phase in isocratic and gradient elution mode, varying concentrations of acetonitrile
and formic acid in the mobile phase, column temperature, ionization mode, and
collision energy voltage. The gradient elution with water and acetonitrile,
both containing 0.1% formic acid, was effectively used to separate the analytes
on a Zorbax SB-C8 column maintained
at 40°C. The retention times for colistin A, colistin B, and
polymyxin B were 4.003, 3.810, and 4.047 min, respectively. Detection was
performed with a quadrupole time-of-flight analyzer using electrospray
ionization operated in the negative mode. The precursor–product ion pairs were
identified at m/z 1123.7300/1079.7032 for colistin A, m/z 1109.7151/1065.6886
for colistin B, and m/z 1157.7159/1113.6889 for polymyxin B (internal
standard). The optimum chromatographic condition for the separation and
detection of colistin using quadrupole time-of-flight liquid chromatography
mass spectrometry was established.
Keywords: colistin, high performance liquid chromatography,
mass spectrometry, QTOF-LC/MS, human plasma
Abstrak
Colistin adalah antibiotik pilihan terakhir digunakan untuk
rawatan jangkitan bakteria, ia mempunyai julat terapeutik yang sempit dan
pemantauan diperlukan dalam mengoptimumkan dos rawatan. Kajian ini bertujuan
untuk mengoptima kondisi kromatografi cecair-jisim spektrometri untuk
pengenalpastian colistin di dalam plasma manusia. Parameter yang mempengaruhi
prestasi kromatografi cecair dan spektrometri jisim dikaji dengan mengubah suai
komposisi fasa bergerak dalam mod elusi isokratik dan kecerunan, perbezaan
kepekatan acetonitril dan asid formik dalam fasa bergerak, suhu turus, mod
pengionan dan pelangaran tenaga voltan. Kaedah kecerunan elusi dengan
menggunakan air dan acetonitril di mana kedua-duanya mengandungi 0.1% asid
formik digunakan untuk pemisahanan analit-analit pada turus Zorbax SB-C8 dengan
suhu tetap 40 oC. Masa retensi
bagi colistin A, colistin B and polymyxin B adalah 4.003, 3.810, dan 4.047
minit. Penganalisa kuadrupel masa
penerbangan digunakan untuk tujuan pengesanan dan dikendalikan menggunakan
ionisasi semburan-elektro di dalam mod negatif. Pasangan ion prekursor-produk
dikenalpasti di m/z 1123.7300, 1079.7032 untuk colistin A, m/z
1109.7151, 1065.6886 untuk colistin B dan m/z 1157.7159, 1113.6889
untuk polymyxin B (piawai dalaman). Kaedah kromatografik untuk pemisahan dan
pengesanan colistin yang optimum menggunakan kuadrupel masa penerbangan
kromatografi cecair-jisim sepectrometry telah berjaya dibangunkan.
Kata kunci: colistin, kromatografi cecair prestasi tinggi, spektrometri
jisim, QTOF-LC/MS, plasma manusia
Graphical
Abstract
References
1. Tsuji, B. T., Pogue, J, M., Zavascki,
A. P., Paul, M., Daikos, G, L., Forrest, A., Giacobbe, D, R., Viscoli C., Giamarellou, H., Karaiskos, I.,
Kaye, D., Mouton, J. W., Tam, V. H., Thamlikitkul,
V., Wunderink, R. G., Li, J., Nation, R. L. and Kaye,
K. S. (2019). international consensus guidelines
for the optimal use of the polymyxins: Endorsed by the American College of
Clinical Pharmacy (ACCP), European Society of Clinical Microbiology and
Infectious Diseases (ESCMID), Infectious Diseases Society of America (IDS). Pharmacotherapy,
39 (1): 10-39.
2. Nation, R., L., Garonzik, S. M.,
Thamlikitkul, V., Giamarellos-Bourboulis, E. J., Forrest, A., Paterson, D. L.,
Li, J. and Silveira, F. P. (2017). Dosing guidance for intravenous colistin in
critically ill patients. Clinical Infectious Diseases, 64 (5): 565-571.
3. Ehrentraut, S. F., Muenster, S., Kreyer,
S., Theuerkauf, N. U., Bode, C., Steinhagen, F., Ehrentraut, H., Schewe, J. C.,
Weber, M., Putensen, C. and Muders,
T. (2020). Extensive therapeutic drug monitoring of colistin
in critically Ill patients reveals undetected risks. Microorganisms,
8(3): 415.
4. Bergen, P. J., Li, J., Rayner, C. R. and
Nation, R. L. (2006). Colistin methanesulfonate is an inactive prodrug of
colistin against Pseudomonas aeruginosa. Antimicrobial Agents
Chemotheraphy, 50(6): 1953-1958. 5. Li,
J., Nation, R. L., Turnidge, J. D., Milne, R. W., Coulthard, K., Rayner, C. R.
and Paterson, D. L. (2006). Colistin: the re-emerging antibiotic for
multidrug-resistant Gram-negative bacterial infections. Lancet Infectious
Disease, 6(9): 589-601.
6. Milne, R. W., Nation, R. L., Li, J.,
Coulthard, K. and Turnidge, J. D. (2003). Stability of colistin and colistin
methanesulfonate in aqueous media and plasma as determined by high-performance
liquid chromatography. Antimicrobial Agents Chemotherapy, 47(4):
1364-1370.
7. Dudhani, R. V., Nation, R. L. and Li, J.
(2010). Evaluating the stability of colistin and colistin methanesulphonate in
human plasma under different conditions of storage. Journal of Antimicrobial
Chemotherapy, 65(7): 1412-1415.
8. Orwa, J. A., Govaerts, C., Gevers, K.,
Roets, E., Van Schepdael, A. and Hoogmartens, J. (2002). Study of the stability
of polymyxins B(1), E(1) and E(2) in aqueous solution using liquid
chromatography and mass spectrometry. Journal of Pharmaceutical Biomedical
Analysis, 29(1-2): 2003-2012.
9. Karvanen, M., Malmberg, C., Lagerback, P.,
Friberg, L. E. and Cars, O. (2017). Colistin is extensively lost during
standard in vitro experimental conditions. Antimicrobial Agents Chemotherapy,
61(11): e00857-17.
10. Li, J., Milne, R. W., Nation, R. L.,
Turnidge, J. D., Coulthard, K. and Valentine, J. (2002). Simple method for
assaying colistin methanesulfonate in plasma and urine using high-performance
liquid chromatography. Antimicrobial Agents Chemotheraphy, 46(10):
3304-3307.
11. Gikas, E., Bazoti, F. N., Katsimardou, M.,
Anagnostopoulos, D., Papanikolaou, K., Inglezos, I., Skoutelis, A., Daikos, G.
L. and Tsarbopoulos, A. (2013). Determination of colistin A and colistin B in
human plasma by UPLC–ESI high resolution tandem MS: Application to a
pharmacokinetic study. Journal of Pharmaceutical and Biomedical Analysis,
83: 228-236.
12. Gobin, P., Lemaître, F., Marchand, S., Couet,
W. and Olivier, J. C. (2010). Assay of colistin and colistin methanesulfonate
in plasma and urine by liquid chromatography-tandem mass spectrometry. Antimicrobial
Agents Chemotherapy, 54(5): 1941-1948.
13. Cangemi, G., Barco, S., Castagnola, E.,
Tripodi, G., Favata, F. and D’Avolio, A. (2016). Development and validation of
UHPLC–MS/MS methods for the quantification of colistin in plasma and dried
plasma spots. Journal of
Pharmaceutical and Biomedical Analysis, 129: 1-7.
14. Chepyala, D.,Tsai, I. L., Sun, H. Y., Lin, S.
W. and Kuo, C. H. (2015). Development and validation of a high-performance
liquid chromatography-fluorescence detection method for the accurate
quantification of colistin in human plasma. Journal of Chromatography B,
980: 48-54.
15. Milne, R.W. (2019). Bioanalysis and stability
of polymyxins. polymyxin antibiotics: From labarotory bench to bedside,
advances in experimental medicine and biology. Springer Nature, Switzerland:
pp. 73-87.
16. Li, J., Milne, R. W., Nation, R. L.,
Turnidge, J. D., Coulthard, K. and Johnson, D. W. (2001). A simple method for
the assay of colistin in human plasma, using pre-column derivatization with
9-fluorenylmethyl chloroformate in solid-phase extraction cartridges and
reversed-phase high-performance liquid chromatography. Journal of
Chromatography B, 761(2): 167-175.
17. Le Brun, P. P., de Graaf, A. I. and Vinks, A.
A. (2000). High-performance liquid chromatographic method for the determination
of colistin in serum. Therapeutic Drug Monitoring, 22(5): 589-593.
18. Reed, M. D., Stern, R. C., O’Riordan, M. A.
and Blumer, J. L. (2001). The pharmacokinetics of colistin in patients with
cystic fibrosis. Journal of Clinical Pharmacology, 41 (6): 645-654.
19. Bihan, K., Lu, Q., Enjalbert, M., Apparuit,
M., Langeron, O., Rouby, J., Funck-Brentano, C. and Zahr, N. (2016).
Determination of colistin and colistimethate levels in human plasma and urine
by high-performance liquid chromatography-tandem mass spectrometry. Therapeutic
Drug Monitoring, 38(6): 796–803
20. Jansson, B., Karvanen, M. Cars, O.,
Plachouras, D. and Friberg, L. E. (2009). Quantitative analysis of colistin A
and colistin B in plasma and culture medium using a simple precipitation step
followed by LC/MS/MS. Journal and Pharmaceutical and Biomedical Analysis,
49(3): 760-767.
21. Ma, Z., Wang, J., Gerber, J. P. and Milne, R.
W. (2008). Determination of colistin in human plasma, urine and other
biological samples using LC-MS/MS. Journal of Chromatography B, 862
(1-2): 205-212.
22. Leporati, M., Bua, R. O., Mariano, F.,
Carignano, P., Stella, M., Biancone, L. and Vincenti, M. (2014). Determination
by LC-MS/MS of colistins A and B in plasma and ultrafiltrate from critically
ill patients undergoing continuous venovenous hemodiafiltration. Therapeutic
Drug Monitoring, 36(2): 182-191.
23. Tsai, I. L., Sun, H. Y., Chen, G. Y., Lin, S.
W. and Kuo, C. H. (2013). Simultaneous
quantification of antimicrobial agents for multidrug-resistant bacterial
infections in human plasma by ultra-high-pressure liquid chromatography-tandem
mass spectrometry. Talanta, 116: 593-603.
24. Wan, E. C., Ho, C., Sin, D. W. and Wong, Y.
(2006). Detection of residual bacitracin A, colistin A, and colistin B in milk
and animal tissues by liquid chromatography tandem mass spectrometry. Analytical
and Bioanalytical Chemistry, 385(1): 181-188.
25. Mallet, C. R., Lu, Z. and Mazzeo, J. R.
(2004). A study of ion suppression effects in electrospray ionization from
mobile phase additives and solid-phase extracts. Rapid Communications in
Mass Spectrometry, 18 (1): 49-58.
26. George, R., Haywood, A., Khan, S.,
Radovanovic, M., Simmonds, J. and Norris, R. (2018). Enhancement and
suppression of ionization in drug analysis using HPLC-MS/MS in support of
therapeutic drug monitoring: A review of current knowledge of its minimization
and assessment. Therapeutic Drug Monitoring, 40 (1): 1-8.
27. Sargent, M., (2013). Guide to achieving
reliable quantitative LC-MS measurements. RSC Analytical Methods
Committee. United Kingdom. pp. 35-42.
28. Hanai, Y., Matsuo, K., Kosugi, T., Kusano, A.,
Ohashi, H., Kimura, I., Hirayama, S., Nanjo, Y., Ishii, Y., Sato, T., Miyazaki,
T., Nishizawa, K and Yoshio, T. (2018). Rapid, simple, and clinically
applicable high-performance liquid chromatography method for clinical
determination of plasma colistin concentrations. Journal of Pharmaceutical
Health Care and Sciences, 4: 1-9.
29. Adaway, J. E. and Keevil, B. G. (2012).
Therapeutic drug monitoring and LC–MS/MS. Journal of Chromatography B,
883–884: 33–49.
30. Dotsikas, Y., Markopoulou, C. K., Koundourellis,
J. E. and Loukas, Y. L. (2011). Validation of a novel LC-MS/MS method for the
quantitation of colistin A and B in human plasma. Journal of Separation
Science, 34(1): 37-45.
31. Food and Drug Administration (2018). Bioanalytical
method validation guidance. Access from
https://www.fda.gov/regulatory-information/search-fda-guidance-documents/bioanalytical-method-validation-guidance-industry.
[Access online 29 April 2020].