Malaysian Journal of Analytical Sciences, Vol 26 No 6 (2022): 1288 – 1302

 

OPTIMIZATION OF QUADRUPOLE TIME-OF-FLIGHT LIQUID CHROMATOGRAPHY MASS SPECTROMETRY (QTOF-LC/MS) CONDITIONS FOR DETERMINATION OF COLISTIN

IN HUMAN PLASMA

 

(Pengoptimuman Kondisi Kuadrupel Masa Penerbangan Kromatografi Cecair-Jisim Spektometri (QTOF-LC/MS) untuk Pengenalpastian Colistin di dalam Plasma Manusia)

 

Mohd Shafie Zabidi1, Ruzilawati Abu Bakar1, Nurfadhlina Musa2, Suzana Mustafa3, Wan Nazirah Wan Yusuf1*

 

1Department of Pharmacology,

School of Medical Sciences, Health Campus,

Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia

2Human Genome Centre, School of Medical Sciences, Health Campus,

Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia.

3Department of Pharmacy,

Hospital Raja Perempuan Zainab II, Kota Bharu, Kelantan, Malaysia

 

*Corresponding author: wnazirah@usm.my

 

 

Received: 27 July 2022; Accepted: 29 September 2022; Published:  27 December 2022

 

 

Abstract

Colistin is an antibiotic used as a last option to treat bacterial infections; it has a limited therapeutic window and needs to be monitored for dose optimization. This study aimed to optimize liquid chromatography-mass spectrometry conditions for colistin determination in human plasma. The parameters that affect the performance of liquid chromatography and mass spectrometry were investigated by modifying the composition of the mobile phase in isocratic and gradient elution mode, varying concentrations of acetonitrile and formic acid in the mobile phase, column temperature, ionization mode, and collision energy voltage. The gradient elution with water and acetonitrile, both containing 0.1% formic acid, was effectively used to separate the analytes on a Zorbax SB-C8 column maintained at 40°C. The retention times for colistin A, colistin B, and polymyxin B were 4.003, 3.810, and 4.047 min, respectively. Detection was performed with a quadrupole time-of-flight analyzer using electrospray ionization operated in the negative mode. The precursor–product ion pairs were identified at m/z 1123.7300/1079.7032 for colistin A, m/z 1109.7151/1065.6886 for colistin B, and m/z 1157.7159/1113.6889 for polymyxin B (internal standard). The optimum chromatographic condition for the separation and detection of colistin using quadrupole time-of-flight liquid chromatography mass spectrometry was established.

 

Keywords: colistin, high performance liquid chromatography, mass spectrometry, QTOF-LC/MS, human plasma

 

 

Abstrak

Colistin adalah antibiotik pilihan terakhir digunakan untuk rawatan jangkitan bakteria, ia mempunyai julat terapeutik yang sempit dan pemantauan diperlukan dalam mengoptimumkan dos rawatan. Kajian ini bertujuan untuk mengoptima kondisi kromatografi cecair-jisim spektrometri untuk pengenalpastian colistin di dalam plasma manusia. Parameter yang mempengaruhi prestasi kromatografi cecair dan spektrometri jisim dikaji dengan mengubah suai komposisi fasa bergerak dalam mod elusi isokratik dan kecerunan, perbezaan kepekatan acetonitril dan asid formik dalam fasa bergerak, suhu turus, mod pengionan dan pelangaran tenaga voltan. Kaedah kecerunan elusi dengan menggunakan air dan acetonitril di mana kedua-duanya mengandungi 0.1% asid formik digunakan untuk pemisahanan analit-analit pada turus Zorbax SB-C8 dengan suhu tetap 40 oC. Masa retensi bagi colistin A, colistin B and polymyxin B adalah 4.003, 3.810, dan 4.047 minit. Penganalisa kuadrupel masa penerbangan digunakan untuk tujuan pengesanan dan dikendalikan menggunakan ionisasi semburan-elektro di dalam mod negatif. Pasangan ion prekursor-produk dikenalpasti di m/z 1123.7300, 1079.7032 untuk colistin A, m/z 1109.7151, 1065.6886 untuk colistin B dan m/z 1157.7159, 1113.6889 untuk polymyxin B (piawai dalaman). Kaedah kromatografik untuk pemisahan dan pengesanan colistin yang optimum menggunakan kuadrupel masa penerbangan kromatografi cecair-jisim sepectrometry telah berjaya dibangunkan.

 

Kata kunci: colistin, kromatografi cecair prestasi tinggi, spektrometri jisim, QTOF-LC/MS, plasma manusia

 


Graphical Abstract


References

1.      Tsuji, B. T., Pogue, J, M., Zavascki, A. P., Paul, M., Daikos, G, L., Forrest, A., Giacobbe, D, R., Viscoli C., Giamarellou, H., Karaiskos, I., Kaye, D., Mouton, J. W., Tam, V. H., Thamlikitkul, V., Wunderink, R. G., Li, J., Nation, R. L. and Kaye, K. S(2019). international consensus guidelines for the optimal use of the polymyxins: Endorsed by the American College of Clinical Pharmacy (ACCP), European Society of Clinical Microbiology and Infectious Diseases (ESCMID), Infectious Diseases Society of America (IDS). Pharmacotherapy, 39 (1): 10-39.

2.      Nation, R., L., Garonzik, S. M., Thamlikitkul, V., Giamarellos-Bourboulis, E. J., Forrest, A., Paterson, D. L., Li, J. and Silveira, F. P. (2017). Dosing guidance for intravenous colistin in critically ill patients. Clinical Infectious Diseases, 64 (5): 565-571.

3.      Ehrentraut, S. F., Muenster, S., Kreyer, S., Theuerkauf, N. U., Bode, C., Steinhagen, F., Ehrentraut, H., Schewe, J. C., Weber, M., Putensen, C. and Muders, T. (2020). Extensive therapeutic drug monitoring of colistin in critically Ill patients reveals undetected risks. Microorganisms, 8(3): 415.

4.      Bergen, P. J., Li, J., Rayner, C. R. and Nation, R. L. (2006). Colistin methanesulfonate is an inactive prodrug of colistin against Pseudomonas aeruginosa. Antimicrobial Agents Chemotheraphy, 50(6): 1953-1958. 5.        Li, J., Nation, R. L., Turnidge, J. D., Milne, R. W., Coulthard, K., Rayner, C. R. and Paterson, D. L. (2006). Colistin: the re-emerging antibiotic for multidrug-resistant Gram-negative bacterial infections. Lancet Infectious Disease, 6(9): 589-601.

6.      Milne, R. W., Nation, R. L., Li, J., Coulthard, K. and Turnidge, J. D. (2003). Stability of colistin and colistin methanesulfonate in aqueous media and plasma as determined by high-performance liquid chromatography. Antimicrobial Agents Chemotherapy, 47(4): 1364-1370.

7.      Dudhani, R. V., Nation, R. L. and Li, J. (2010). Evaluating the stability of colistin and colistin methanesulphonate in human plasma under different conditions of storage. Journal of Antimicrobial Chemotherapy, 65(7): 1412-1415.

8.      Orwa, J. A., Govaerts, C., Gevers, K., Roets, E., Van Schepdael, A. and Hoogmartens, J. (2002). Study of the stability of polymyxins B(1), E(1) and E(2) in aqueous solution using liquid chromatography and mass spectrometry. Journal of Pharmaceutical Biomedical Analysis, 29(1-2): 2003-2012.

9.      Karvanen, M., Malmberg, C., Lagerback, P., Friberg, L. E. and Cars, O. (2017). Colistin is extensively lost during standard in vitro experimental conditions. Antimicrobial Agents Chemotherapy, 61(11): e00857-17.

10.    Li, J., Milne, R. W., Nation, R. L., Turnidge, J. D., Coulthard, K. and Valentine, J. (2002). Simple method for assaying colistin methanesulfonate in plasma and urine using high-performance liquid chromatography. Antimicrobial Agents Chemotheraphy, 46(10): 3304-3307.

11.    Gikas, E., Bazoti, F. N., Katsimardou, M., Anagnostopoulos, D., Papanikolaou, K., Inglezos, I., Skoutelis, A., Daikos, G. L. and Tsarbopoulos, A. (2013). Determination of colistin A and colistin B in human plasma by UPLC–ESI high resolution tandem MS: Application to a pharmacokinetic study. Journal of Pharmaceutical and Biomedical Analysis, 83: 228-236.

12.    Gobin, P., Lemaître, F., Marchand, S., Couet, W. and Olivier, J. C. (2010). Assay of colistin and colistin methanesulfonate in plasma and urine by liquid chromatography-tandem mass spectrometry. Antimicrobial Agents Chemotherapy, 54(5): 1941-1948.

13.    Cangemi, G., Barco, S., Castagnola, E., Tripodi, G., Favata, F. and D’Avolio, A. (2016). Development and validation of UHPLC–MS/MS methods for the quantification of colistin in plasma and dried plasma spots. Journal  of Pharmaceutical and Biomedical Analysis, 129: 1-7.

14.    Chepyala, D.,Tsai, I. L., Sun, H. Y., Lin, S. W. and Kuo, C. H. (2015). Development and validation of a high-performance liquid chromatography-fluorescence detection method for the accurate quantification of colistin in human plasma. Journal of Chromatography B, 980: 48-54.

15.    Milne, R.W. (2019). Bioanalysis and stability of polymyxins. polymyxin antibiotics: From labarotory bench to bedside, advances in experimental medicine and biology. Springer Nature, Switzerland: pp. 73-87.

16.    Li, J., Milne, R. W., Nation, R. L., Turnidge, J. D., Coulthard, K. and Johnson, D. W. (2001). A simple method for the assay of colistin in human plasma, using pre-column derivatization with 9-fluorenylmethyl chloroformate in solid-phase extraction cartridges and reversed-phase high-performance liquid chromatography. Journal of Chromatography B, 761(2): 167-175.

17.    Le Brun, P. P., de Graaf, A. I. and Vinks, A. A. (2000). High-performance liquid chromatographic method for the determination of colistin in serum. Therapeutic Drug Monitoring, 22(5): 589-593.

18.    Reed, M. D., Stern, R. C., O’Riordan, M. A. and Blumer, J. L. (2001). The pharmacokinetics of colistin in patients with cystic fibrosis. Journal of Clinical Pharmacology, 41 (6): 645-654.

19.    Bihan, K., Lu, Q., Enjalbert, M., Apparuit, M., Langeron, O., Rouby, J., Funck-Brentano, C. and Zahr, N. (2016). Determination of colistin and colistimethate levels in human plasma and urine by high-performance liquid chromatography-tandem mass spectrometry. Therapeutic Drug Monitoring, 38(6): 796–803

20.    Jansson, B., Karvanen, M. Cars, O., Plachouras, D. and Friberg, L. E. (2009). Quantitative analysis of colistin A and colistin B in plasma and culture medium using a simple precipitation step followed by LC/MS/MS. Journal and Pharmaceutical and Biomedical Analysis, 49(3): 760-767.

21.    Ma, Z., Wang, J., Gerber, J. P. and Milne, R. W. (2008). Determination of colistin in human plasma, urine and other biological samples using LC-MS/MS. Journal of Chromatography B, 862 (1-2): 205-212.

22.    Leporati, M., Bua, R. O., Mariano, F., Carignano, P., Stella, M., Biancone, L. and Vincenti, M. (2014). Determination by LC-MS/MS of colistins A and B in plasma and ultrafiltrate from critically ill patients undergoing continuous venovenous hemodiafiltration. Therapeutic Drug Monitoring, 36(2): 182-191.

23.    Tsai, I. L., Sun, H. Y., Chen, G. Y., Lin, S. W. and  Kuo, C. H. (2013). Simultaneous quantification of antimicrobial agents for multidrug-resistant bacterial infections in human plasma by ultra-high-pressure liquid chromatography-tandem mass spectrometry. Talanta, 116: 593-603.

24.    Wan, E. C., Ho, C., Sin, D. W. and Wong, Y. (2006). Detection of residual bacitracin A, colistin A, and colistin B in milk and animal tissues by liquid chromatography tandem mass spectrometry. Analytical and Bioanalytical Chemistry, 385(1): 181-188.

25.    Mallet, C. R., Lu, Z. and Mazzeo, J. R. (2004). A study of ion suppression effects in electrospray ionization from mobile phase additives and solid-phase extracts. Rapid Communications in Mass Spectrometry, 18 (1): 49-58.

26.    George, R., Haywood, A., Khan, S., Radovanovic, M., Simmonds, J. and Norris, R. (2018). Enhancement and suppression of ionization in drug analysis using HPLC-MS/MS in support of therapeutic drug monitoring: A review of current knowledge of its minimization and assessment. Therapeutic Drug Monitoring, 40 (1): 1-8.

27.    Sargent, M., (2013). Guide to achieving reliable quantitative LC-MS measurements. RSC Analytical Methods Committee. United Kingdom. pp. 35-42.

28.    Hanai, Y., Matsuo, K., Kosugi, T., Kusano, A., Ohashi, H., Kimura, I., Hirayama, S., Nanjo, Y., Ishii, Y., Sato, T., Miyazaki, T., Nishizawa, K and Yoshio, T. (2018). Rapid, simple, and clinically applicable high-performance liquid chromatography method for clinical determination of plasma colistin concentrations. Journal of Pharmaceutical Health Care and Sciences, 4: 1-9.

29.    Adaway, J. E. and Keevil, B. G. (2012). Therapeutic drug monitoring and LC–MS/MS. Journal of Chromatography B, 883–884: 33–49.

30.    Dotsikas, Y., Markopoulou, C. K., Koundourellis, J. E. and Loukas, Y. L. (2011). Validation of a novel LC-MS/MS method for the quantitation of colistin A and B in human plasma. Journal of Separation Science, 34(1): 37-45.

31.    Food and Drug Administration (2018). Bioanalytical method validation guidance. Access from https://www.fda.gov/regulatory-information/search-fda-guidance-documents/bioanalytical-method-validation-guidance-industry. [Access online 29 April 2020].