Malaysian Journal of Analytical Sciences, Vol 26 No 6 (2022): 1274 - 1287

 

SURFACTANT FUNCTIONALIZATION OF MAGNETIC NANOPARTICLES: A STUDY ON THE PARTICLE SIZE DISTRIBUTION AND ZETA POTENTIAL AS A NANOFLUID TO IMPROVE THERMAL CONDUCTIVITY

 

 (Perfungsian Surfaktan Nanopartikel Magnet: Kajian Mengenai Taburan Saiz Zarah dan Potensi Zeta Sebagai Bendalir Nano untuk Meningkatkan Kekonduksian Terma)

 

Cheah Ching Wei1, Noorashikin Md. Saleh1*, Nik Nur Atiqah Nik Wee1, Beh Shiuan Yih1,

Ahmad Fazlizan2, Farhanini Yusoff3

 

1,2Department of Chemical and Process Engineering,

Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia,

43600 UKM Bangi, Selangor, Malaysia

2Institute of Solar Energy,

Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia

3Faculty of Science and Marine Environment,

Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia

 

*Corresponding author: noorashikin@ukm.edu.my

 

 

Received: 18 May 2022; Accepted: 15 September 2022; Published:  27 December 2022

 

 

Abstract

Solar energy has gained increasing popularity in the last decade, resulting in the development of photovoltaic/thermal (PV/T) systems to improve photovoltaic cell efficiency. Working fluid is one of the most important components in a heat transfer system. In this study, Fe3O4@Sylgard 309 nanoparticles were synthesized for nanofluid preparation. The stability and particle size of the nanofluid were analyzed using the dynamic light scattering method. Water-based nanofluid at pH 7 had the highest zeta potential compared to the same water-based nanofluid at different pHs ranging from 5.2 to 9.4. The nanofluid synthesized using cetyltrimethylammonium ammonium bromide and sodium dodecyl sulfate as the surfactant achieved better stability than the nanofluid synthesized without the addition of the surfactant. Ethylene glycol (EG)-based nanofluid had the highest zeta potential value of -2.54 mV compared to the water-based and polyethylene glycol (PEG)-based nanofluids. Nanoparticles in the PEG-based nanofluid remained suspended for two days and were better than the water-based and EG-based nanofluids. The improvement of the thermal conductivity of the metal oxide nanofluid compared to the conventional base fluid in previous studies was reviewed. The results showed that the thermal conductivity of nanofluid was higher than the base fluid up to 49.4%, indicating the potential for nanofluid applications in PV/T systems if the stability of the nanofluid can be improved.

 

Keywords: Ferum(III) oxide, magnetic nanoparticle, nanofluid, thermal conductivity, thermophysical property

 

 

Abstrak

Populariti tenaga suria semakin meningkat sejak sedekad yang lalu dan menghasilkan pembangunan sistem fotovolta/terma (PV/T) untuk meningkatkan kecekapan sel fotovolta. Bendalir kerja adalah salah satu komponen terpenting dalam sistem pemindahan haba. Dalam kajian ini, nanozarah Fe3O4@Sylgard 309 telah disintesis untuk menyediakan cecair nano. Kestabilan dan saiz zarah cecair nano dianalisis menggunakan kaedah penyerakan cahaya dinamik. Bendalir nano berasaskan air pada pH 7 mempunyai potensi zeta yang paling tinggi berbanding dengan cecair nano berasaskan air yang sama pada pH berbeza antara 5.2 hingga 9.4. Kestabilan cecair nano yang disintesis menggunakan setiltrimetilammonium bromida dan natrium dodesil sulfat sebagai surfaktan adalah lebih baik iaitu -2.54 mV daripada cecair nano yang disintesis tanpa penambahan surfaktan. Bendalir nano berasaskan etilena glikol (EG) mempunyai nilai potensi zeta yang paling tinggi berbanding dengan cecair nano berasaskan air dan polietilena glikol (PEG). Nanozarah dalam cecair nano berasaskan PEG kekal terampai selama dua hari dan lebih baik daripada cecair nano berasaskan air dan EG. Peningkatan kekonduksian terma bagi cecair nano oksida logam berbanding dengan cecair asas konvensional dalam kajian terdahulu telah dikaji semula. Keputusan menunjukkan bahawa kekonduksian terma cecair nano adalah lebih tinggi daripada cecair asas sehingga 49.4% dan mempunyai potensi aplikasi cecair nano dalam sistem PV/T sekiranya kestabilan cecair nano dapat dipertingkatkan.

 

Kata kunci: Ferum(III) oksida, nanozarah magnet, bendalir nano, termal kekonduksian, sifat termofizik

 


Graphical Abstract

 

References

1.         IEA (2019). Global Energy & CO2 Status Report. 2019

2.         Ritchie, H., and Roser, M. (2017). CO2 and greenhouse gas emissions. Renewable Energy. 2017: pp. 1-10.

3.         Dahlan, N. Y., and Ismail, M. F. A (2015). Review on solar thermal technologies for low and medium temperature industrial process heat. Journal of Industrial Technology, 23(1): 25-44.

4.         Ibrahim, A., and El-Amin, A. (2012). Temperature effect on the performance of n-type c-Si film grown by linear facing target sputtering for thin film silicon photovoltaic devices. Optoelectronics and Advanced Materials-Rapid Communications, 6:73-77.

5.         Jama, M., Singh, T., Gamaleldin, S. M., Koc, M., Samara, A., Isaifan, R. J. (2016). Critical review on nanofluids. Journal of Nanomaterials, 26: 6717624.

6.         Al-Shamani, A. N., Sopian, K., Mat, S., Hasan, H. A., Abed, A. M., and Ruslan, M. (2016). Experimental studies of rectangular tube absorber photovoltaic thermal collector with various types of nanofluids under the tropical climate conditions. Energy Conversion and Management, 124: 528-542.

7.         Al-Waeli, A. H., Sopian, K., Chaichan, M. T., Kazem, H. A., Hasan, H. A., and Al-Shamani, A. N. (2017). An experimental investigation of SiC nanofluid as a base-fluid for a photovoltaic thermal PV/T system. Energy Conversion and Management, 142, 547-558.

8.         Said, Z., Sabiha, M., Saidur, R., Hepbasli, A., Rahim, N. A., Mekhilef, S., et al. (2015). Performance enhancement of a flat plate solar collector using titanium dioxide nanofluid and polyethylene glycol dispersant. Journal of Cleaner Production, 92: 343-353.

9.         Yusoff, M. M., Yahaya, N., Saleh, N. M., and Raoov, M. (2018). A study on the removal of propyl, butyl, and benzyl parabens via newly synthesised ionic liquid loaded magnetically confined polymeric mesoporous adsorbent. RSC Advances, 8(45): 25617-25635.

10.      Guo, T., Lin, M., Huang, J., Zhou, C., Tian, W., Yu, H., et al. (2018). The recent advances of magnetic nanoparticles in medicine. Journal of Nanomaterials, 2018: 7805147.

11.      Noorashikin, M.S., Mohamad, S. and Abas, M. R.  (2014). Extraction of parabens from water samples using cloud point extraction of non-ionic surfactant with beta-cyclodextrin as modifier. Journal of Surfactants and Detergents, 17: 747-758.

12.      Yusoff, F., Khing, N. T., Hao, C. C., Sang, L. P., Muhamad, N. A. B., and Saleh, N. M. (2018). The electrochemical behavior of zinc oxide/reduced graphene oxide composite electrode in dopamine. Malaysian Journal of Analytical Sciences, 22(2): 227-237.

13.      Noorashikin, M. S., Sohaimi, N. M., Suda, N., Aziz, H. Z., Zaini, S. R. M., Kandasamy, S., et al. (2017). The application of cloud point extraction in environmental analysis. Journal Sustainability Science Management, 12: 79-95.

14.      Noorashikin, M., Mohamad, S., and Abas, M. (2016). Determination of parabens in water samples by cloud point extraction and aqueous two-phase extraction using high-performance liquid chromatography. Desalination and Water Treatment, 57(47): 22353-22361.


15.      Norseyrihan, M. S., Noorashikin, M. S., Adibah, M., and Farhanini, Y. (2016). Cloud point extraction of methylphenol in water samples with low viscosity of non-ionic surfactant Sylgard 309 coupled with high-performance liquid chromatography. Separation Science and Technology, 51(14): 2386-2393.

16.      Ariffin, M. M., Sohaimi, N. M., Yih, B. S., and Saleh, N. M. (2019). Magnetite nanoparticles coated with surfactant Sylgard 309 and its application as an adsorbent for paraben extraction from pharmaceutical and water samples. Analytical Methods, 11(32): 4126-4136.

17.      Baker, I. (2018). Magnetic nanoparticle synthesis. Nanobiomaterials, 2018: 197-229.

18.      Gonzalez-Carreno, T., Morales, M., Gracia, M., and Serna, C. (1993). Preparation of uniform γ-Fe2O3 particles with nanometer size by spray pyrolysis. Materials Letters, 18(3): 151-155.

19.      Haiza, H., Yaacob, I., and Azhar, A. Z. A. (2018). Thermal conductivity of water-based magnetite ferrofluids at different temperature for heat transfer applications. Solid State Phenomena, 280: 36-42.

20.      Moon, J.-W., Rawn, C. J., Rondinone, A. J., Love, L. J., Roh, Y., Everett, S. M., et al. (2010). Large-scale production of magnetic nanoparticles using bacterial fermentation. Journal of Industrial Microbiology & Biotechnology, 37(10): 1023-1031.

21.      Safee, N. H. A., Abdullah, M. P., and Othman, M. R. (2010). Carboxymethyl chitosan− Fe3O4 nanoparticles: synthesis and characterization. Malaysian Journal Analytical Sciences, 14: 63-68.

22.      Sugimoto, T., Wang, Y., Itoh, H., and Muramatsu, A. (1998). Systematic control of size, shape and internal structure of monodisperse α-Fe2O3 particles. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 134(3): 265-279.

23.      Sun, S., and Zeng, H. Size-controlled synthesis of magnetite nanoparticles. Journal of the American Chemical Society, 124(28): 8204-8205.

24.      Wang, X., Zhuang, J., Peng, Q., and Li, Y. (2005). A general strategy for nanocrystal synthesis. Nature, 437(7055): 121-124.

25.      Zhang, G., Liao, Y., and Baker, I. (2010). Surface engineering of core/shell iron/iron oxide nanoparticles from microemulsions for hyperthermia. Materials Science and Engineering, 30(1): 92-97.

26.      Biehl, P., Von der Lühe, M., Dutz, S., and Schacher, F. H. (2018). Synthesis, characterization, and applications of magnetic nanoparticles featuring polyzwitterionic coatings. Polymers, 10(1): 91.

27.      Ghadiri, M., Sardarabadi, M., Pasandideh-fard, M., and Moghadam, A. J. (2015). Experimental investigation of a PVT system performance using nano ferrofluids. Energy Conversion and Management, 103: 468-476.

28.      Mohanraj, K., and Sivakumar, G. (2017). Synthesis of γ-Fe2O3, Fe3O4 and copper doped Fe3O4 nanoparticles by sonochemical method. Sains Malaysiana, 46(10): 1935-1942.

29.      Mufti, N., Atma, T., Fuad, A., and Sutadji, E. (2014). Synthesis and characterization of black, red and yellow nanoparticles pigments from the iron sand. In AIP Conference Proceedings, 1617: 165-169.

30.      Song, K., Lee, S., Suh, C.-Y., Kim, W., Ko, K.-S., and Shin, D. (2012). Synthesis and characterization of iron oxide nanoparticles prepared by electrical explosion of Fe wire in Ar–O2 gas mixtures. Materials Transactions, M2012186.

31.      Nalle, F., Wahid, R., Wulandari, I., and Sabarudin, A. (2019). Synthesis and characterization of magnetic Fe3O4 nanoparticles using oleic acid as stabilizing agent. Rasayan Journal of Chemistry, 12(1): 14-21.

32.      Xie, L., Qian, W., Yang, S., Sun, J., and Gong, T. (2017). A facile and green synthetic route for preparation of heterostructure Fe3O4@Au nanocomposites. MATEC Web of Conferences, 88: 02001.

33.      Zhou, J., Meng, L., Lu, Q., Fu, J., and Huang, X. (2009). Superparamagnetic submicro-megranates: Fe3O4 nanoparticles coated with highly cross-linked organic/inorganic hybrids. Chemical Communications, 42: 6370-6372.

34.      Lowry, G. V., Hill, R. J., Harper, S., Rawle, A. F., Hendren, C. O., Klaessig, F., et al. (2016). Guidance to improve the scientific value of zeta-potential measurements in nanoEHS. Environmental Science: Nano, 3(5): 953-965.

35.      Bhattacharjee, S. (2016). DLS and zeta potential–what they are and what they are not?. Journal of Controlled Release, 235: 337-351.

36.      Ostolska, I., and Wiśniewska, M. (2014). Application of the zeta potential measurements to explanation of colloidal Cr2O3 stability mechanism in the presence of the ionic polyamino acids. Colloid and Polymer Science, 292(10): 2453-2464.

37.      Salopek, B., Krasic, D. and Filipovic, S. (1992). Measurement and application of zeta-potential. Rudarsko-geolosko-naftni zbornik, 4(1): 147.

38.      Abadeh, A., Passandideh-Fard, M., Maghrebi, M. J. and Mohammadi, M. (2019). Stability and magnetization of Fe3O4/water nanofluid preparation characteristics using Taguchi method. Journal of Thermal Analysis and Calorimetry, 135(2): 1323-1334.

39.      Uskoković, V., Castiglione, Z., Cubas, P., Zhu, L., Li, W. and Habelitz, S. (2010). Zeta-potential and particle size analysis of human amelogenins. Journal of Dental Research, 89(2): 149-153.

40.      Wang, T., Ni, M., Luo, Z., Shou, C., and Cen, K. (2012). Viscosity and aggregation structure of nanocolloidal dispersions. Chinese Science Bulletin, 57(27): 3644-3651.

41.      Ghadimi, A., and Metselaar, I. H. (2013). The influence of surfactant and ultrasonic processing on improvement of stability, thermal conductivity and viscosity of titania nanofluid. Experimental Thermal and Fluid Science, 51: 1-9.

42.      Gensdarmes, F. (2015). Methods of Detection and Characterization. Nanoengineering, 2015: 55-84.

43.      Wang, L., Wang, X., Gu, R., Wang, H., Yao, L., Wen, L., et al. (2018). Observations of fine particulate nitrated phenols in four sites in northern China: concentrations, source apportionment, and secondary formation. Atmospheric Chemistry and Physics, 18(6): 4349-4359.

44.      Li, C. H., and Peterson, G. (2006). Experimental investigation of temperature and volume fraction variations on the effective thermal conductivity of nanoparticle suspensions (nanofluids). Journal of Applied Physics, 99(8): 084314.

45.      Şeşen, M., Tekşen, Y., Şendur, K., Pınar Mengüç, M., Öztürk, H., Yağcı Acar, H., et al. (2012). Heat transfer enhancement with actuation of magnetic nanoparticles suspended in a base fluid. Journal of Applied Physics, 112(6): 064320.

46.      Abareshi, M., Goharshadi, E. K., Zebarjad, S. M., Fadafan, H. K. and Youssefi, A. (2010). Fabrication, characterization and measurement of thermal conductivity of Fe3O4 nanofluids. Journal of Magnetism and Magnetic Materials, 322(24): 3895-3901.

47.      Yüksel, N. (2016). The review of some commonly used methods and techniques to measure the thermal conductivity of insulation materials. In A. Almusaed, & A. Almssad (Eds.), Insulation Materials in Context of Sustainability. IntechOpen.