Malaysian Journal of Analytical Sciences, Vol 26 No 6 (2022): 1260 - 1273

 

Ferrocene mediated amperometric biosensor for

L-glutamate based on L-glutamate oxidase immobilized

in a photocurable methacrylic film

 

(Biosensor Amperometrik L-Glutamat berperantara Ferosena berasaskan L-Glutamat Oksida Terpegun dalam Fotosalutan Filem Metakrilik)

 

Noor Zuhartini Md Muslim1*, Musa Ahmad2, Lee Yook Heng3, Bahruddin Saad4

 

1School of Health Sciences, Health Campus,

Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia

2Faculty of Science & Technology,

Universiti Sains Islam Malaysia, 71800 Bandar Baru Nilai, Negeri Sembilan, Malaysia

3School of Chemical Sciences and Food Technology,

Faculty of Science & Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia

4Department of Fundamental & Applied Scinces,

Universiti Teknologi PETRONAS, Bandar Seri Iskandar, 32610 Perak, Malaysia

 

*Corresponding author: zuhartini@usm.my

 

 

Received: 24 May 2022; Accepted: 27 September 2022; Published:  27 December 2022

 

 

Abstract

L-glutamate is widely used as a flavour enhancer in various foodstuffs and seasoning in the form of monosodium glutamate (MSG). MSG has been linked to neurotoxic effects, metabolic disorders, headache, numbness and palpitation. In this work, an amperometric L-glutamate biosensor based on photocurable poly(2-hydroxylethyl methacrylate)-containing ferrocene film for the determination of L-glutamate in food samples is described. The sensor is fabricated based on simultaneous immobilization of both L-glutamate oxidase and ferrocene as a mediator during the deposition of poly(2-hydroxylethyl methacrylate) film via photocuring. Ferrocene was used to shuttle the electrons directly between the reduced enzyme and the electrode. From electrochemical studies, a linear response towards L-glutamate in the concentration range of 10-30 mM was obtained at applied potential of +0.25 V with the detection limit of 7.7 mM. The storage stability of the biosensor is up to 4 months under storage condition of 4 oC in refrigerator. The performance of the biosensor was applied to the determination of L-glutamate in food stocks from local supermarkets. Results from amperometric L-glutamate biosensor were further validated with HPLC method.

 

Keywords: photocurable, methacrylate polymers, ferrocene, L-glutamate biosensor

 

Abstrak

L-glutamat digunakan secara meluas dalam pelbagai bahan makanan dan perasa dalam bentuk mononatrium glutamat (MSG). MSG telah dikaitkan dengan kesan neurotoksik, gangguan metabolik, sakit kepala, rasa kebas dan berdebar-debar. Biosensor amperomerik L-glutamat berasaskan fotosalutan poli(2-hidroksiletil matakrilat)-mengandungi filem ferosena dihuraikan untuk penentuan L-glutamat di dalam sampel makanan. Sensor ini direka berasaskan pemegunan secara serentak bagi L-glutamat oksida dan ferosena sebagai perantara semasa pemendapan filem poli(2-hidroksiletil metakrilat) menerusi fotosalutan. Ferosena digunakan sebagai perantara ulang-alik elektron secara langsung antara penurunan enzim dengan elektrod. Berdasarkan kajian elektrokimia, rangsangan linear terhadap L-glutamat diperoleh dalam julat kepekatan 10-30 mM pada keupayaan +0.25 V dengan had pengesanan 7.7 mM. Jangka hayat kestabilan biosensor penyimpanan dalam peti sejuk adalah mencapai sehingga 4 bulan pada suhu 4oC. Prestasi biosensor diaplikasikan untuk penentuan L-glutamat dalam stok makanan daripada pasar raya tempatan. Keputusan daripada biosensor L-glutamat seterusnya disahkan dengan kaedah HPLC.

 

Kata kunci: fotosalutan, polimer metakrilat, ferosena, biosensor L-glutamat

 

Graphical Absract

 

References

1.         Borisova, T., Kucherenko, D., Soldatkin, O., Kucherenko, I., Pastukhov, A., Nazarova, A., Galkin, M., Borysov, A., Krisanova, N., Soldatkin, A. and El`skaya, A. (2018). An amperometric glutamate biosensor for monitoring glutamate release from brain nerve terminals and in blood plasma. Analytica Chimica Acta, 1022: 113-123.

2.         Isoaho, N., Peltola, E., Sainio, S., Koskinen, J. and Laurila, T. (2018). Pt-grown carbon nanofibers for enzymatic glutamate biosensors and assessment of their biocompatibility. Royal Society of Chemistry Advance, 8, 35802-35812.

3.         Malaysia and International Law Book Services (2015). Food act 1983 (Act 281) & regulations. International Law Book Services, Petaling Jaya.

4.         EFSA Panel on Food Additives and Nutrient Sources added to Food. (2017). Re-evaluation of glutamic acid (E 620), sodium glutamate (E 621), potassium glutamate (E 622), calcium glutamate (E 623), ammonium glutamate (E 624) and magnesium glutamate (E 625) as food additives. EFSA Journal, 15: 4910-4999.

5.         Lateef, M., Siddiqui, K., Saleem, M and Iqbal, L. (2012). Estimation of monosodium glutamate by modified HPLC method in various pakistani spices formula. Journal- Chemical Society of Pakistan, 34: 39-42.

6.         Soyseven, M. and Arli, G. (2021). Method validation and rapid determination of monosodium glutamate in various food products by HPLC–fluorescence detection and method optimization of HPLC–evaporative light scattering detection approach without derivatization. Journal of Chromatographic Science, 122: 60(8):760-769.

7.         Mustafa, S., Saleem, Y. and Hameed, S. (2015). Determination of monosodium glutamate content in selected traditional meat dishes. International Journal of Scientific & Engineering Research, 6: 569-572.

8.         Krishna Veni, N., Karthika, D., Surya Devi, M., Rubini, M. F., Vishalini, M. and Pradeepa, Y. J. (2010). Analysis of monosodium l-glutamate in food products by high-performance thin layer chromatography. Journal of Young Pharmacists, 2: 297-300.

9.         Ambusaidi, M. M. S. K., Pandian, S. B. S., Swaminathan, S. and Sudhakar, M. S. (2020). A survey on the monosodium glutamate occurrence in food products and it’s analysis by thin layer chromatography and liquid chromatography-mass spectrometry from sultanate of Oman. International Journal of Analytical and Bioanalytical Methods, 2: 1-11.

10.      Camila, D. M. C., Felix, G. R. R., Andreas, M. and José, A. F. (2019). On-line electroextraction in capillary electrophoresis: application on the determination of glutamic acid in soy sauces. Electrophoresis, 40: 323-329.

11.      Nuradi and Widarti (2018).  Analysis of monosodium glutamat level on meatballs snacks (BAKSO) sold in the Makassar and Parepare City of South Sulawesi Province with visible spectrophotometer. International Journal of Sciences: Basic and Applied Research, 38: 34-41.

12.      Ali, H. M., Hammad, S. F. and El-Malla, S. F. (2021). Green spectrophotometric methods for   determination of a monosodium glutamate in different matrices. Microchemical Journal, 169: 1-9.

13.      Rachma, F. A. and Saptawati, T. (2021). Analysis tolerance of monosodium glutamate (MSG) in instant noodles with uv-vis spectrophotometry. Journal of Science and Technology Research for Farmacy, 1: 20-24.

14.      Alonge, P. O., Idemudia, O. S.  and Odokuma-Alonge, O. (2019). Direct assay of monosodium glutamate in multi-sourced bouillon cubes by first derivative potentiometric titration. Journal of Applied Sciences and Environmental Management, 23: 299-304.

15.      Cui, Y., Barford, J. P. and Renneberg, R. (2007). Development of an interference-free biosensor for l-glutamate using a bienzyme salicylate hydoxylase/l-glutamate dehydrogenase system. Enzyme and Microbial Technology, 41: 689-693.

16.      Lioe, H. N., Dyahpakarti, G. C., Zakaria, N. A., Sudrajat, H. R., and Rahayu, I. (2019). Exposure assessment of monosodium glutamate in prepared foods with frying, sautéing, grilling or baking process. Proceedings of the 2nd SEAFAST International Seminar, pp. 49-56.

17.      Zhang, M., Mullens, C. and Gorski, W. (2006). Amperometric glutamate biosensor based on chitosan enzyme film. Electrochimica Acta, 51: 4528-4532.

18.      Chang, K. –S, Chang, C. –K, Chou, S. –F., Han, H. –C. and Chen, C. –Y. (2007). Characterization of a planar l-glutamate amperometric biosensor immobilized with a photo-crosslinkable polymer membrane. Sensors and Actuators B, 122: 195-203.

19.      Alnokkari, A., Ataie, M. and Alasaf, Z. (2013). Colorimetric determination of monosodium glutamate  in food samples using l-glutamate oxidase. Chinese Journal of Applied and Environmental Biology, 19: 1069-1072.

20.      Yılmaz, D. and Karakus, E. (2011). Construction of a potentiometric glutamate biosensor for determination of glutamate in some real samples. Artificial Cells, Blood Substitutes, and Biotechnology, 39: 385-391.

21.      Mizutani, S., Okumura, Y., Horio, T., Iwata, T., Okumura, K., Takahashi, K., Murakami, Y., Dasai, F., Ishida, M. and Sawada, K. (2017). Development of glutamate sensor for neurotransmitter imaging. Sensors and Materials, 29: 253-260.

22.      Soldatkina, O. V., Soldatkin, O. O., Ozansoy Kasap, B., Kucherenko, D. Yu., Kucherenko, I. S., Akata Kurc, B. and Dzyadevych, S. V. (2017). A novel amperometric glutamate biosensor based on glutamate oxidase adsorbed on silicalite. Nanoscale Research Letters, 12: 1-8.

23.      Liu, J., Fan, Y., Chen, G. and Liu, Y. (2021). Highly sensitive glutamate biosensor based on platinum nanoparticles decorated MXene-Ti3C2Tx for l-glutamate determination in foodstuffs. LWT-Food Science and Technology, 148: 1-8.

24.      Sim Bean, L., Yook Heng, L., Yamin, B. M. and Ahmad, M. (2005). Photocurable ferrocene-containing poly(2-hydroxyl ethyl methacrylate) films for mediated amperometric glucose biosensor. Thin solid Films, 477: 104-110.

25.      Sarika, C., Rekha, K. and Narasimha Murthy, B. (2015). Studies on enhancing operational stability of a reusable laccase-based biosensor probe for detection of ortho-substituted phenolic derivatives. 3 Biotech, 5: 911-924.

26.       Ryth-Rinder, M., Kerekes, N., Svensson, M. and Hökfelt, T. (2001). Glutamate release from adult primary sensory neurons in culture is modulated by growth factors. Regulatory Peptides, 102: 69-79.

27.      Wachiratianchai, S., Bhumiratana, A. and Udomsopagit, S. (2004). Isolation, purification, and characterization of l-glutamate oxidase from Streptomyces sp. 18G. Journal of Biotechnology, 7: 277-284.

28.      Haymond, S., Babcock, G. T. and Swain, G. M. (2003). Electron transfer kinetics of ferrocene at microcryctalline boron-doped diamond electrodes: Effects of solvent and electrolytes. Electroanalysis, 15: 249-253.

29.      Maalouf, R., Chebib, H., Saïkali, Y., Vittori, O., Sigaud, M. and Jaffrezic-Renault, N. (2007). Amperometric and impedimetric characterization of a glutamate biosensor based on Nafion® and a methyl viologen modified glassy carbon electrode. Biosensors and Bioelectronics, 22: 2682-2688.

30.      Wang, H.-S., Pan, Q.-X. and Wang, G. -X. (2005). A biosensor based on immobilization of horseradish peroxide in chitosan matrix cross-linked with glyoxal for amperometric determination of hydrogen peroxide. Sensors, 5: 266 -276.

31.      Lim, P. E. and Ang, T. T. (1990). Enzim dan ilmu energetik sel. Pusat Pengajian Luar Kampus, Universiti Sains Malaysia, Pulau Pinang.

32.      Deng, Q., Guo, Y. and Dong, S. (1996). Cyro-hydrogel for the construction of a tyrosinase-based biosensor. Analytica Chimica Acta, 319: 71-77.

33.      Seidel, J. M. and Malmonge, S. M. (2000). Synthesis of polyHEMA hydrogels for using as biomaterials. bulk and solution radical-initiated polymerization techniques. Material Research, 3: 79-83.

34.      Neumann, M. G., Schmitta, C. C., Catalina, F. and Goi, B. E. (2007). Material behaviour: The relation between the polymerization rates and swelling coefficients for copolymers obtained by photoinitiation. Polymer Testing, 26: 189-194.

35.      Miller, J. N. and Miller, J. C. (2000). Statistics and chemometrics for analytical chemistry, 4th Edition, Pearson Education.

36.      Janarthanan, C. and Mottola, H. A. (1998). Enzymatic determinations with rotating bioreactors: Determination of glutamate in food products. Analytical Chimica Acta, 369: 147-155.

37.      Isa, I. M. and Ghani, S. A. (2009). A non-plasticized chitosan based solid state electrode for flow injection analysis of glutamate in food samples. Food Chemistry, 112: 756-759.

38.      Upadhyay, S., Ohgami, N., Kusakabe, H., Mizuno, H., Arima, J., Tamura, T., Inagaki, K. and Suzuki, H. (2006). Performance characterization of recombinant l-glutamate oxidase in a micro GOT/GPT sensing system. Sensors and Actuators B, 119: 570 – 576.

39.      Karyakin, A. A., Karyakina, E. E. and Lo Gorton. (2000). Amperometric biosensor for glutamat using prussion blue-based “artificial peroxidase” as a transducer for hydrogen peroxide. Analytical Chemistry, 72: 1720-172.