Malaysian Journal of Analytical Sciences, Vol 26 No 6 (2022): 1158 - 1167

 

NANOPARTICLES FUNCTIONALIZED REDUCED GRAPHENE OXIDE THIN FILMS FOR DETECTION OF ACETIC ACID AT LOW CONCENTRATIONS

 

(Filem Nipis Grafin Oksida Terkurang Berfungsi Nanopartikel untuk Pengesanan

Asid Asetik pada Kepekatan Rendah)

 

Nor Syahira Mohd Tombel1*, Marmeezee Mohd Yusoff2, Hasan Firdaus Mohd Zaki2,3,

Firzalaila Syarina Md Yakin4 and Siti Aishah Mohamad Badaruddin5

 

1Department of Computational and Theoretical Sciences,

Kulliyyah of Science,

International Islamic University of Malaysia, 25200, Kuantan, Pahang, Malaysia

2Kulliyyah of Engineering,

International Islamic University Malaysia, Jalan Gombak, 53100, Kuala Lumpur, Malaysia

3Centre for Unmanned Technologies (CUTe),

Kulliyyah of Engineering,

International Islamic University of Malaysia, Jalan Gombak, 53100, Kuala Lumpur, Malaysia

4Advanced Devices Lab,

MIMOS Berhad, Technology Park Malaysia, 57000 Kuala Lumpur, Malaysia

 

*Corresponding author: norsyahiramt@gmail.com

 

 

Received: 31 January 2022; Accepted: 23 April 2022; Published:  27 December 2022

 

 

Abstract

This research proposes reduced graphene oxide (rGO) functionalized with nanoparticles (NPs) from gold (Au), silver (Ag) and platinum (Pt) as a sensing material for the detection of acetic acid gas at low concentrations, from 1 to 5 part per million (ppm). The rGO was functionalized with NPs at different sputtering durations (15 sec and 75 sec) and relative frequency (RF) power (30W and 70W) to study the enhancement of sensing properties. The sensors were exposed to acetic acid from 1 to 5 ppm in the presence of 20% relative humidity (RH) and at 30 °C room temperature. In this work, the Au NPs/rGO (30W 15s), Ag NPs/rGO (30W 15s) and Pt NPs/rGO (70W 15s) sensors were reported to have a good response with sheet resistance, (Rs) at values: 327.2, 453.844 and 201.084 Ω/sq, respectively, compared with the reference sensor, rGO at only Rs, 529.614 Ω/sq. The three sensors had also recorded high R2 values compared to the reference rGO (0.9448) with values of 0.993, 0.966 and 0.995 for Au/rGO (30W 15s), Ag/rGO (30W 15s) and Pt/rGO (70W 15s), respectively. Thus, the functionalization of rGO with nanoparticles can enhance the sensor’s electrical properties and generate good responses for acetic acid gas detection at low concentrations.

 

Keywords: reduced graphene oxide, functionalization, nanoparticle, response, sensitivity, gas detection.

 

 

Abstrak

Penyelidikan ini mencadangkan grafin oksida terkurang (rGO) dan kefungsiannya dengan nanopartikel (NPs) daripada emas (Au), perak (Ag) dan platinum (Pt) sebagai bahan penderiaan untuk pengesanan gas asid asetik pada kepekatan rendah. NPs telah difungsikan dengan rGO pada tempoh percikan yang berbeza (15 saat dan 75 saat) dan kuasa frekuensi relatif (RF) (30W dan 70W) untuk mengkaji peningkatan sifat penderiaan peranti penderia. Penderia didedahkan dengan asid asetik dari 1 hingga 5 bahagian per juta (ppm) kepekatan dengan kehadiran 20% Kelembapan Relatif (RH) dan pada suhu bilik 30 ℃. Dalam kerja ini, penderia Au NPs/rGO (30W 15s), Ag NPs/rGO (30W 15s) dan Pt NPs/rGO (70W 15s) dilaporkan mempunyai tindak balas yang baik dengan nilai rintangan lembaran, Rs yang diukur; 327.2, 453.844 dan 201.084 Ω/sq, masing-masing, dengan nilai yang lebih rendah daripada penderia rujukan, rGO sahaja iaitu 529.614 Ω/sq. Ketiga-tiga penderia itu juga mencatatkan nilai R2 yang lebih tinggi berbanding rGO rujukan (0.9448) dengan nilai masing-masing 0.993, 0.966 dan 0.995 untuk Au NPs/rGO (30W 15s), Ag NPs/rGO (30W 15s) dan Pt NPs/rGO (70W 15s). Oleh itu, kefungsian rGO dengan nanopartikel boleh meningkatkan sifat elektrik sensor dan menjana tindak balas yang baik untuk pengesanan gas asid asetik pada kepekatan rendah.

 

Kata kunci: grafin oksida terkurang, kefungsian, nanopartikel, tindak balas, kepekaan, pengesanan gas



Graphical Abstract

 

References

1.      Zhang, H., Li, Q., Huang, J., Du, Y. and Ruan, S. C. (2016). Reduced graphene oxide / Au Nanocomposite for NO2 sensing at low operating temperature. Sensor, 16(2): 1-9.

2.      Abdel-Karim, R., Reda, Y. and Abdel-Fattah, A. (2020). Review: Nanostructured materials-based nanosensors. Journal of The Electrochemical Society, 167: 037554.

3.      Paula, M., Gil, G., Sandra, C., Nuno, A., Manoj, S., Jos, G. and Antnio, S. (2017), Functionalized graphene nanocomposites. Advances in Nanocomposite Technology, 2017: 11-15.

4.      Behi, S., Bohli, N., Casanova-ch, J. and Llobet, E. (2020). Metal oxide nanoparticle-decorated few layer graphene nanoflake chemoresistors for the detection of aromatic volatile organic compounds. Sensors, 20: 3413:1-15.

5.      Lipatov, A., Varezhnikov, A., Wilson, P. and Sysoev, V. V. (2013). Highly selective gas sensor arrays based on thermally reduced graphene oxide. Nanoscale, 5: 5426-5434.

6.      Abdullah, M. F., Soriadi, N., Yakin, F.S.M, Badaruddin, S.A.M. and Syono, M. I. (2020). Materials science in semiconductor processing tuning the optoelectronic properties of the rGO-AuNPs hybrid film by pre-decoration and AuNPs-assisted thermal reduction. Materials Science in Semiconductor Processing, 112: 105017.

7.      Wang, C., Lei, S., Li, X., Guo, S., Cui, P., Wei, X., Liu, W. and Liu, H. (2018). A reduced GO-graphene hybrid gas sensor for ultra-low concentration ammonia detection. Sensors (Switzerland), 18(9): 3147.

8.      Mirzaei, A., Lee, J., Majhi, S. M., Weber, M., Bechelany, M. and Kim, H. W. (2019). Resistive gas sensors based on metal-oxide nanowires Resistive gas sensors based on metal-oxide nanowires. Journal of Applied Physics, 2019: 241102.

9.      Malika, K., Kim, T., Losic, D. and Thanh, T. (2016). Recent advances in engineered graphene and composites for detection of volatile organic compounds (VOCs) and non-invasive diseases diagnosis. Carbon, 110: 97-129.

10.    Ghimenti, S., Francesco, F. Di, Onor, M., Pleil, J. D., Stiegel, M. A., Sobus, J. R., Unterkofler, K., King, J., Mochalski, P., Pleil, J. D., Stiegel, M. A. and Risby, T. H. (2013), Clinical breath analysis : discriminating between human endogenous compounds and exogenous (environmental) chemical confounder. Journal of Breath Research, 7: 1-11.

11.    Gaude, E., Nakhleh, M. K., Patassini, S., Boschmans, J., Allsworth, M., Boyle, B., and Van Der Schee, M. P. (2019), Targeted breath analysis: Exogenous volatile organic compounds (EVOC) as metabolic pathway-specific probe. Journal of Breath Research, 13(3): 032001.

12.    Yakin, F. S. M., Abdullah, M. F., Badaruddin, S. A, Syono, M. I. and Soriadi, N. (2021), Surface modification and properties modulation of rGO film by short duration H2 and NH3 plasma treatment. Materials Today: Proceedings, 42: 2996-3001.

13.    Tombel, N. S. M., Badaruddin, S.  A. M., Yakin, F. S. M., Zaki, H. F. M. and Syono, M. I. (2021). Detection of low PPM of volatile organic compounds using nanomaterial functionalized reduced graphene oxide sensor. AIP Conference Proceedings, 2368: 020004.

14.    Amiri, V., Roshan, H., Mirzaei, A., Neri, G. and Ayesh, A. I. (2020). Nanostructured metal oxide-based acetone gas sensors : a review. Sensors, 20: 3096.

15.    Wang, C., Yin, L., Zhang, L., Xiang, D. and Gao, R. (2010). Metal oxide gas sensors: Sensitivity and influencing factors. Sensors, 10: 2088-2106.

16.    Aniq, M., Mohammad, S., Wah, H., Bien, D. C. S., Hj, I., Azid, A., Woon, M. and Shukri, S. (2014). Surface morphology, resistivity, and magnetoresistance of Co, Fe, Ni, Co – Fe and Ni – Fe nanoparticles on TiN layers induced by hydrogen plasma treatment. Thin Solid Films, 550: 22-26.

17.    Arun, K., Lekshmi, M. S and Suja, K. (2021). Performance analysis, modeling, and development of a signal conditioning unit of n-type metal oxide gas sensor for acetone gas detection. Journal of Computational Electronics, 20: 1938-1947.

18.    Arshak, K., Moore, E., Lyons, G.M., Harris, J. and Clifford, S. (2004). A review of gas sensors employed in electronic nose applications. Sensor Review, 24: 181-198.

19.    Vergara, A., Vembu, S., Ayhan, T., Ryan, M. A., Homer, M. L. and Huerta, R. (2012). Chemical gas sensor drift compensation using classifier ensembles. Sensors and Actuators, B: Chemical, 166-167: 320-329.

20.    Gupta, S., Chatterjee, S., Ray, A. K. and Chakraborty, A. K. (2015). Graphene – metal oxide nanohybrids for toxic gas sensor : A review. Sensors & Actuators: B Chemical, 221(2): 1170-1181.

21.    Zhou, C., Yu, J., Qin, Y. and Zheng, J. (2013). Grain size effects in polycrystalline gold nanoparticles. Nanoscale, 4(14): 4228-4233.