Malaysian Journal of Analytical
Sciences, Vol 26
No 6 (2022): 1158 - 1167
NANOPARTICLES FUNCTIONALIZED REDUCED GRAPHENE OXIDE
THIN FILMS FOR DETECTION OF ACETIC ACID AT LOW CONCENTRATIONS
(Filem Nipis Grafin Oksida Terkurang
Berfungsi Nanopartikel untuk Pengesanan
Asid Asetik pada Kepekatan Rendah)
Nor Syahira Mohd Tombel1*,
Marmeezee Mohd Yusoff2, Hasan Firdaus Mohd Zaki2,3,
Firzalaila Syarina Md Yakin4
and Siti Aishah Mohamad Badaruddin5
1Department of Computational and
Theoretical Sciences,
Kulliyyah
of Science,
International
Islamic University of Malaysia, 25200, Kuantan, Pahang, Malaysia
2Kulliyyah of Engineering,
International
Islamic University Malaysia, Jalan Gombak, 53100, Kuala Lumpur, Malaysia
3Centre for Unmanned Technologies
(CUTe),
Kulliyyah
of Engineering,
International
Islamic University of Malaysia, Jalan Gombak, 53100, Kuala Lumpur, Malaysia
4Advanced Devices Lab,
MIMOS
Berhad, Technology Park Malaysia, 57000 Kuala Lumpur, Malaysia
*Corresponding author: norsyahiramt@gmail.com
Received: 31 January 2022; Accepted:
23 April 2022; Published: 27 December
2022
Abstract
This research proposes
reduced graphene oxide (rGO) functionalized with nanoparticles
(NPs) from gold (Au), silver (Ag) and platinum (Pt) as a sensing material for
the detection of acetic acid gas at low concentrations, from 1 to 5 part per
million (ppm). The rGO was functionalized with NPs at
different sputtering durations (15 sec and 75 sec) and relative frequency (RF)
power (30W and 70W) to study the enhancement of sensing properties. The sensors
were exposed to acetic acid from 1 to 5 ppm in the presence of 20% relative
humidity (RH) and at 30 °C room temperature. In this work, the Au NPs/rGO (30W 15s), Ag NPs/rGO (30W
15s) and Pt NPs/rGO (70W 15s) sensors were reported
to have a good response with sheet resistance, (Rs) at values:
327.2, 453.844 and 201.084 Ω/sq,
respectively, compared with the reference sensor, rGO
at only Rs, 529.614 Ω/sq. The three sensors had also recorded
high R2 values compared to the reference rGO
(0.9448) with values of 0.993, 0.966 and 0.995 for Au/rGO
(30W 15s), Ag/rGO (30W 15s) and Pt/rGO (70W 15s), respectively. Thus, the functionalization of
rGO with nanoparticles can enhance the sensor’s
electrical properties and generate good responses for acetic acid gas detection
at low concentrations.
Keywords: reduced
graphene oxide, functionalization, nanoparticle, response, sensitivity, gas
detection.
Abstrak
Penyelidikan ini mencadangkan grafin oksida terkurang (rGO)
dan kefungsiannya dengan nanopartikel (NPs) daripada emas (Au), perak (Ag) dan
platinum (Pt) sebagai bahan penderiaan untuk pengesanan gas asid asetik pada
kepekatan rendah. NPs telah difungsikan dengan rGO pada tempoh percikan yang
berbeza (15 saat dan 75 saat) dan kuasa frekuensi relatif (RF) (30W dan 70W)
untuk mengkaji peningkatan sifat penderiaan peranti penderia. Penderia
didedahkan dengan asid asetik dari 1 hingga 5 bahagian per juta (ppm) kepekatan
dengan kehadiran 20% Kelembapan Relatif (RH) dan pada suhu bilik 30 ℃.
Dalam kerja ini, penderia Au NPs/rGO (30W 15s), Ag NPs/rGO (30W 15s) dan Pt
NPs/rGO (70W 15s) dilaporkan mempunyai tindak balas yang baik dengan nilai
rintangan lembaran, Rs yang diukur; 327.2, 453.844 dan 201.084 Ω/sq,
masing-masing, dengan nilai yang lebih rendah daripada penderia rujukan, rGO
sahaja iaitu 529.614 Ω/sq. Ketiga-tiga penderia itu juga mencatatkan nilai
R2 yang lebih tinggi berbanding rGO rujukan (0.9448) dengan nilai
masing-masing 0.993, 0.966 dan 0.995 untuk Au NPs/rGO (30W 15s), Ag NPs/rGO
(30W 15s) dan Pt NPs/rGO (70W 15s). Oleh itu, kefungsian rGO dengan
nanopartikel boleh meningkatkan sifat elektrik sensor dan menjana tindak balas
yang baik untuk pengesanan gas asid asetik pada kepekatan rendah.
Kata kunci: grafin
oksida terkurang, kefungsian, nanopartikel, tindak balas, kepekaan, pengesanan gas
Graphical Abstract
References
1. Zhang,
H., Li, Q., Huang, J., Du, Y. and Ruan, S. C. (2016). Reduced graphene oxide /
Au Nanocomposite for NO2 sensing at low operating temperature. Sensor,
16(2): 1-9.
2. Abdel-Karim, R.,
Reda, Y. and Abdel-Fattah, A. (2020). Review: Nanostructured materials-based
nanosensors. Journal of The Electrochemical Society, 167: 037554.
3. Paula, M., Gil,
G., Sandra, C., Nuno, A., Manoj, S., Jos, G. and Antnio, S. (2017),
Functionalized graphene nanocomposites. Advances in Nanocomposite
Technology, 2017: 11-15.
4. Behi, S., Bohli,
N., Casanova-ch, J. and Llobet, E. (2020). Metal oxide nanoparticle-decorated
few layer graphene nanoflake chemoresistors for the detection of aromatic
volatile organic compounds. Sensors, 20: 3413:1-15.
5. Lipatov, A.,
Varezhnikov, A., Wilson, P. and Sysoev, V. V. (2013). Highly selective gas
sensor arrays based on thermally reduced graphene oxide. Nanoscale, 5:
5426-5434.
6. Abdullah, M. F.,
Soriadi, N., Yakin, F.S.M, Badaruddin, S.A.M. and Syono, M. I. (2020).
Materials science in semiconductor processing tuning the optoelectronic
properties of the rGO-AuNPs hybrid film by pre-decoration and AuNPs-assisted
thermal reduction. Materials Science in Semiconductor Processing, 112:
105017.
7. Wang, C., Lei,
S., Li, X., Guo, S., Cui, P., Wei, X., Liu, W. and Liu, H. (2018). A reduced
GO-graphene hybrid gas sensor for ultra-low concentration ammonia detection. Sensors
(Switzerland), 18(9): 3147.
8. Mirzaei, A.,
Lee, J., Majhi, S. M., Weber, M., Bechelany, M. and Kim, H. W. (2019).
Resistive gas sensors based on metal-oxide nanowires Resistive gas sensors
based on metal-oxide nanowires. Journal of Applied Physics, 2019:
241102.
9. Malika, K., Kim,
T., Losic, D. and Thanh, T. (2016). Recent advances in engineered graphene and
composites for detection of volatile organic compounds (VOCs) and non-invasive
diseases diagnosis. Carbon, 110: 97-129.
10. Ghimenti, S.,
Francesco, F. Di, Onor, M., Pleil, J. D., Stiegel, M. A., Sobus, J. R.,
Unterkofler, K., King, J., Mochalski, P., Pleil, J. D., Stiegel, M. A. and
Risby, T. H. (2013), Clinical breath analysis : discriminating between
human endogenous compounds and exogenous (environmental) chemical confounder. Journal
of Breath Research, 7: 1-11.
11. Gaude, E.,
Nakhleh, M. K., Patassini, S., Boschmans, J., Allsworth, M., Boyle, B., and Van
Der Schee, M. P. (2019), Targeted breath analysis: Exogenous volatile organic
compounds (EVOC) as metabolic pathway-specific probe. Journal of Breath
Research, 13(3): 032001.
12. Yakin, F. S. M.,
Abdullah, M. F., Badaruddin, S. A, Syono, M. I. and Soriadi, N. (2021), Surface
modification and properties modulation of rGO film by short duration H2
and NH3 plasma treatment. Materials Today: Proceedings, 42:
2996-3001.
13. Tombel, N. S. M.,
Badaruddin, S. A. M., Yakin, F. S. M.,
Zaki, H. F. M. and Syono, M. I. (2021). Detection of low PPM of volatile
organic compounds using nanomaterial functionalized reduced graphene oxide
sensor. AIP Conference Proceedings, 2368: 020004.
14. Amiri, V.,
Roshan, H., Mirzaei, A., Neri, G. and Ayesh, A. I. (2020). Nanostructured metal
oxide-based acetone gas sensors : a review. Sensors, 20: 3096.
15. Wang, C., Yin,
L., Zhang, L., Xiang, D. and Gao, R. (2010). Metal oxide gas sensors:
Sensitivity and influencing factors. Sensors, 10: 2088-2106.
16. Aniq, M.,
Mohammad, S., Wah, H., Bien, D. C. S., Hj, I., Azid, A., Woon, M. and Shukri,
S. (2014). Surface morphology, resistivity, and magnetoresistance of Co, Fe,
Ni, Co – Fe and Ni – Fe nanoparticles on TiN layers induced by hydrogen plasma
treatment. Thin Solid Films, 550: 22-26.
17. Arun, K.,
Lekshmi, M. S and Suja, K. (2021). Performance analysis, modeling, and
development of a signal conditioning unit of n-type metal oxide gas sensor for
acetone gas detection. Journal of Computational Electronics, 20: 1938-1947.
18. Arshak, K.,
Moore, E., Lyons, G.M., Harris, J. and Clifford, S. (2004). A review of gas
sensors employed in electronic nose applications. Sensor Review, 24:
181-198.
19. Vergara, A.,
Vembu, S., Ayhan, T., Ryan, M. A., Homer, M. L. and Huerta, R. (2012). Chemical
gas sensor drift compensation using classifier ensembles. Sensors and
Actuators, B: Chemical, 166-167: 320-329.
20. Gupta, S.,
Chatterjee, S., Ray, A. K. and Chakraborty, A. K. (2015). Graphene – metal
oxide nanohybrids for toxic gas sensor : A review. Sensors &
Actuators: B Chemical, 221(2): 1170-1181.
21. Zhou, C., Yu, J.,
Qin, Y. and Zheng, J. (2013). Grain size effects in polycrystalline gold
nanoparticles. Nanoscale, 4(14): 4228-4233.