Malaysian Journal of Analytical Sciences, Vol 26 No 5 (2022): 1023 - 1036

 

BIOTEMPLATED BISMUTH FERRITE (BiFeO3) NANOCATALYST FOR THE PHOTODEGRADATION OF OFLOXACIN BY SOLAR LIGHT UNDER THE INFLUENCE OF OPERATIONAL PARAMETERS

 

(Templat Bio Bismut Ferit (BiFeO3) Nanopemangkin untuk Fotodegradasi Ofloxacin Menggunakan Cahaya Suria Dibawah Pengaruh Parameter Operasi)

 

Ahmad Fadhil Rithwan1, Muhammad Alif Abdul Khani1, Noor Haida Mohd Kaus1*, Rohana Adnan1,

Sirikanjana Thongmee2, Siti Fairus Mohd Yusoff3, Takaomi Kobayashi4, Mohd Amirul Ramlan5

 

1 School of Chemical Sciences,

Universiti Sains Malaysia, 11800, Pulau Pinang, Malaysia

2Physics Department,

Faculty of Science, Kasetsart University, Bangkok 10900, Thailand

3 Department of Chemical Sciences,

Faculty of Science and Technology, Universiti Kebangsaan Malaysia,

Bangi 43600, Selangor, Malaysia

4Department of Materials Science and Technology,

Nagaoka University of Technology Nagaoka, Japan

5Department of Polytechnic & Community Colleges Education,

Ministry of Higher Education, Persiaran Perdana, Presint 4, Putrajaya 62100, Malaysia

 

*Corresponding author: noorhaida@usm.my

 

 

Received: 2 March 2022; Accepted: 3 July 2022; Published:  30 October2022

 

 

Abstract

Bismuth ferrite (BiFeO3) has been demonstrated to be one of the most efficient perovskite-based photocatalysts for pollutant degradation under direct sunlight. The focus of this research was to study the photocatalytic activity of BiFeO3 in relation to the degradation of the antibiotic ofloxacin. Different operational parameters for the optimized system were determined, such as photocatalyst dosage (0.05 g L-1 to 0.50 g L-1), pollutant concentration (2.5 mg L-1 to 20 mg L-1), reaction duration (2 hours), pH of solution (pH 2 to pH 12), and the effect of hydrogen peroxide, H2O2 as an oxidant (0.1 M to 0.7 M). X-ray Diffraction (XRD), Scanning Electron Microscope-Energy Dispersive X-ray (SEM-EDX), and Fourier Transform Infrared Spectroscopy (FTIR) analyses all corroborated that the rhombohedral BiFeO3 has a high purity and large surface area. The most efficient condition for all selected parameters was 0.07 g L-1 BiFeO3 at pH 8 in 10 mg L-1 of ofloxacin and the addition of 0.3 M H2O2 with 70.1% degradation and the total organic carbon left in the solution was 9.36%. The reaction obeyed pseudo-first order kinetics with R2 value obtained is 0.9399, with decreasing k values as the initial concentration increased. This demonstrated that the system performed best at low concentrations. This discovery paves the way for future research into the operational parameters that contribute to the photocatalyst efficacy in removing antibiotics as a pollutant.

 

Keywords: photocatalysis, photofunctional material, ofloxacin, visible light source, bismuth ferrite

 

Abstrak

Ferit bismut, BiFeO3 terbukti sebagai salah satu daripada fotopemangkin berasaskan perovskit terbaik untuk degradasi pelbagai pencemar di bawah cahaya matahari langsung. Kajian ini dijalankan untuk mempelajari prestasi fotoaktiviti BiFeO3 terhadap degradasi antibiotik ofloxacin. Parameter operasi yang berbeza telah ditentukan untuk sistem yang dioptimumkan termasuk dos fotopemangkin (0.05 g L-1 hingga 0.50 g L-1), kepekatan bahan cemar (2.5 mg L-1 hingga 20 mg L-1), masa tindak balas (2 jam), pH (pH 2 hingga pH 12), dan kesan hidrogen peroksida (H2O2) sebagai agen pengoksidaan (0.1 M hingga 0.7 M). Keputusan analisis pembelauan sinar-x (XRD), spektroskopi inframerah-transformasi Fourier (FT-IR) dan mikroskop elektron imbasan-spektroskopi sinar-x penyebaran tenaga (SEM-EDX) mengesahkan ketulenan tinggi BiFeO3 rombohedral yang telah dihasilkan dengan luas permukaan yang tinggi. Keadaan yang paling berkesan untuk semua parameter terpilih adalah dos BiFeO3 0.07 g L-1 pada pH 8 di dalam 10 mg L-1 ofloxacin dengan penambahan 0.3 M H2O2 yang menghasilkan degradasi ofloxacin sebanyak 70.1% dan jumlah kesuluruhan karbon yang tinggal didalam larutan adalah sebanyak 9.36 %. Tindak balas ini tergolong di dalam urutan kinetik pseudo-pertama dengan nilai R2 tercapai sebanyak 0.9399, dengan nilai k menurun apabila kepekatan awal meningkat. Ini menunjukkan bahawa sistem ini adalah lebih efisyen pada kepekatan yang rendah. Penemuan ini telah membuka satu kajian berpotensi ke arah penerokaan faktor yang meningkatkan kecekapan fotopemangkin bagi penyingkiran pencemar antibiotik.

 

Kata kunci: fotopemangkinan, bahan fotofungsian, ofloxacin, sumber cahaya boleh lihat, bismut ferit

 


 


Reference

1.      Siddique, M., Khan, N. M., & Saeed, M. (2019). Photocatalytic activity of bismuth ferrite nanoparticles synthesized via sol-gel route. Zeitschrift Fur Physikalische Chemie, 233(5): 595-607.

2.      Huang, Q., Liu, Y., Cai, T. and Xia, X. (2019). Simultaneous removal of heavy metal ions and organic pollutant by BiOBr/Ti3C2 nanocomposite. Journal of Photochemistry and Photobiology A: Chemistry, 375(December 2018): 201-208.

3.      Boruah, P. K. and Das, M. R. (2020). Dual responsive magnetic Fe3O4-TiO2/graphene nanocomposite as an artificial nanozyme for the colorimetric detection and photodegradation of pesticide in an aqueous medium. Journal of Hazardous Materials, 385: 121516.

4.      Sharma, P., Kumar, N., Chauhan, R., Singh, V., Srivastava, V. C. and Bhatnagar, R. (2020). Growth of hierarchical ZnO nano flower on large functionalized rGO sheet for superior photocatalytic mineralization of antibiotic. Chemical Engineering Journal, 392: 123746.


5.      Van Boeckel, T. P., Gandra, S., Ashok, A., Caudron, Q., Grenfell, B. T., Levin, S. A. and Laxminarayan, R. (2014). Global antibiotic consumption 2000 to 2010: An analysis of national pharmaceutical sales data. The Lancet Infectious Diseases, 14(8): 742-750.

6.      Ambrosetti, B., Campanella, L. and Palmisano, R. (2015). Degradation of antibiotics in aqueous solution by photocatalytic process: Comparing the efficiency in the use of ZnO or TiO2. Journal of Environmental Science and Engineering A, 4(6): 273-281.

7.      Manzetti, S. and Ghisi, R. (2014). The environmental release and fate of antibiotics. Marine Pollution Bulletin, 79(1–2): 7-15.

8.      Huang, J., Cao, J., Ding, Y., Hu, Y., Cen, Y. and Tang, H. (2018). Variable-valence metals catalyzed solid NaBiO3 nanosheets for oxidative degradation of norfloxacin, ofloxacin and ciprofloxacin: Efficiency and mechanism. Chemosphere, 205: 531-539.

9.      Wang, J., Tsuzuki, T., Tang, B., Hou, X., Sun, L. and Wang, X. (2012). Reduced graphene oxide/ZnO composite: Reusable adsorbent for pollutant management. ACS Applied Materials and Interfaces, 4(6), 3084-3090.

10.    Nurchi, V. M., Crespo-Alonso, M., Pilo, M. I., Spano, N., Sanna, G. and Toniolo, R. (2019). Sorption of ofloxacin and chrysoidine by grape stalk. A representative case of biomass removal of emerging pollutants from wastewater. Arabian Journal of Chemistry, 12(7): 1141-1147.

11.    Bhatia, V., Ray, A. K. and Dhir, A. (2016). Enhanced photocatalytic degradation of ofloxacin by co-doped titanium dioxide under solar irradiation. Separation and Purification Technology, 161: 1-7.

12.    Dai, J. F., Xian, T., Di, L. J. and Yang, H. (2013). Preparation of BiFeO3 -graphene nanocomposites and their enhanced photocatalytic activities. Journal of Nanomaterials, 2013: 1155.

13.    Moussa, H., Girot, E., Mozet, K., Alem, H., Medjahdi, G. and Schneider, R. (2016). ZnO rods/reduced graphene oxide composites prepared via a solvothermal reaction for efficient sunlight-driven photocatalysis. Applied Catalysis B: Environmental, 185: 11-21.

14.    Soltani, T. and Entezari, M. H. (2013). Photolysis and photocatalysis of methylene blue by ferrite bismuth nanoparticles under sunlight irradiation. Journal of Molecular Catalysis A: Chemical, 377(3): 197-203.

15.    Gómez-Pastora, J., Dominguez, S., Bringas, E., Rivero, M. J., Ortiz, I. and Dionysiou, D. D. (2017). Review and perspectives on the use of magnetic nanophotocatalysts (MNPCs) in water treatment. Chemical Engineering Journal, 310: 407-427.

16.    Hu, Z. T., Liu, J., Yan, X., Oh, W. Da and Lim, T. T. (2015). Low-temperature synthesis of graphene/Bi2Fe4O9 composite for synergistic adsorption-photocatalytic degradation of hydrophobic pollutant under solar irradiation. Chemical Engineering Journal, 262: 1022-1032.

17.    Liu, Y., Guo, H., Zhang, Y., Tang, W., Cheng, X. and Li, W. (2018). Heterogeneous activation of peroxymonosulfate by sillenite Bi25FeO40: Singlet oxygen generation and degradation for aquatic levofloxacin. Chemical Engineering Journal, 343(February): 128-137.

18.    Rouhani, Z., Karimi-Sabet, J., Mehdipourghazi, M., Hadi, A. and Dastbaz, A. (2019). Response surface optimization of hydrothermal synthesis of Bismuth ferrite nanoparticles under supercritical water conditions: Application for photocatalytic degradation of Tetracycline. Environmental Nanotechnology, Monitoring and Management, 11: 100198.

19.    Wang, X., Wan, X., Xu, X. and Chen X. (2014). Facile fabrication of highly efficient AgI/ZnO heterojunction and its application of methylene blue and rhodamine B solutions degradation under natural sunlight. Applied Surface Sciences, 321:10-8.

20.    Hapeshi, E., Achilleos, A., Vasquez, M. I., Michael, C., Xekoukoulotakis, N. P., Mantzavinos, D. (2014). Drugs degrading photocatalytically: Kinetics and mechanisms of ofloxacin and atenolol removal on titania suspensions. Water Research, 44(6):1737-1746

21.    Satar, N. S. A., Aziz, A. W., Yaakob, M. K., Yahya, M. Z. A., Hassan, O. H., Kudin, T. I. T. and Kaus, N. H. M. (2016). Experimental and first-principles investigations of lattice strain effect on electronic and optical properties of biotemplated BiFeO3 nanoparticles. Journal of Physical Chemistry C, 120(45): 26012-26020.

22.    Lowell, S., Shields, J. E., Thomas., M. A. (2004). Characterization of porous solids and powders: surface area, pore size and density. Molecularly Imprinted Materials: Science and Technology, 127(40): 14118-14120.

23.    Sing, K. S. W., Everett, D. H., Haul, R. A. W., Moscou, L., Pierotti, R. A., Rouquerol, J., & Siemieniewska, T. (1985). Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity. Pure and Applied Chemistry, 57(4): 603-619. 

24.    Huo, Y., Jin, Y. and Zhang, Y. (2010). Citric acid assisted solvothermal synthesis of BiFeO3 microspheres with high visible-light photocatalytic activity. Journal of Molecular Catalysis A: Chemical, 331(1–2): 15-20.

25.    Fiol, N. and Villaescusa, I. (2009). Determination of sorbent point zero charge: Usefulness in sorption studies. Environmental Chemistry Letters, 7(1): 79-84.

26.    Xu, H. Y., Wu, L. C., Zhao, H., Jin, L. G. and Qi, S. Y. (2015). Synergic effect between adsorption and photocatalysis of metal-free g-C3N4 derived from different precursors. PLoS One, 10(11): 1-20. 

27.    Crespo-Alonso, M., Nurchi, V. M., Biesuz, R., Alberti, G., Spano, N., Pilo, M. I. and Sanna, G. (2013). Biomass against emerging pollution in wastewater: Ability of cork for the removal of ofloxacin from aqueous solutions at different pH. Journal of Environmental Chemical Engineering, 1(4), 1199–1204.

28.    Peres, M. S., Maniero, M. G. and Guimarães, J. R. (2015). Photocatalytic degradation of ofloxacin and evaluation of the residual antimicrobial activity. Photochemical Photobiological Sciences;14(3):556-562.

29.    Senasu, T., Chankhanittha, T., Hemavibool, K. and Nanan, S. (2021). Visible-light-responsive photocatalyst based on ZnO/CdS nanocomposite for photodegradation of reactive red azo dye and ofloxacin antibiotic. Materials Science in Semiconductor Processing, 123: 105558.

30.    Lescano, M. R., Lopez, A. O., Romero, R. L. and Zalazar, C. S. (2021). Degradation of chlorpyrifos formulation in water by the UV/H2O2 process: Lumped kinetic modelling of total organic carbon removal. Journal of Photochemistry and Photobiology A: Chemistry, 404: 112924.