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Abstract 

Pesticide detection for organic produce authentication requires laboratory work involving sample testing, which is generally 

arduous and time-consuming. In this study, a simple and reliable technique to produce an instant result for the pesticide 

screening of organic chili was developed, using attenuated total reflection-Fourier transform infrared (ATR-FTIR) spectroscopy. 

The resultant spectra observed in the region between 600-1800 cm-1 were further analyzed using principal component analysis 

(PCA) and orthogonal partial least square-discriminant analysis (OPLS-DA). Accordingly, the outcomes underline the potential 

for distinguishing chili samples sprayed with pesticides, such as cypermethrin, fenobucarb, and malathion, versus their organic 

counterparts. Furthermore, the models constructed by OPLS-DA were capable of classifying chili samples, yielding high-

classification rates ranging between 91.67-100%. Thus, ATR-FTIR combined with chemometrics may be utilized as a potentially 

reliable screening tool for 'front-line' organic produce screening, where only flagged samples need to undergo further 

confirmation testing.  
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Abstrak 

Pengesanan racun perosak untuk tujuan pengesahan hasil organik memerlukan kerja makmal yang melibatkan ujian sampel, yang 

biasanya sukar dan memakan banyak masa. Dalam kajian ini, satu teknik yang mudah dan berkesan dijalankan dengan 

menggunakan kaedah spektroskopi inframerah transformasi Fourier-pantulan keseluruhan dikecilkan (ATR-FTIR) bagi tujuan 

saringan racun perosak untuk sayuran cili organik. Spektrum yang dihasilkan dalam lingkungan antara 600-1800 cm-1 dianalisis 

dengan lebih lanjut dengan analisis komponen prinsipal (PCA) dan analisis ortagonal kuasa dua terkecil separa-diskriminan 

(OPLS-DA). Hasil kajian menunjukkan potensi yang baik dalam membezakan sampel cili yang disembur dengan racun perosak 

seperti cypermethrin, fenobucarb, dan malathion daripada sampel organik. Model yang dibina oleh OPLS-DA dapat 
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mengklasifikasikan sampel cili dengan kadar klasifikasi yang tinggi dalam lingkungan antara 91.67-100%. Oleh itu, 

penggabungan spektroskopi ATR-FTIR bersama aplikasi kimometrik dapat digunakan sebagai alat saringan yang berpotensi 

tinggi untuk pengesahan hasil organik, di mana hanya sampel yang dikenal pasti sahaja perlu menjalani ujian pengesahan dengan 

lebih lanjut. 

 

Kata kunci:  cili, hasil organik, saringan racun perosak, spektroskopi ATR-FTIR, analisis komponen prinsipal 

 

 

Introduction 

The demand for organic fruits and vegetables is 

growing in domestic and global markets alike, 

following consumers perceiving them as a healthier, 

safer, and more environmentally friendly option than 

non-organic types. Subsequently, there people have 

become increasingly apprehensive about the safety of 

the food that they consume on a daily basis. 

Accordingly, pesticide-free production is one of the 

most important factors influencing consumer 

preference for organic food options. Contrary to 

popular belief, however, some pesticides are permitted 

in organic farming as long as they have natural 

substances, such as hydrogen peroxide, lime sulfur, and 

copper sulfate, as ingredients [1]. Besides this, certain 

fairly low-risk synthetic pesticides are allowed in 

limited circumstances to manage pests and weeds, 

whereby their use markedly differs from the approach 

employed in non-organic farming. 

 

It should be noted that organic fruits and vegetables 

may contain residues of synthetic pesticides, due to 

drift from neighboring non-organic farms or to 

irrigation contamination, originating at streams and 

groundwater polluted by synthetic fertilizers and 

pesticide runoff. According to the U.S. National 

Organic Program, the U.S. Environmental Protection 

Agency defines a level of tolerance in which organic 

claims are allowed for products containing synthetic 

pesticide residues as no more than 5% of said specified 

tolerance level [1]. In general, major manufactured 

pesticides are classified based on their chemical 

composition; examples include carbamates and 

dithiocarbamates, organophosphorus, and pyrethroids 

[2]. Malathion, an organophosphate insecticide, is 

especially prevalent as one of the oldest and widely-

used active ingredients for pest control in fruits and 

vegetables [3]. Cypermethrin belongs to the class of 

pyrethroid insecticides, which are more effective and 

less toxic compared to organophosphates. Fenobucarb 

is a carbamate insecticide extensively implemented in 

controlling plant hopper, thrips, aphids, and whiteflies. 

 

The increased utilization of pesticides has been 

associated with various health and environmental 

effects. Hence, maximum residue limits (MRLs) are 

defined by respective countries to monitor the level of 

pesticide chemical residues allowable in their food 

crops. The MRL represents the highest level of 

pesticide residue legally permitted in food crops [4]. In 

particular, the Malaysia Food Regulation 1985 in the 

16th Schedule (Regulation 41) provides the MRLs for 

selected pesticides, as shown in Table 1. Standard 

techniques used for pesticide detection in fruits and 

vegetables, such as gas chromatography and high-

performance liquid chromatography (HPLC), are often 

time-consuming and laborious. These methods 

necessitate sample destruction, lengthy test duration, 

controlled test conditions and expert lab skills, 

rendering them unsuitable for on-site analysis [5]. 

 

Therefore, a robust and quick technique capable of 

providing immediate results during organic produce 

screening for pesticides is currently necessary in the 

commercial world, particularly for the fast-moving 

consumer goods (FMCG) industry. As an alternative 

technique, attenuated total reflection-Fourier transform 

infrared (ATR-FTIR) spectroscopy represents an 

attractive option for pesticide detection in organic 

produce authentication, due to its non-destructive 

capability and portability, as well as its reliability in 

producing accurate results in a matter of minutes when 

combined with chemometrics [6]. Previous studies 

have shown that ATR-FTIR could be used to confirm 

the presence of organophosphate insecticides in 

vegetables [7]. Furthermore, data from several works 

also demonstrate the potential of ATR-FTIR, combined 
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with chemometrics, to solve adulteration and 

authentication issues for various food products, such as 

green tea, rice, and fruits [8, 9, 10].  

 

Principal component analysis (PCA) is the most 

widely-used statistical procedure for interpreting large 

spectral data. As an unsupervised technique, it provides 

an overview of any patterns and groupings observable 

in studied samples, via a graphical representation in the 

form of 2D or 3D scatter plots [10]. However, it is not 

always possible to obtain differentiating features and 

adequate information directly from PCA models. On 

the other hand, supervised techniques such as 

orthogonal partial least squares-discriminant analysis 

(OPLS-DA) are often utilized to build classification 

models for further exploration of the data generated 

[11]. The combination of PCA and OPLS-DA may 

offer remarkable information for the classification and 

discrimination of the considered samples. 

 

Chili (Capsicum annuum L. var Kulai) is one of the 

most widely cultivated and consumed vegetables in 

Malaysia [12]. The chili plant is highly susceptible to 

many diseases caused by insects, such as mites and 

thrips, resulting in the routine use of chemical 

insecticides to combat the problem. Therefore, this 

study aims to develop a screening method for the 

detection of pesticide presence in chili samples by 

using ATR-FTIR combined with chemometrics (PCA 

and OPLS-DA). The developed procedure can, thus, be 

utilized as a ‘front-line’ detection tool by food 

regulators prior to advanced laboratory testing, 

reserved only for flagged samples, resulting in cost and 

time-saving opportunities.  

 

Table 1.  The maximum residue limit for selected pesticides used in chili plant 

Pesticide Molecular Formula Classification Maximum Residue Limit (mg/kg) 

Malathion C10H19O6PS2 Organophosphate (OP) 2 

Cypermethrin C22H19Cl2NO3 Synthetic Pyrethroid (SP) 2 

Fenobucarb C12H17NO2 Carbamate 0.5 

 

 

Materials and Methods 

Sample preparation 

Three types of pesticides that were selected contained 

different concentrations and were in liquid form. The 

commercial pesticides, namely Wesco Malathion 57 

(malathion, 57% w/w), Wesco Cyperin 550 

(cypermethrin, 5.5% w/w), and Hoppergone 

(Fenobucarb, 50% w/w), were purchased from Volcano 

Agribusiness Sdn. Bhd. These pesticides were selected 

as they are frequently quantified in fruit and vegetable 

samples, and can be easily obtained from pesticide 

distributors [13]. The pesticides were diluted using 

distilled water, according to commercial formulations 

under Pesticides Act 1974, to replicate actual field 

conditions (Table 2). The prepared solutions were kept 

at room temperature and used within one week. 

 

A total of 120 samples of organic chili (Capsicum 

annuum L. var Kulai) were purchased directly from a 

local certified farmer in Pulau Pinang. The farmer was 

aware of the aim of this study; hence the chance of 

including any fraudulent or inauthentic organic 

products in the dataset is minimized. The chili samples 

were left unwashed and randomly divided into four 

groups. In the first group, the chili samples were not 

treated and marked as group O (Organic). In the 

second, third and fourth groups, the chili samples were 

evenly sprayed with different pesticide solutions and 

marked as group M (Malathion), C (Cypermethrin), 

and F (Fenobucarb), respectively. All samples were left 

to dry for 2 hours so that the pesticide solution was 

evenly distributed over the surface of the chili prior to 

analysis.  

 

Infrared spectroscopy measurements 

The chili samples were scanned using a Perkin-Elmer 

Spectrum ATR-FTIR spectrophotometer. The 

equipment was connected to computer software 
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(Spectrum for Windows, Perkin-Elmer), and mid-

infrared spectra were recorded in the wavenumber 

range of 4000-600 cm-1, with a spectral resolution of 4 

cm-1 at 16 scans. To simulate the on-site pesticide 

screening analysis, the whole chili was placed on the 

sample stage for direct measurement with no sample 

preparation. As a reference, the background spectrum 

of air was collected. Prior to each analysis, the ATR 

crystal surface was thoroughly cleaned with ethanol 

and wiped with clean tissue paper. The spectra for each 

of the three pesticide samples (cypermethrin, 

fenobucarb, and malathion) were also measured in 

ATR mode. Spectrum acquisition of each sample was 

repeated in triplicate under the same conditions, and an 

average spectrum was obtained. 

 

Data pre-processing and chemometrics 

Experimental data were subjected to chemometrics 

using SIMCA software (version 14.1, Umetrics, 

Sweden), wherein both unsupervised PCA and 

supervised OPLS-DA were performed for sample 

classification. The usual spectral region for mid-IR 

(4000-600 cm-1) was observed and taken into account 

for the analysis; however, the fingerprint region 

between 1800-600 cm-1 was scrutinized further, due to 

this being the primary region where biomolecules 

absorb IR radiation [14]. Spectral pre-processing, such 

as first derivative transformation with third-degree 

polynomial, and standard normal variate (SNV) was 

applied to the IR data matrices to increase the 

predictive ability and accentuate any subtle features 

[15]. All variables were scaled and normalized using 

UV-scaling (unit variance) and log-10, respectively. 

The assessment of PCA's ability to detect and 

discriminate organic from pesticide-contaminated chili 

samples was made based on score plots observations, 

in which the principal component (PC) score plots 

were constructed using the first two resultant principal 

components. The OPLS-DA models were presented 

with several components based on the predictive 

performance from the internal sevenfold cross-

validation by default, as suggested by the SIMCA 

software. 

 

Table 2.  Pesticide preparation according to commercial formulations 

Pesticide Amount Taken 

(mL) 

Total Volume 

(solvent, mL) 

Wesco Cyperin 550 (cypermethrin 5.5% w/w) 5 1000 

Hoppergone (fenobucarb 50% w/w) 1.5 1000 

Wesco Malathion 57 (malathion 57% w/w) 1.5 1000 

 

 

Results and Discussion 

ATR-FTIR spectral analysis of organic chili 

The mid-FTIR spectrum of organic chili in the range of 

4000-600 cm-1 is shown in Figure 1. As expected, the 

spectrum showed absorption bands corresponding to 

the vibrations of functional groups belonging to 

carotenoids, phenolic compounds and ascorbic acid, 

which corresponded to previously reported studies [16, 

17]. A strong absorption band was observed at 3342.05 

cm-1, corresponding to characteristic stretching 

vibrations of O-H from amino acids. The small sharp 

cluster of peaks at 2900-2800 cm-1 was assigned to the 

C-H stretching band of methyl and methylene groups 

from the carboxylic acid structure. The medium-

intensity peak at 1635 cm-1 corresponded to the C=O 

stretching, indicating the characteristic amide I band, 

while a low-intensity band at 1454 cm-1 was observed 

for the characteristic bending vibrations of C-H. The 

presence of polyphenols could be identified by the 

intense bands in the region of 1260-1180 cm-1, caused 

by the stretching vibration of C-C-O and low-intensity 

C-H bending [16]. The functional groups associated 

with the absorption peaks identified from the spectra of 

the organic chili samples are summarized in Table 3. 
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ATR-FTIR spectral analysis of pesticides 

The IR spectra of the three pesticides were also 

recorded to identify functional groups with unique 

absorption bands. As depicted in Figure 2, the green 

spectrum represents cypermethrin, the blue spectrum 

represents fenobucarb, and the red spectrum represents 

malathion. Each peak was contributed by a particular 

functional group present in the compound. In general, 

the pesticides revealed similar spectral patterns with a 

minimal shift of absorption band positions and 

intensity across the samples. 

 

The C-H stretching in the two benzene rings of 

cypermethrin contributed to the stronger peaks within 

the wavenumber range of 3080–2820 cm-1; thus, 

distinguishing this from the other two pesticides. The 

other, stronger peak which was more obvious for 

cypermethrin is the peak at 806 cm-1, which is 

contributed by the C-Cl functional group, present in 

cypermethrin but not in fenobucarb or malathion. The 

peaks contributing to the fenobucarb cluster were 

mainly the N-H stretching at 3346 cm-1, C=O 

stretching at 1718 cm-1, C-O-C stretching at 1216 cm-1, 

and C-N stretching at 1183 cm-1. Malathion has a 

strong peak at 1013 cm-1, mainly due to the presence of 

two P-O-C stretches. The P-O-C stretching was only 

observed in malathion as compared to cypermethrin 

and fenobucarb. Another prominent strong peak 

present only in malathion was observed at 654 cm-1, 

mainly due to S=P-S-C stretching.  

 

 

Figure 1.  The FTIR spectrum of chili at wavenumber 4000-600 cm-1

Table 3.  The functional groups associated with absorption peaks identified in organic chili 

Absorption Peak (cm-1) Possible Functional Group 

3342.05 O-H stretching from amino acids 

2921.48 and 2852.56 C-H stretching (from CH3 and CH2 groups) 

1635.3 C=O stretching of amide I band 

1461.45 C-H bending 

1164.46 C-C-O stretching 

C-H bending 1104.74 
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Figure 2. Full range FTIR spectra at wavenumber 4000–600 cm-1 (top) and the FTIR spectra enlarged at 

wavenumber 1900-600 cm-1 (bottom) for the three pesticides 

 

Principal component analysis 

Prior to analysis, the IR spectra of the chili samples 

were pre-processed to minimize data variation and 

overcome the dominating effect of strong peak 

absorbance over weaker absorbance intensity [18]. 

Selecting a proper spectral range may be beneficial in 

reducing the computational burden of the software in 

terms of variables. Hence, the spectral region 1800–

600 cm-1 was selected for further analysis, due to the 

high positive correlations between changes in the 

composition and spectral response observed, which 

may be due to biomolecules’ absorption of IR radiation 

occurring primarily in this region [14, 17]. 

 

As an unsupervised method, PCA was adopted for the 

initial exploratory data analysis, whereby the score plot 

reflected separation among the samples. PCA was 

applied to the dataset of 120 chili samples to detect 

outliers, as well as to predict possible patterns and 

trends of clustering. For a visual illustration and 

understanding, different classes of organic and 

pesticide samples were mapped and labeled with 

representative symbols. Figure 3(a) shows the score 

scatter plot for PCA overview using the first two 

principal components, PC1 (as in t1) and PC2 (as in 

t2). Most samples fell within Hotelling's T2 ellipse at 



Malaysian Journal of Analytical Sciences, Vol 26 No 1 (2022): 84 - 95 

 

  90 

95% confidence intervals, with a few outliers. The 

combination of PC1 and PC2 explained 43.6% of the 

variation in the dataset. However, the organic and 

pesticide-contaminated samples could not be distinctly 

classified into two clusters, as some samples 

overlapped with each other. The presence of outliers 

may indicate experimental error due to sample 

preparation. Direct measurement of the samples 

without additional preparation may cause possible 

background noise, leading to inconsistencies. 

 

PCA was performed further by plotting the individual 

score plots of each pesticide and organic sample, to 

allow better qualitative discrimination between sample 

groups. Results showed that a distinct separation into 

two clusters was observed in each of the scatter plots, 

meaning that PCA adequately captured relevant 

information  within  the  dataset. As illustrated in 

Figure 3(b), the organic samples were well-segregated 

from cypermethrin-containing samples, with clearly 

defined clusters along PC2. When both PC1 and PC2 

were combined, they contributed about 56.7% of the 

total variance, with some samples overlapping with 

each other. As for the outcome of PCA on organic 

samples and fenobucarb-containing samples (Figure 

3(c), the result shows that the samples were well-

distinguished, also mostly based on PC2. When both 

PC1 and PC2 were combined, these accounted for 

57.5% of the total variance. Likewise, as shown in 

Figure 3(d), partially overlapping samples were 

observed in the score plot of organic and pesticide 

malathion-sprayed samples, with a total variance of 

56.7%. This may be due to a low concentration of 

spiked malathion, making it difficult to differentiate 

between the IR spectra of both organic and pesticide-

containing samples. 

 

 

 

 

 

Figure 3.  PCA score scatter plot based on PC1 and PC2 (a) organic and pesticide-contaminated samples, (b) 

organic and cypermethrin-contaminated samples, (c) organic and fenobucarb-contaminated samples, and 

(d) organic and malathion-contaminated samples 

  

(a) (b) 

(d) (c)

)) 
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PCA was also performed on the IR spectra of neat 

cypermethrin, fenobucarb and malathion samples, to 

investigate the main variance among the three 

pesticides used in this study (Figure 4). The first two 

principal components explained 90.6% of data 

variation and showed observable clustering of the 

samples, according to the main active compound for 

the three pesticides.  
 
Predictive models 

As PCA had successfully distinguished the dataset into 

the observable cluster, a supervised OPLS-DA method 

was later performed using each dataset separately: 

organic with cypermethrin, organic with fenobucarb, 

and organic with malathion. The original dataset was 

divided into a training set and testing set, using an 

80:20 ratio. Initially, 80% of the samples from the 

original dataset (24 samples from each class) were 

randomly selected as a training dataset, to build the 

predictive models aimed at differentiating organic and 

pesticide-contaminated chili samples. Classification 

rates were obtained from the internal sevenfold cross-

validation by default in the SIMCA software. The 

remaining 20% of the samples (6 samples from each 

class) were set aside as an external validation test set, 

to evaluate the robustness of the predictive models. The 

overall efficiency of the models was assessed by 

observing the numbers of correctly and incorrectly 

assigned members of different classes for training and 

test datasets. 
 
The score scatter plots displayed the samples by 

specific color-coded classes are shown in Figure 5. The 

four classes in the training set were organic chili 

(denoted as Organic Training Set), and organic chili 

that had been sprayed with pesticides: cypermethrin 

(denoted as Cypermethrine Training Set), fenobucarb 

(denoted as Fenobucarb Training Set), and malathion 

(denoted as Malathion Training Set). The scatter plots 

in OPLS-DA showed better separation between classes 

compared to PCA. As depicted in Figure 5, the samples 

in each cluster were more tightly grouped in OPLS-DA 

than in PCA. 

 

The predictive model for organic and cypermethrin has 

a fitness of data (R2) of 64.6%. The predictive ability 

(Q2) was above moderate at 79.6%, with a total sum of 

variation (R2(Y)) of 84.2%. The model for organic and 

fenobucarb has an R2 of 62%, high predictive ability 

(Q2) of 80.3%, and R2(Y) of 85.8%. For organic and 

malathion-contaminated samples, the predictive model 

has an R2 of 78.1%, moderate Q2 of 70.6%, and R2(Y) 

of 88.9%. The cross-validated analysis of variation 

(CV-ANOVA) for cypermethrin, fenobucarb, and 

malathion models reported P-values of 1.10 × 10-12, 

5.70 × 10-13, and 3.15 × 10-7, respectively. The results 

showed that the discrimination between organic and 

pesticide-contaminated  chili samples was significant 

(p <0.05). 

 

The classification of the samples has been accurately 

performed (100% accuracy) for organic and 

cypermethrin models (Table 4), as well as organic and 

fenobucarb models (Table 5). In the case of organic 

and malathion models (Table 6), a single sample was 

misclassified into the organic class (91.67% accuracy), 

while all six organic chili samples fell accurately into 

their right cluster (100% accuracy). These results 

demonstrate the reliability of the models as a primary 

screening tool to detect the presence of pesticides in 

organic produce. It may help food regulators to 

ascertain whether the fruits or vegetables require 

further testing using more sophisticated 

instrumentation. 

 

 

Figure 4.  PCA score scatter plot according to the main  

active compound for the three pesticides 
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Figure 5.  OPLS-DA scatter plots by the class of organic and pesticide-contaminated samples (a) training set for 

organic and cypermethrin, (b) predicted plot for organic and cypermethrin, (c) training set for organic and 

fenobucarb, (d) predicted plot for organic and fenobucarb, (e) training set for organic and malathion and 

(f) predicted plot for organic and malathion 

 

 

 

(a) (b) 

(f) (e) 

(d) (c) 
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Table 4.  Misclassification table for organic and cypermethrin samples 

 Members Correct 

(%) 

Organic 

Training Set 

Cypermethrine 

Training Set 

Organic Training Set 24 100 24 0 

Cypermethrine Training Set 24 100 0 24 

Test Set 12 100 6 6 

Total 60 100 30 30 

 

 

Table 5.  Misclassification table for organic and fenobucarb samples 

 Members Correct 

(%) 

Organic 

Training Set 

Fenobucarb 

Training Set 

Organic Training Set 24 100 24 0 

Fenobucarb Training Set 24 100 0 24 

Test Set 12 100 6 6 

Total 60 100 30 30 

 

 

Table 6.  Misclassification table for organic and malathion samples 

 Members Correct 

(%) 

Organic 

Training Set 

Malathion 

Training Set 

Organic Training Set 24 100 24 0 

Malathion Training Set 24 100 0 24 

Test Set 12 91.67 7 5 

Total 60 100 31 29 

 

 

Conclusion 

The combination of ATR-FTIR and chemometrics can 

be utilized for preliminary screening of pesticides in 

organic produce, yielding benefits such as high speed, 

non-invasiveness, and simplicity of sample preparation. 

In general, distinguishing each pesticide was possible 

according to its functional groups, as analyzed by 

ATR-FTIR. Cypermethrin, for example, revealed 

stronger peaks contributed by C-H (from benzene 

rings) and C-Cl functional groups, whereas fenobucarb 

was identifiable by N-H stretching, C-O-C stretching, 

and C-N stretching. Malathion had strong peaks 

contributed by two P-O-C stretches and S=P-S-C 

stretching. The results also showed clear discrimination 

and classification between organic and pesticide-

contaminated chili samples through PCA, and can be 

considered as a successful attempt, despite a few 

outliers observed in the process. With the use of OPLS-

DA, it is possible to classify samples according to 

organic and pesticide-contaminated classes and predict 
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the residues of unknown pesticides. This study serves 

as an approach for pesticide screening of organic 

produce, thereby suggesting further investigation, 

based on the detection limit of pesticide residues for 

various fruit and vegetables, in ensuring more robust 

classification models. 
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