Malaysian
Journal of Analytical Sciences Vol 25 No 6
(2021): 966 - 976
ADSORPTION OF ACID ORANGE 7 BY CETYLTRIMETHYL AMMONIUM BROMIDE MODIFIED
OIL PALM LEAF POWDER
(Penjerapan Asid Oren 7 oleh
Setiltrimetil Ammonium Bromida Ubahsuai Serbuk Daun Kelapa Sawit)
Nik Ahmad Nizam Nik Malek1,2*, Nurul Ain Sallehhuddin1,
Auni Afiqah Kamaru3
1Department of Biosciences, Faculty of
Science
2Centre for Sustainable Nanomaterials
(CSNano), Ibnu Sina Institute for Scientific and Industrial Research (ISI-ISIR)
Universiti
Teknologi Malaysia, 81310 JohorBharu, Johor, Malaysia
3Geomatika University College,
Prima
Peninsula, Jalan Setiawangsa 11, 54200 Kuala Lumpur
*Corresponding
author: niknizam@utm.my
Received: 29 August 2021; Accepted: 28 October 2021;
Published: 27 December 2021
Abstract
The capability of oil
palm leaf (OPL) and surfactant modified oil palm leaf (SMOPL) to remove acid
orange 7 (AO7) anionic dye in an aqueous solution was studied. The SMOPL was
prepared by treating the OPL with different concentrations of cetyltrimethyl
ammonium bromide (CTAB) solutions (1.0, 2.5, and 4.0 mM). The samples were
characterized using Fourier-transform infrared (FTIR) spectroscopy and
dispersion behaviour test. The FTIR results showed the modification of OPL with
CTAB surfactant did not change the chemical structure of the OPL, except for an
increase in the intensity of the C-H bond, which occurred due to the
hydrocarbon group in CTAB. In addition, the effects of initial AO7
concentrations on the adsorption capacity of SMOPL were studied, and the highest
AO7 adsorption capacity was found for the SMOPL4.0 with the initial CTAB
concentration being 4.0 mM. Comparatively, the raw OPL demonstrated the lowest
adsorption capability. The presence of the CTAB surfactant molecules on the
samples increased the adsorption site of the adsorbent, allowing more
attachments of dye molecules onto the OPL adsorbent. The Langmuir and
Freundlich isotherm models were used to describe the adsorption isotherm. The
equilibrium data were better fitted by Langmuir isotherm with a maximum AO7
adsorption capacity of 138.89 mg/g. Thus, it is suggested that the adsorption
of AO7 takes place as a single monolayer on a homogeneous OPL surface. From
this study, it can be concluded that the modification of OPL with cationic
surfactant can enhance its adsorption process of anionic dye from an aqueous
solution.
Keywords: adsorption,
oil palm leaf, cetyltrimethyl ammonium bromide, acid orange 7, surfactant
Abstrak
Keupayaan
daun kelapa sawit (OPL) dan daun kelapa sawit yang diubah suai surfaktan
(SMOPL) untuk menyingkirkan pewarna anionik asid oren 7 (AO7) dalam larutan
akues telah dikaji. SMOPL disediakan dengan merawat OPL dengan kepekatan
larutan setiltrimetilammonium bromida (CTAB) yang berbeza (1.0, 2.5, dan 4.0
mM). Sampel dicirikan dengan menggunakan spektroskopi inframerah transformasi
Fourier (FTIR) dan ujian tingkah laku penyebaran. Hasil FTIR menunjukkan
pengubahsuaian OPL dengan surfaktan CTAB tidak mengubah struktur kimia OPL,
kecuali beberapa peningkatan keamatan untuk ikatan C-H yang berlaku disebabkan
oleh kumpulan hidrokarbon yang terdapat pada CTAB. Kesan kepekatan AO7 awal
pada kapasiti penjerapan SMOPL dikaji, dan kapasiti penjerapan tertinggi AO7 dijalankan
untuk SMOPL4.0 di mana kepekatan CTAB awal adalah 4.0 mM. Secara perbandingan,
OPL menunjukkan kemampuan penjerapan yang terendah. Kehadiran molekul surfaktan
CTAB pada sampel meningkatkan tapak penjerapan, yang memungkinkan lebih banyak
interaksi molekul pewarna ke OPL. Model isoterma Langmuir dan Freundlich
digunakan untuk menggambarkan isoterma penjerapan. Data keseimbangan lebih baik
dipadankan oleh isoterma Langmuir dengan kapasiti penjerapan maksimum AO7
adalah 138.89 mg/g. Jadi, penjerapan AO7 terhasil sebagai satu lapisan tunggal
pada permukaan OPL yang homogen. Dari kajian ini, dapat disimpulkan bahawa
modifikasi OPL dengan surfaktan kationik dapat meningkatkan proses
penjerapannya untuk pewarna anionik dari larutan berair.
Kata kunci: penjerapan,
daun kelapa sawit, setiltrimetilammonium bromida, asid oren 7, surfaktan
References
1. Hynes, N. R. J., Kumar, J. S., Kamyab, H., Sujana, J.
A. J., Al-Khashman, O. A., Kuslu, Y., Ene. A. and Suresh, B. (2020). Modern
enabling techniques and adsorbents-based dye removal with sustainability
concerns in textile industrial sector-a comprehensive review. Journal of
Cleaner Production, 272: 122636.
2. Kubra, K. T., Salman, M. S. and Hasan, M. N. (2021).
Enhanced toxic dye removal from wastewater using biodegradable polymeric
natural adsorbent. Journal of Molecular Liquids, 328: 115468.
3. Jawad, A. H., Abdulhameed, A. S. and Mastuli, M. S.
(2020). Acid-factionalized biomass material for methylene blue dye removal: A
comprehensive adsorption and mechanism study. Journal of Taibah University
for Science, 14(1): 305-313.
4. Wang, S., Gao, H., Fang, L., Hu, Q., Sun, G., Chen,
X., Yu, X., Zhao, X. and Sun, G. (2021). Synthesis of novel CQDs/CeO2/SrFe12O19
magnetic separation photocatalysts and synergic adsorption-photocatalytic
degradation effect for methylene blue dye removal. Chemical Engineering Journal
Advances, 6: 100089.
5. Hamidian, K., Najafidoust, A., Miri, A. and Sarani, M.
(2021). Photocatalytic performance on degradation of acid orange 7 dye using
biosynthesized un-doped and co doped CeO2 nanoparticles. Materials
Research Bulletin, 138: 111206.
6. Akpomie, K. G. and Conradie, J. (2020). Banana peel as
a biosorbent for the decontamination of water pollutants. a review. Environmental
Chemistry Letters, 18(4): 1085-1112.
7. Setiabudi, H. D., Jusoh, R., Suhaimi, S. F. R. M. and
Masrur, S. F. (2016). Adsorption of methylene blue onto oil palm (Elaeis
guineensis) leaves: Process optimization, isotherm, kinetics and
thermodynamic studies. Journal of the Taiwan Institute of Chemical Engineers,
63: 363-370.
8. Ahmad, T., Rafatullah, M., Ghazali, A., Sulaiman, O.
and Hashim, R. (2011). Oil palm biomass–based adsorbents for the removal of
water pollutants—a review. Journal of Environmental Science and Health, Part
C, 29(3): 177-222.
9. Kamaru, A. A., Jani, N. S. A., Malek, N. A. N. N. and
Sani, N. S. (2016). Adsorptive removal of methylene blue and acid orange 7 by
hexadecyltrimethylammonium bromide modified rice husk. Jurnal Teknologi,
78(3-2): 113-119.
10. Khalifa, M. A., Malek, N. A. N. N., Farimani, A. Y.,
Sani, N. S. and Kamaru, A. A. (2021). Cetylpyridinium bromide (CPB)-treated
sugarcane bagasse for the removal of chromate in aqueous solution. Materials
Today: Proceedings, 47(6): 1252-1257.
11. Malek, N. A. N. N., Yusof, M. H. and Kamaru, A. A.
(2019). Simultaneous action of surfactant modified sugarcane bagasse: Adsorbent
and antibacterial agent. Malaysian Journal of Fundamental and Applied
Science, 15: 32-37.
12. Malek, N. A. N. N., Sihat, N. M., Khalifa, M. A.,
Kamaru, A. A. and Sani, N. S. (2016). Adsorption of acid orange 7 by
cetylpyridinium bromide modified sugarcane bagasse. Jurnal Teknologi,
78(1-2): 97-103.
13. Kamaru, A. A., Sani, N. S. and Malek, N. A. N. N.
(2016). Raw and surfactant-modified pineapple leaf as adsorbent for removal of
methylene blue and methyl orange from aqueous solution. Desalination and
Water Treatment, 57(40): 18836-18850.
14. Sidik, S. M., Jalil, A. A., Triwahyono, S., Adam, S.
H., Satar, M. A. H. and Hameed, B. H. (2012). Modified oil palm leaves
adsorbent with enhanced hydrophobicity for crude oil removal. Chemical
Engineering Journal, 203: 9-18.
15. Weng, C. H. and Wu, Y. C. (2011). Potential low-cost
biosorbent for copper removal: pineapple leaf powder. Journal of
Environmental Engineering, 138(3): 286-292.
16. Sulaiman, O., Amini, M. H. M., Rafatullah, M., Hashim,
R. and Ahmad, A. (2010). Adsorption equilibrium and thermodynamic studies of
copper (II) ions from aqueous solutions by oil palm leaves. International
Journal of Chemical Reactor Engineering, 8(1): 108.
17. Ahmad, T., Irfan, M. and Bhattacharjee, S. (2016).
Parametric study on gold nanoparticle synthesis using aqueous Elaise
Guineensis (oil palm) leaf extract: Effect of precursor concentration. Procedia
Engineering, 148: 1396-1401.
18. Araujo, L. A., Bezerra, C. O., Cusioli, L. F., Silva,
M. F., Nishi, L., Gomes, R. G. and Bergamasco, R. (2018). Moringa oleifera
biomass residue for the removal of pharmaceuticals from water. Journal of
Environmental Chemical Engineering, 6(6): 7192-7199.
19. Nakagame, S., Chandra, R. P. and Saddler, J. N.
(2010). The effect of isolated lignin’s, obtained from a range of pre-treated
lignocellulosic substrates, on enzymatic hydrolysis. Biotechnology and
Bioengineering, 105(5): 871-879.
20. Tahir, N., Bhatti, H. N., Iqbal, M. and Noreen, S.
(2017). Biopolymers composites with peanut hull waste biomass and application
for crystal violet adsorption. International Journal of Biological
Macromolecules, 94: 210-220.
21. Neupane, S., Ramesh, S. T., Gandhimathi, R. and
Nidheesh, P. V. (2015). Pineapple leaf (Ananas comosus) powder as a
biosorbent for the removal of crystal violet from aqueous solution. Desalination
and Water Treatment, 54(7): 2041-2054.
22. Neugebauer, J. M. (1990). Detergents: An overview. Methods
in Enzymology, 182: 239-253.