Malaysian Journal of Analytical Sciences Vol 25 No 6 (2021): 966 - 976

 

 

 

 


ADSORPTION OF ACID ORANGE 7 BY CETYLTRIMETHYL AMMONIUM BROMIDE MODIFIED OIL PALM LEAF POWDER

 

(Penjerapan Asid Oren 7 oleh Setiltrimetil Ammonium Bromida Ubahsuai Serbuk Daun Kelapa Sawit)

 

Nik Ahmad Nizam Nik Malek1,2*, Nurul Ain Sallehhuddin1, Auni Afiqah Kamaru3

 

1Department of Biosciences, Faculty of Science

2Centre for Sustainable Nanomaterials (CSNano), Ibnu Sina Institute for Scientific and Industrial Research (ISI-ISIR)

Universiti Teknologi Malaysia, 81310 JohorBharu, Johor, Malaysia

3Geomatika University College,

Prima Peninsula, Jalan Setiawangsa 11, 54200 Kuala Lumpur

 

*Corresponding author:  niknizam@utm.my

 

 

Received:  29 August 2021; Accepted: 28 October 2021; Published:  27 December 2021

 

 

Abstract

The capability of oil palm leaf (OPL) and surfactant modified oil palm leaf (SMOPL) to remove acid orange 7 (AO7) anionic dye in an aqueous solution was studied. The SMOPL was prepared by treating the OPL with different concentrations of cetyltrimethyl ammonium bromide (CTAB) solutions (1.0, 2.5, and 4.0 mM). The samples were characterized using Fourier-transform infrared (FTIR) spectroscopy and dispersion behaviour test. The FTIR results showed the modification of OPL with CTAB surfactant did not change the chemical structure of the OPL, except for an increase in the intensity of the C-H bond, which occurred due to the hydrocarbon group in CTAB. In addition, the effects of initial AO7 concentrations on the adsorption capacity of SMOPL were studied, and the highest AO7 adsorption capacity was found for the SMOPL4.0 with the initial CTAB concentration being 4.0 mM. Comparatively, the raw OPL demonstrated the lowest adsorption capability. The presence of the CTAB surfactant molecules on the samples increased the adsorption site of the adsorbent, allowing more attachments of dye molecules onto the OPL adsorbent. The Langmuir and Freundlich isotherm models were used to describe the adsorption isotherm. The equilibrium data were better fitted by Langmuir isotherm with a maximum AO7 adsorption capacity of 138.89 mg/g. Thus, it is suggested that the adsorption of AO7 takes place as a single monolayer on a homogeneous OPL surface. From this study, it can be concluded that the modification of OPL with cationic surfactant can enhance its adsorption process of anionic dye from an aqueous solution.

 

Keywords:  adsorption, oil palm leaf, cetyltrimethyl ammonium bromide, acid orange 7, surfactant

 

Abstrak

Keupayaan daun kelapa sawit (OPL) dan daun kelapa sawit yang diubah suai surfaktan (SMOPL) untuk menyingkirkan pewarna anionik asid oren 7 (AO7) dalam larutan akues telah dikaji. SMOPL disediakan dengan merawat OPL dengan kepekatan larutan setiltrimetilammonium bromida (CTAB) yang berbeza (1.0, 2.5, dan 4.0 mM). Sampel dicirikan dengan menggunakan spektroskopi inframerah transformasi Fourier (FTIR) dan ujian tingkah laku penyebaran. Hasil FTIR menunjukkan pengubahsuaian OPL dengan surfaktan CTAB tidak mengubah struktur kimia OPL, kecuali beberapa peningkatan keamatan untuk ikatan C-H yang berlaku disebabkan oleh kumpulan hidrokarbon yang terdapat pada CTAB. Kesan kepekatan AO7 awal pada kapasiti penjerapan SMOPL dikaji, dan kapasiti penjerapan tertinggi AO7 dijalankan untuk SMOPL4.0 di mana kepekatan CTAB awal adalah 4.0 mM. Secara perbandingan, OPL menunjukkan kemampuan penjerapan yang terendah. Kehadiran molekul surfaktan CTAB pada sampel meningkatkan tapak penjerapan, yang memungkinkan lebih banyak interaksi molekul pewarna ke OPL. Model isoterma Langmuir dan Freundlich digunakan untuk menggambarkan isoterma penjerapan. Data keseimbangan lebih baik dipadankan oleh isoterma Langmuir dengan kapasiti penjerapan maksimum AO7 adalah 138.89 mg/g. Jadi, penjerapan AO7 terhasil sebagai satu lapisan tunggal pada permukaan OPL yang homogen. Dari kajian ini, dapat disimpulkan bahawa modifikasi OPL dengan surfaktan kationik dapat meningkatkan proses penjerapannya untuk pewarna anionik dari larutan berair.

 

Kata kunci:  penjerapan, daun kelapa sawit, setiltrimetilammonium bromida, asid oren 7, surfaktan

 

References

1.   Hynes, N. R. J., Kumar, J. S., Kamyab, H., Sujana, J. A. J., Al-Khashman, O. A., Kuslu, Y., Ene. A. and Suresh, B. (2020). Modern enabling techniques and adsorbents-based dye removal with sustainability concerns in textile industrial sector-a comprehensive review. Journal of Cleaner Production, 272: 122636.

2.    Kubra, K. T., Salman, M. S. and Hasan, M. N. (2021). Enhanced toxic dye removal from wastewater using biodegradable polymeric natural adsorbent. Journal of Molecular Liquids, 328: 115468.

3.    Jawad, A. H., Abdulhameed, A. S. and Mastuli, M. S. (2020). Acid-factionalized biomass material for methylene blue dye removal: A comprehensive adsorption and mechanism study. Journal of Taibah University for Science, 14(1): 305-313.

4.    Wang, S., Gao, H., Fang, L., Hu, Q., Sun, G., Chen, X., Yu, X., Zhao, X. and Sun, G. (2021). Synthesis of novel CQDs/CeO2/SrFe12O19 magnetic separation photocatalysts and synergic adsorption-photocatalytic degradation effect for methylene blue dye removal. Chemical Engineering Journal Advances, 6: 100089.

5.      Hamidian, K., Najafidoust, A., Miri, A. and Sarani, M. (2021). Photocatalytic performance on degradation of acid orange 7 dye using biosynthesized un-doped and co doped CeO2 nanoparticles. Materials Research Bulletin, 138: 111206.

6.      Akpomie, K. G. and Conradie, J. (2020). Banana peel as a biosorbent for the decontamination of water pollutants. a review. Environmental Chemistry Letters, 18(4): 1085-1112.

7.      Setiabudi, H. D., Jusoh, R., Suhaimi, S. F. R. M. and Masrur, S. F. (2016). Adsorption of methylene blue onto oil palm (Elaeis guineensis) leaves: Process optimization, isotherm, kinetics and thermodynamic studies. Journal of the Taiwan Institute of Chemical Engineers, 63: 363-370.

8.      Ahmad, T., Rafatullah, M., Ghazali, A., Sulaiman, O. and Hashim, R. (2011). Oil palm biomass–based adsorbents for the removal of water pollutants—a review. Journal of Environmental Science and Health, Part C, 29(3): 177-222.

9.      Kamaru, A. A., Jani, N. S. A., Malek, N. A. N. N. and Sani, N. S. (2016). Adsorptive removal of methylene blue and acid orange 7 by hexadecyltrimethylammonium bromide modified rice husk. Jurnal Teknologi, 78(3-2): 113-119.

10.   Khalifa, M. A., Malek, N. A. N. N., Farimani, A. Y., Sani, N. S. and Kamaru, A. A. (2021). Cetylpyridinium bromide (CPB)-treated sugarcane bagasse for the removal of chromate in aqueous solution. Materials Today: Proceedings, 47(6): 1252-1257.

11.   Malek, N. A. N. N., Yusof, M. H. and Kamaru, A. A. (2019). Simultaneous action of surfactant modified sugarcane bagasse: Adsorbent and antibacterial agent. Malaysian Journal of Fundamental and Applied Science, 15: 32-37.

12.   Malek, N. A. N. N., Sihat, N. M., Khalifa, M. A., Kamaru, A. A. and Sani, N. S. (2016). Adsorption of acid orange 7 by cetylpyridinium bromide modified sugarcane bagasse. Jurnal Teknologi, 78(1-2): 97-103.

13.   Kamaru, A. A., Sani, N. S. and Malek, N. A. N. N. (2016). Raw and surfactant-modified pineapple leaf as adsorbent for removal of methylene blue and methyl orange from aqueous solution. Desalination and Water Treatment, 57(40): 18836-18850.

14.   Sidik, S. M., Jalil, A. A., Triwahyono, S., Adam, S. H., Satar, M. A. H. and Hameed, B. H. (2012). Modified oil palm leaves adsorbent with enhanced hydrophobicity for crude oil removal. Chemical Engineering Journal, 203: 9-18.

15.   Weng, C. H. and Wu, Y. C. (2011). Potential low-cost biosorbent for copper removal: pineapple leaf powder. Journal of Environmental Engineering, 138(3): 286-292.

16.   Sulaiman, O., Amini, M. H. M., Rafatullah, M., Hashim, R. and Ahmad, A. (2010). Adsorption equilibrium and thermodynamic studies of copper (II) ions from aqueous solutions by oil palm leaves. International Journal of Chemical Reactor Engineering, 8(1): 108.

17.   Ahmad, T., Irfan, M. and Bhattacharjee, S. (2016). Parametric study on gold nanoparticle synthesis using aqueous Elaise Guineensis (oil palm) leaf extract: Effect of precursor concentration. Procedia Engineering, 148: 1396-1401.

18.   Araujo, L. A., Bezerra, C. O., Cusioli, L. F., Silva, M. F., Nishi, L., Gomes, R. G. and Bergamasco, R. (2018). Moringa oleifera biomass residue for the removal of pharmaceuticals from water. Journal of Environmental Chemical Engineering, 6(6): 7192-7199.

19.   Nakagame, S., Chandra, R. P. and Saddler, J. N. (2010). The effect of isolated lignin’s, obtained from a range of pre-treated lignocellulosic substrates, on enzymatic hydrolysis. Biotechnology and Bioengineering, 105(5): 871-879.

20.   Tahir, N., Bhatti, H. N., Iqbal, M. and Noreen, S. (2017). Biopolymers composites with peanut hull waste biomass and application for crystal violet adsorption. International Journal of Biological Macromolecules, 94: 210-220.

21.   Neupane, S., Ramesh, S. T., Gandhimathi, R. and Nidheesh, P. V. (2015). Pineapple leaf (Ananas comosus) powder as a biosorbent for the removal of crystal violet from aqueous solution. Desalination and Water Treatment, 54(7): 2041-2054.

22.   Neugebauer, J. M. (1990). Detergents: An overview. Methods in Enzymology, 182: 239-253.