Malaysian
Journal of Analytical Sciences Vol 25 No 5
(2021): 751 - 765
QUALITY ASSESSMENT OF
MANGOSTEEN IN DIFFERENT MATURITY STAGES BY HAND-HELD NEAR-INFRARED SPECTROSCOPY
(Penilaian
Kualiti Manggis dalam Tahap Kematangan yang Berbeza dengan Genggam Spektroskopi
Inframerah Dekat)
Low Shuang Yao1,
Mahmud Iwan Solihin2, Pavalee Chompoorat3, Lim Lee Ying1,
Pui Liew Phing1*
1Department
of Food Science and Nutrition, Faculty of Applied Sciences
2Department of Mechanical and Mechatronics Engineering, Faculty of Engineering, Technology and Built Environment
UCSI
University, 56000 Kuala Lumpur, Malaysia
3Faculty
of Engineering and Agro-Industry,
Maejo
University, Chiang Mai 50290, Thailand.
*Corresponding
author: puilp@ucsiuniversity.edu.my
Received: 11 August 2021 ;
Accepted: 18 September 2021; Published:
25 October 2021
Abstract
Quality loss of mangosteen, a tropical fruit,
is caused by improper post-harvest handling. A method that can evaluate
mangosteen color along with its physical and chemical properties quickly and
conveniently should be developed. In this study, 90 mangosteen samples were
collected and scanned by the hand-held micro near-infrared (NIR) spectrometer
in the wavelength from 900–1700 nm. The mangosteen samples were tested with
destructive methods such as color, total soluble solids, reducing sugar
content, titratable acidity, and pH to obtain the reference data for the
predictive model. Spectral data collected has undergone several pre-processing
techniques. The enhanced spectral data are regressed using the regression model.
Partial least square (PLS) regression and Principal Component Regression are
used as the regression method for predicting mangosteen attributes with the
help of Orange data mining software. The results showed that color of the
sample was not ideal and stage 5 maturity had the lowest L* (27.99), a* (9.03)
and b* (7.22). Maturity of stage 6 mangosteen have the highest amount of
reducing sugar (10.70 × 10-6 g/100g) and total soluble solids
(7.18%). Pearson’s correlation was used to determine the relationship between
the chemical and physical properties of the mangosteen samples. The PLS and PCR
predictive models for reducing sugars were obtained with accuracy as R2 =
0.56 and R2 = 0.50 for the training and testing data, respectively.
This achieved accuracy may not be good, but it can be improved in the future by
using nonlinear machine learning and ensemble methods such as PLS and PCR.
Overall, this study indicated that the NIR spectroscopy technique combined with
several pre-processing methods and the predictive model by PLS and PCR could be
a rapid and non-destructive method for evaluating the quality and maturity of
the mangosteen fruit.
Keywords: hand-held
near-infrared spectroscopy, mangosteen, color analysis, total soluble solids,
non-destructive quality assessment
Abstrak
Kehilangan
kualiti manggis, buah tropika, disebabkan oleh pengendalian pasca tuai yang
tidak betul. Kaedah yang dapat menilai warna manggis, sifat manggis fizikal dan
kimia dengan kelajuan dan kemudahan yang pantas harus dikembangkan. Dalam
kajian ini, 90 sampel manggis dikumpulkan dan diimbas oleh spektrometer mikro
dekat inframerah (NIR) genggam. Sampel manggis diuji dengan kaedah yang
merosakkan seperti warna, pepejal larut total, pengurangan kandungan gula,
keasidan yang dapat ditetrasi dan pH untuk mendapatkan data rujukan untuk model
ramalan. Data spektral yang dikumpulkan telah menjalani beberapa teknik
pra-pemprosesan. Data spektrum yang ditingkatkan mundur menggunakan model
latihan regresi. Regresi Separa Sekurang Persegi (PLS) dan Regresi Komponen
Utama digunakan sebagai kaedah regresi untuk meramalkan atribut manggis dengan
bantuan perisian perlombongan data Orange. Hasil kajian menunjukkan bahawa
warna sampel tidak sesuai untuk kematangan tahap 5 yang mempunyai terendah L* (27.99), a* (9.03) dan b* (7.22). Kematangan manggis tahap 6 mempunyai jumlah gula
pengurangan tertinggi (10.70 × 10-6 g/100g) dan jumlah perpejal larut (7.18%).
Korelasi Pearson digunakan untuk menentukan hubungan antara sifat kimia dan
fizikal sampel manggis. Model ramalan PLS dan PCR diperoleh dengan ketepatan
masing-masing R2=0.56 dan R2=0.50. Secara kesuluruhan,
kajian ini menunjukkan bahawa teknik spektroskopi transmisi NIR digabungkan
dengan beberapa kaedah pra-pemprosesan dan model ramalan yang dibandingkan
dengan PLS dan PCR dapat menjadi kaedah yang cepat dan tidak merosakkan untuk
menilai kualiti dan kematangan buah manggis.
Kata
kunci: genggam spektroskopi
inframerah dekat, manggis, analisis warna, jumlah pepejal larut, penilaian
kualiti yang tidak merosakkan
References
1.
Ayman,
E. L., Hassan, S. M. and Osman, H. E. H. (2019). Mangosteen (Garcinia
mangostana L.). In Nonvitamin and Nonmineral Nutritional Supplements. Academic
Press, Massachusetts: pp. 313-319.
2.
Ketsa,
S. and Paull, R. E. (2011). Postharvest biology and technology of tropical and
subtropical fruits, ed. E.M. Yahia, Woodhead Publishing Series in Food Science,
Technology and Nutrition, Amsterdam: pp. 1-32.
3.
Sumiasih,
I. H., Poerwanto, R. and Efendi, D. (2019). Study of several stages of maturity
and storage temperature on color changes and shelf life of mangosteen (Garcinia
mangostana L.). International Journal of Applied Biology, 3(1): 45-54.
4.
Manurakchinakorn,
S., Chainarong, Y. and Sawatpadungkit, C. (2016). Quality of mangosteen juice
colored with mangosteen pericarp. International Food Reseach Journal,
23: 1033-1034.
5.
Jha, S.
N., Narsaiah, K., Jaiswal, P., Bhardwaj, R., Gupta, M., Kumar, R. and Sharma,
R.. (2014). Non-destructive prediction of maturity of mango using near infrared
spectroscopy. Journal of Food Engineering, 124: 152-157.
6.
Hayati,
R., Munawar, A. A. and Fachruddin F. (2020). Enhanced near infrared spectral
data to improve prediction accuracy in determining quality parameters of intact
mango. Data in
Brief, 2020: 105571-105572 .
7.
Yahia E.
M. (2011). Post-harvest biology and technology of tropical and subtropical
fruits: mangosteen to white sapote. Elsevier, Amsterdam.
8.
Tongdee,
S. C. and Suwanagul A. (1989). Post-harvest mechanical damage in mangosteens. ASEAN Food Journal Malaysia.
9.
Prabasari,
I., Utama, N. A., Hasanah, N. A. U., Riyadi, S. and Hariadi, T. K.. (2016).
Non-destructive method for maturity index determination of Garcinia
mangostana L. using image processing technology. International Society
for Horticultural Science, pp. 1-10.
10. Osman, M. B. and Milan, A. R. (2006) Mangosteen: Garcinia
mangostana L. Southampton Centre for Underutilised Crops. University of
Southampton, Southampton, UK.
11. Chang,
L. S, Tan, Y. L., and Pui, L. P. (2020). Production of spray-dried
enzyme-liquefied papaya (Carica papaya L.) powder. Brazilian Journal
of Food Technology, 23:
e2019181.
12. Pui, L. P., Karim, R., Yusof, Y. A., Wong, C.
W. and Ghazali, H. M. (2018). Physicochemical and sensory properties of
selected ‘cempedak’ (Artocarpus integer L.) fruit varieties.
International Food Research Journal, 25(2): 861-869.
13. Sadasivam, S. (1996). Biochemical Methods. New age
international, India.
14. AOAC. (2000). Official Methods of Analysis of AOAC
International, 17th edn. Association of
Official Analytical Chemists, Arlington.
15. Abdullah Al-Sanabani, D. G., Solihin,M. I., Pui, L. P.,
Astuti, W., Ang, C. K. and Hong, L. W. (2019). Development of non-destructive
mango assessment using handheld spectroscopy and machine learning regression. Journal
of Physics: Conference Series, 1367(1):
012030.
16. Pissard, A., Fernández Pierna, J. A., Baeten, V., Sinnaeve,
G., Lognay, G., Mouteau, A., Dupont, P., Rondia, A. and Lateur, M. (2013).
Non‐destructive measurement of vitamin C, total polyphenol and sugar
content in apples using near‐infrared spectroscopy. Journal of the
Science of Food and Agriculture, 93(2):
238- 244.
17. Yan, H., Xu, Y. C., Siesler, H. W., Han, B. X. and Zhang, G.
Z. (2019). Hand-held near-infrared spectroscopy for authentication of fengdous
and quantitative analysis of mulberry fruits. Frontiers in Plant Science, 10: 1548- 1549.
18. Wang, H., Peng, J., Xie, C., Bao, Y. and He, Y. (2015). Fruit
quality evaluation using spectroscopy technology: a review. Sensors, 15:
11889-11927.
19. Solihin, M. I., Zekui, Z., Ang, C. K., Heltha, F. and Rizon,
M. (2021). Machine learning calibration for near infrared spectroscopy data: A
visual programming approach. Springer,
Singapore: pp. 577-590.
20. Irfan, U. Bin, Pui, L. P. and Solihin, M. I. (2020).
Feasibility study of detecting palm oil adulteration with recycled cooking oil
using a handheld NIR spectroscopy. AIP Conference Proceedings, 2306(1): 020019.
21. Ting, D. F., Pui, L. P. and Solihin, M. I. (2020).
Feasibility of fraud detection in milk powder using a handheld near-infrared
spectroscopy. AIP Conference Proceedings, 2306(1): 020017.
22. Liew, K. T., Pui, L. P. and Solihin, M. I.. (2020).
Feasibility of fraud detection in rice using a handhelf near-infrared
spectroscopy. AIP Conference Proceedings, 2306(1): 020018.
23. Hanrahan, G.. (2009). Modelling of pollutants in complex
environmental systems. ILM Publications, USA.
24. Salleh, N. A. M. and Hassan, M. S. (2019). principal
component regression (PCR) and linear support vector machine regression (SVMR).
Journal of Physics: Conference Series, 1366: 1- 12114.
25. Yahaya, O. K. M., MatJafri, M. Z., Aziz, A. A. and Omar, A.
F. (2014). Non-destructive quality evaluation of fruit by color based on RGB
LEDs system. In 2014 2nd International Conference on Electronic Design
(ICED): pp. 230-233.
26. Palapol, Y., Ketsa, S., Stevenson, D., Cooney, J. M., Allan,
A. C. and Ferguson, I. B. (2009). Color development and quality of mangosteen (Garcinia
mangostana L.) fruit during ripening and after harvest. Postharvest
Biology and Technology, 51(3):
349-353.
27. Jarimopas, B., Pushpariksha, P. and Singh, S.
P. (2009). Postharvest damage of mangosteen and quality grading using
mechanical and optical properties as indicators. International Journal of
Food Properties, 12(2):
414-426.
28. Castro, M. F. P. P. M., Anjos, V. D., Rezende, A. C. B.,
Benato, E. A. and Valentini, S. R. T. (2012). Post-harvest technologies for
mangosteen (Garcinia mangostana L.) conservation. Journal of Food
Science and Technology, 32:
668-672.
29. Yamaki, S. (2010). Metabolism
and accumulation of
sugar translocated to fruit
and their regulation. Journal of the Japanese
Society for Horticultural Science., 79:
1-15.
30. Tadesse, T., Workneh, T. S. and Woldetsadik, K. (2012).
Effect of varieties on changes in sugar content and marketability of tomato
stored under ambient conditions. African Journal of Agricultural
Research, 7(14): 2024-2030.
31. Trick, J. K., Stuart, M. and Reeder, S. (2008). Contaminated groundwater sampling and quality
control of water analyses. Environmental Geochemistry, 29-57.
32. Susan, F. (2016). Complete Course in Canning and Related
Processes. Woodhead, USA.
33. Islam, M., Khan, M. Z. H., Sarkar, M. A. R., Absar, N. and
Sarkar, S. K. (2013). Changes in acidity, TSS, and sugar content at different
storage periods of the post-harvest mango (Mangifera indica L.)
influenced by Bavistin DF. International Journal of Food Science, 2013: 1-8.
34. Rooban, R., Shanmugam, M., Venkatesan, T. and Tamilmani, C.
(2016). Physiochemical changes during different stages of fruit ripening of
climacteric fruit of mango (Mangifera indica L.) and non-climacteric of
fruit cashew apple (Anacardium occidentale L.). Journal of Applied
and Advanced Research, 1(2):
53-58.
35. Ayaz, F. A., Kadioglu, A. S. İ. M., Bertoft, E., Acar,
C. and Turna, I. (2001). Effect of fruit maturation on sugar and organic acid
composition in two blueberries (Vaccinium arctostaphylos and V.
myrtillus) native to Turkey. New Zealand Journal of Crop and
Horticultural Science, 29:
137-141.
36.
Batista-Silva,
W., Nascimento, V. L., Medeiros, D. B., Nunes-Nesi, A., Ribeiro, D. M., Zsögön,
A. and Araújo, W. L.(2018). Modifications in organic acid profiles during
fruit development and ripening: correlation or causation?. Frontiers in
Plant Science, 9: 1689-1690.
37. Huang, J., Romero-Torres, S. and Moshgbar, M.. (2010).
Practical Considerations in Data Pre-treatment for NIR and Raman Spectroscopy. American
Pharmaceutical Review, 2010: 2-10.
38. Wentzell, P. D. and Montoto, L. V. (2003). Comparison of principal components
regression and partial least squares regression through generic simulations of
complex mixtures. Chemometrics and Intelligent Laboratory Systems, 65(2): 257-279.
39. Jaiswal, P., Jha, S. N., and Bharadwaj, R.
(2012). Non-destructive prediction of quality of intact banana using
spectroscopy. Scientia Horticulturae, 135: 14-22.
40. Richter, K., Hank, T. B., Atzberger, C. and Mauser, W.
(2011). Goodness-of-fit measures: what do they tell about vegetation variable
retrieval performance from Earth observation data. Remote sensing for
agriculture, ecosystems, and hydrology XIII. International Society for Optics
and Photonics, 8174: 81740-
81741.
41. Ait-Amir, B., Pougnet, P. and El Hami, A. (2020). Meta-model
development in embedded mechatronic systems 2. International
Society for Technology in Education: pp. 157-187.