Malaysian Journal of Analytical Sciences Vol 25 No 5 (2021): 751 - 765

 

 

 

 

QUALITY ASSESSMENT OF MANGOSTEEN IN DIFFERENT MATURITY STAGES BY HAND-HELD NEAR-INFRARED SPECTROSCOPY

 

(Penilaian Kualiti Manggis dalam Tahap Kematangan yang Berbeza dengan Genggam Spektroskopi Inframerah Dekat)

 

Low Shuang Yao1, Mahmud Iwan Solihin2, Pavalee Chompoorat3, Lim Lee Ying1, Pui Liew Phing1*

 

1Department of Food Science and Nutrition, Faculty of Applied Sciences

2Department of Mechanical and Mechatronics Engineering, Faculty of Engineering, Technology and Built Environment

UCSI University, 56000 Kuala Lumpur, Malaysia

3Faculty of Engineering and Agro-Industry,

Maejo University, Chiang Mai 50290, Thailand.

 

*Corresponding author:  puilp@ucsiuniversity.edu.my

 

 

Received: 11 August 2021 ; Accepted: 18 September 2021; Published:  25 October 2021

 

 

Abstract

Quality loss of mangosteen, a tropical fruit, is caused by improper post-harvest handling. A method that can evaluate mangosteen color along with its physical and chemical properties quickly and conveniently should be developed. In this study, 90 mangosteen samples were collected and scanned by the hand-held micro near-infrared (NIR) spectrometer in the wavelength from 900–1700 nm. The mangosteen samples were tested with destructive methods such as color, total soluble solids, reducing sugar content, titratable acidity, and pH to obtain the reference data for the predictive model. Spectral data collected has undergone several pre-processing techniques. The enhanced spectral data are regressed using the regression model. Partial least square (PLS) regression and Principal Component Regression are used as the regression method for predicting mangosteen attributes with the help of Orange data mining software. The results showed that color of the sample was not ideal and stage 5 maturity had the lowest L* (27.99), a* (9.03) and b* (7.22). Maturity of stage 6 mangosteen have the highest amount of reducing sugar (10.70 × 10-6 g/100g) and total soluble solids (7.18%). Pearson’s correlation was used to determine the relationship between the chemical and physical properties of the mangosteen samples. The PLS and PCR predictive models for reducing sugars were obtained with accuracy as R2 = 0.56 and R2 = 0.50 for the training and testing data, respectively. This achieved accuracy may not be good, but it can be improved in the future by using nonlinear machine learning and ensemble methods such as PLS and PCR. Overall, this study indicated that the NIR spectroscopy technique combined with several pre-processing methods and the predictive model by PLS and PCR could be a rapid and non-destructive method for evaluating the quality and maturity of the mangosteen fruit.

 

Keywords:   hand-held near-infrared spectroscopy, mangosteen, color analysis, total soluble solids, non-destructive quality assessment

 

Abstrak

Kehilangan kualiti manggis, buah tropika, disebabkan oleh pengendalian pasca tuai yang tidak betul. Kaedah yang dapat menilai warna manggis, sifat manggis fizikal dan kimia dengan kelajuan dan kemudahan yang pantas harus dikembangkan. Dalam kajian ini, 90 sampel manggis dikumpulkan dan diimbas oleh spektrometer mikro dekat inframerah (NIR) genggam. Sampel manggis diuji dengan kaedah yang merosakkan seperti warna, pepejal larut total, pengurangan kandungan gula, keasidan yang dapat ditetrasi dan pH untuk mendapatkan data rujukan untuk model ramalan. Data spektral yang dikumpulkan telah menjalani beberapa teknik pra-pemprosesan. Data spektrum yang ditingkatkan mundur menggunakan model latihan regresi. Regresi Separa Sekurang Persegi (PLS) dan Regresi Komponen Utama digunakan sebagai kaedah regresi untuk meramalkan atribut manggis dengan bantuan perisian perlombongan data Orange. Hasil kajian menunjukkan bahawa warna sampel tidak sesuai untuk kematangan tahap 5 yang mempunyai terendah L* (27.99), a* (9.03) dan b* (7.22). Kematangan manggis tahap 6 mempunyai jumlah gula pengurangan tertinggi (10.70 × 10-6 g/100g) dan jumlah perpejal larut (7.18%). Korelasi Pearson digunakan untuk menentukan hubungan antara sifat kimia dan fizikal sampel manggis. Model ramalan PLS dan PCR diperoleh dengan ketepatan masing-masing R2=0.56 dan R2=0.50. Secara kesuluruhan, kajian ini menunjukkan bahawa teknik spektroskopi transmisi NIR digabungkan dengan beberapa kaedah pra-pemprosesan dan model ramalan yang dibandingkan dengan PLS dan PCR dapat menjadi kaedah yang cepat dan tidak merosakkan untuk menilai kualiti dan kematangan buah manggis.

 

Kata kunci:  genggam spektroskopi inframerah dekat, manggis, analisis warna, jumlah pepejal larut, penilaian kualiti yang tidak merosakkan

 

References

1.      Ayman, E. L., Hassan, S. M. and Osman, H. E. H. (2019). Mangosteen (Garcinia mangostana L.). In Nonvitamin and Nonmineral Nutritional Supplements. Academic Press, Massachusetts: pp. 313-319.

2.      Ketsa, S. and Paull, R. E. (2011). Postharvest biology and technology of tropical and subtropical fruits, ed. E.M. Yahia, Woodhead Publishing Series in Food Science, Technology and Nutrition, Amsterdam: pp. 1-32.

3.      Sumiasih, I. H., Poerwanto, R. and Efendi, D. (2019). Study of several stages of maturity and storage temperature on color changes and shelf life of mangosteen (Garcinia mangostana L.). International Journal of Applied Biology3(1): 45-54.

4.      Manurakchinakorn, S., Chainarong, Y. and Sawatpadungkit, C. (2016). Quality of mangosteen juice colored with mangosteen pericarp. International Food Reseach Journal, 23: 1033-1034.

5.      Jha, S. N., Narsaiah, K., Jaiswal, P., Bhardwaj, R., Gupta, M., Kumar, R. and Sharma, R.. (2014). Non-destructive prediction of maturity of mango using near infrared spectroscopy. Journal of Food Engineering, 124: 152-157.

6.      Hayati, R., Munawar, A. A. and Fachruddin F. (2020). Enhanced near infrared spectral data to improve prediction accuracy in determining quality parameters of intact mango. Data in Brief, 2020: 105571-105572 .

7.      Yahia E. M. (2011). Post-harvest biology and technology of tropical and subtropical fruits: mangosteen to white sapote. Elsevier, Amsterdam.

8.      Tongdee, S. C. and Suwanagul A. (1989). Post-harvest mechanical damage in mangosteens. ASEAN Food Journal Malaysia.

9.      Prabasari, I., Utama, N. A., Hasanah, N. A. U., Riyadi, S. and Hariadi, T. K.. (2016). Non-destructive method for maturity index determination of Garcinia mangostana L. using image processing technology. International Society for Horticultural Science, pp. 1-10.

10.   Osman, M. B. and Milan, A. R. (2006) Mangosteen: Garcinia mangostana L. Southampton Centre for Underutilised Crops. University of Southampton, Southampton, UK.

11.   Chang, L. S, Tan, Y. L., and Pui, L. P. (2020). Production of spray-dried enzyme-liquefied papaya (Carica papaya L.) powder. Brazilian Journal of Food Technology, 23: e2019181.

12.   Pui, L. P., Karim, R., Yusof, Y. A., Wong, C. W. and Ghazali, H. M. (2018). Physicochemical and sensory properties of selected ‘cempedak’ (Artocarpus integer L.) fruit varieties. International Food Research Journal25(2): 861-869.

13.   Sadasivam, S. (1996). Biochemical Methods. New age international, India.

14.   AOAC. (2000). Official Methods of Analysis of AOAC International, 17th edn. Association of Official Analytical Chemists, Arlington.

15.   Abdullah Al-Sanabani, D. G., Solihin,M. I., Pui, L. P., Astuti, W., Ang, C. K. and Hong, L. W. (2019). Development of non-destructive mango assessment using handheld spectroscopy and machine learning regression. Journal of Physics: Conference Series, 1367(1): 012030.

16.   Pissard, A., Fernández Pierna, J. A., Baeten, V., Sinnaeve, G., Lognay, G., Mouteau, A., Dupont, P., Rondia, A. and Lateur, M. (2013). Non‐destructive measurement of vitamin C, total polyphenol and sugar content in apples using near‐infrared spectroscopy. Journal of the Science of Food and Agriculture, 93(2): 238- 244.

17.   Yan, H., Xu, Y. C., Siesler, H. W., Han, B. X. and Zhang, G. Z. (2019). Hand-held near-infrared spectroscopy for authentication of fengdous and quantitative analysis of mulberry fruits. Frontiers in Plant Science10: 1548- 1549.

18.   Wang, H., Peng, J., Xie, C., Bao, Y. and He, Y. (2015). Fruit quality evaluation using spectroscopy technology: a review. Sensors, 15: 11889-11927.

19.   Solihin, M. I., Zekui, Z., Ang, C. K., Heltha, F. and Rizon, M. (2021). Machine learning calibration for near infrared spectroscopy data: A visual programming approach.  Springer, Singapore: pp. 577-590.

20.   Irfan, U. Bin, Pui, L. P. and Solihin, M. I. (2020). Feasibility study of detecting palm oil adulteration with recycled cooking oil using a handheld NIR spectroscopy. AIP Conference Proceedings, 2306(1): 020019.

21.   Ting, D. F., Pui, L. P. and Solihin, M. I. (2020). Feasibility of fraud detection in milk powder using a handheld near-infrared spectroscopy. AIP Conference Proceedings, 2306(1): 020017.

22.   Liew, K. T., Pui, L. P. and Solihin, M. I.. (2020). Feasibility of fraud detection in rice using a handhelf near-infrared spectroscopy. AIP Conference Proceedings, 2306(1): 020018.

23.   Hanrahan, G.. (2009). Modelling of pollutants in complex environmental systems. ILM Publications, USA.

24.   Salleh, N. A. M. and Hassan, M. S. (2019). principal component regression (PCR) and linear support vector machine regression (SVMR). Journal of Physics: Conference Series, 1366: 1- 12114.

25.   Yahaya, O. K. M., MatJafri, M. Z., Aziz, A. A. and Omar, A. F. (2014). Non-destructive quality evaluation of fruit by color based on RGB LEDs system. In 2014 2nd International Conference on Electronic Design (ICED): pp. 230-233.

26.   Palapol, Y., Ketsa, S., Stevenson, D., Cooney, J. M., Allan, A. C. and Ferguson, I. B. (2009). Color development and quality of mangosteen (Garcinia mangostana L.) fruit during ripening and after harvest. Postharvest Biology and Technology51(3): 349-353.

27.   Jarimopas, B., Pushpariksha, P. and Singh, S. P. (2009). Postharvest damage of mangosteen and quality grading using mechanical and optical properties as indicators. International Journal of Food Properties12(2): 414-426.

28.   Castro, M. F. P. P. M., Anjos, V. D., Rezende, A. C. B., Benato, E. A. and Valentini, S. R. T. (2012). Post-harvest technologies for mangosteen (Garcinia mangostana L.) conservation. Journal of Food Science and Technology, 32: 668-672.

29.   Yamaki, S. (2010). Metabolism  and  accumulation  of  sugar translocated  to  fruit  and  their  regulation. Journal of the Japanese Society for Horticultural Science., 79: 1-15.

30.   Tadesse, T., Workneh, T. S. and Woldetsadik, K. (2012). Effect of varieties on changes in sugar content and marketability of tomato stored under ambient conditions. African Journal of Agricultural Research7(14): 2024-2030.

31.   Trick, J. K., Stuart, M. and Reeder, S. (2008).  Contaminated groundwater sampling and quality control of water analyses. Environmental Geochemistry, 29-57.

32.   Susan, F. (2016). Complete Course in Canning and Related Processes. Woodhead, USA.

33.   Islam, M., Khan, M. Z. H., Sarkar, M. A. R., Absar, N. and Sarkar, S. K. (2013). Changes in acidity, TSS, and sugar content at different storage periods of the post-harvest mango (Mangifera indica L.) influenced by Bavistin DF. International Journal of Food Science, 2013: 1-8.

34.   Rooban, R., Shanmugam, M., Venkatesan, T. and Tamilmani, C. (2016). Physiochemical changes during different stages of fruit ripening of climacteric fruit of mango (Mangifera indica L.) and non-climacteric of fruit cashew apple (Anacardium occidentale L.). Journal of Applied and Advanced Research1(2): 53-58.

35.   Ayaz, F. A., Kadioglu, A. S. İ. M., Bertoft, E., Acar, C. and Turna, I. (2001). Effect of fruit maturation on sugar and organic acid composition in two blueberries (Vaccinium arctostaphylos and V. myrtillus) native to Turkey. New Zealand Journal of Crop and Horticultural Science, 29: 137-141.

36.   Batista-Silva, W., Nascimento, V. L., Medeiros, D. B., Nunes-Nesi, A., Ribeiro, D. M., Zsögön, A. and Araújo, W. L.(2018). Modifications in organic acid profiles during fruit development and ripening: correlation or causation?. Frontiers in Plant Science, 9: 1689-1690.

37.   Huang, J., Romero-Torres, S. and Moshgbar, M.. (2010). Practical Considerations in Data Pre-treatment for NIR and Raman Spectroscopy. American Pharmaceutical Review, 2010: 2-10.

38.   Wentzell, P. D. and Montoto, L. V.  (2003). Comparison of principal components regression and partial least squares regression through generic simulations of complex mixtures. Chemometrics and Intelligent Laboratory Systems, 65(2): 257-279.

39.   Jaiswal, P., Jha, S. N., and Bharadwaj, R. (2012). Non-destructive prediction of quality of intact banana using spectroscopy. Scientia Horticulturae135: 14-22.

40.   Richter, K., Hank, T. B., Atzberger, C. and Mauser, W. (2011). Goodness-of-fit measures: what do they tell about vegetation variable retrieval performance from Earth observation data. Remote sensing for agriculture, ecosystems, and hydrology XIII. International Society for Optics and Photonics, 8174: 81740- 81741.

41.   Ait-Amir, B., Pougnet, P. and El Hami, A. (2020). Meta-model development in embedded mechatronic systems 2. International Society for Technology in Education: pp. 157-187.