Malaysian
Journal of Analytical Sciences Vol 25 No 4
(2021): 622 - 636
PHYSICOCHEMICAL
PROPERTIES OF SAGO BARK BIOCHAR AND ITS POTENTIAL AS PLANT GROWTH MEDIA
(Sifat Fizikokimia Bio-Arang Sisa Kulit
Sagu dan Potensinya Sebagai Media Pertumbuhan Tanaman)
Nor
Khairunnisa Mohamad Fathi1, Sharifah Mona Abd Aziz Abdullah2*,
Mohamad Fhaizal Mohamad Bukhori2, Rafeah Wahi1,
Mohd Alhafiizh Zailani2
1Faculty
of Resources Science and Technology,
2Centre
for Pre-University Studies,
Universiti
Malaysia Sarawak, 94300 Kota Samarahan, Sarawak, Malaysia
*Corresponding author: aaasmona@unimas.my
Received: 23 June 2021; Accepted: 2 August 2021;
Published: 29 August 2021
Abstract
Biochar application as a soil
amender can alter soil physical properties with its effects on soil aeration,
water holding capacity, soil workability and plant growth. Sago biochar
(SBB) was produced through carbonization of the sago bark waste in an oxygen
free environment. This study aims to improve the morphological characteristics
and physicochemical properties of SBB. The SBB was chemically treated using HCl
and NaOH. The morphological characteristics of samples were analysed using SEM
and BET. Meanwhile, the physicochemical analysis was performed using FTIR, CHN
analyser and AAS. The treated sago biochar (TSB) showed the highest surface
area (158.82 m2/g) and can be classified as macropores (53.4 nm). This
indicates that the TSB has large pores influencing the cohesiveness of soil
particles, water storage, and increase in water holding capacity (97.63%). It also had the highest Ca and Mg (6.67% and
4.37%, respectively) which can assist in the production of chlorophyll in
plant. TSB also showed a higher micronutrient
concentration (Mn, Cu, and Fe) particularly the Fe concentration (2.00 mg/kg).
The findings suggested that TSB could be used to improve soil qualities
such as water holding and nutrients content, indicating that it has a good
potential as a soil amender.
Keywords: chemical modification, plant growth study,
biochar, soil amender, Metroxylon sagu
Rottb
Abstrak
Bio-arang diaplikasikan sebagai bahan pembaikpulih tanah
di mana ia dapat mengubah sifat fizikal tanah dan memberi pengaruh terhadap
pengudaraan tanah, daya tahan air, kemampuan kerja tanah dan pertumbuhan
tanaman. Bio-arang sisa kulit sagu (SBB) dihasilkan melalui pengkarbonan sisa
kulit sagu dalam persekitaran bebas oksigen. Kajian ini bertujuan untuk
menambahbaik ciri morfologi dan sifat fizikokimia SBB. SBB dirawat secara kimia
menggunakan HCl dan NaOH. Ciri morfologi pada sampel dianalisis menggunakan SEM
dan BET. Sementara itu, analisis fizikokimia dilakukan dengan menggunakan FTIR,
CHN dan AAS. SBB yang dirawat (TSB) mempunyai luas permukaan tertinggi (158.82
m2/g) dan boleh dikelaskan sebagai makropori (53.4 nm). Ini
menunjukkan bahawa TSB mempunyai liang besar yang akan mempengaruhi kejelekitan
zarah tanah, penyimpanan air, dan peningkatan daya tahan air (97.63%). TSB mempunyai
kandungan Ca dan Mg tertinggi (masing-masing sebanyak 6.67% and 4.37%) yang dapat membantu dalam penghasilan
klorofil dalam tumbuhan. TSB juga menunjukkan kepekatan mikronutrien yang lebih
tinggi (Mn, Cu, dan Fe) terutamanya kepekatan Fe (2.00 mg/kg). Hasil kajian mendedahkan bahawa TSB dapat
digunakan untuk memperbaiki kualiti tanah seperti daya tahan air dan kandungan
nutrien, sekaligus menunjukkan pontesinya sebagai pembaikpulih tanah.
Kata kunci: penguahsuaian kimia, kajian pertumbuhan tumbuhan, bio-arang,
pembaikpulih tanah, Metroxylon sagu Rottb
References
1.
Lim, L.W. K., Chung, H. H., Hussain, H. and Bujang, K. (2019). Sago palm
(Metroxylon sagu Rottb.): Now and
beyond. Pertanika Journal Tropical Agricultural Science, 42(2): 435-451.
2. Ehara, H., Toyoda, Y. and Johnson, D.V.
(2018). Sago palm: Multiple contributions to food security and sustainable
livelihoods. In sago palm: multiple contributions to food security and
sustainable livelihoods. Springer, Singapore.
3. Jong, F. S. (2018). An Overview of Sago
Industry Development, 1980s–2015. In: Ehara H, Toyoda Y, Johnson D. (eds)
Sago Palm. Springer, Singapore.
4.
Singhal,
R. S., Kennedy, J. F. and Gopalakrishnan, S. M. (2017). Industrial production,
processing, and utilization of sago palm-derived products. Carbohydrate
Polymer, 72: 1-20.
5. Rasyid, T. H., Kusumawaty, Y. and Hadi, S.
(2020) The utilization of sago waste: prospect and challenges. IOP
Conference Series: Earth and Environmental Science, 415: 12-23.
6.
Piash,
M. I., Hossain, M. F. and Zakia, P. (2019). Effect of biochar and fertilizer
application on the growth and nutrient accumulation of rice and vegetable in
two contrast soils. Acta Scienctific Agriculture, 3(2): 74-83.
7.
Carter,
S., Shackley, S., Sohi, S., Suy, T. B. and Haefele, S. (2013). The impact of
biochar application on soil properties and plant growth of pot grown lettuce (Lactuca
sativa) and cabbage (Brassica chinensis). Agronomy, 3:
404-418.
8.
Bayu,
D., Tadesse, M. and Amsalu, N. (2016). Effect of biochar on soil properties and
lead (Pb) availability in a military camp in South West Ethiopia. African
Journal of Environmental Science and Technology, 10(3): 77-85.
9. Sahin, O., Taskin, M. B., Kaya, E. C. and Gunes, A. (2017).
Effect of acid modification of biochar on nutrient availability and maize
growth in a calcareous soil. Soil Use and Management, 33: 447-456.
10.
Tan, I.
A. W., Abdullah, M. O., Lim, L. L. P. and Yeo, T. H. C. (2017). Surface
modification and characterization of coconut shell-based activated carbon
subjected to acidic and alkaline treatments. Journal of Applied Science
& Process Engineering, 4(2): 186-194.
11.
Alzaydien,
A. S. (2016). Physical, chemical and adsorptive characteristics of local oak
sawdust based activated carbons. Asian Journal of Scientific Research,
9(2): 45-56.
12.
Zhao, S.
X., Ta, N. and Wang, X. D. (2017). Effect of temperature on the structural and
physicochemical properties of biochar with apple tree branches as feedstock
material. Energies, 10(9): 1293.
13.
Sukartono,
W. H., Kusuma, Z. and Nugrobo, W. H. (2011). Soil fertility status , nutrient
uptake , and maize (Zea mays L .) yield following biochar and cattle
manure application on sandy soils of Lombok, Indonesia. Journal of Tropical
Agriculture, 49(1-2): 47-52.
14. Wisnubroto, E.I., Utomo, W.H. and Indrayatie,
E.R. (2017). Residual effect of biochar on growth and yield of red chili (Capsicum annum L.). Journal of
Advanced Agricultural Technologies 4(1): 28-31.
15. Yamato, M., Okimori, Y., Wibowo, I. F.,
Anshori, S. and Ogawa, M. (2006). Effects of the application of charred bark of
Acacia mangium on the yield of maize,
cowpea and peanut, and soil chemical properties in South Sumatra, Indonesia. Soil
Science and Plant Nutrition, 52(4): 489-495.
16.
Gondim,
R. S., Muniz, C. R., Eduardo, C. and Lima, P. (2018). Explaining the
water-holding capacity of biochar by scanning electron microscope images. Revista
Caatinga, 31(4): 972-979.
17.
Berek,
A. K. (2019). The potential of biochar as an acid soil amendment to support
Indonesian food and energy security - A review. Tropical Agricultural
Science, 42(2): 745-759.
18.
Tan, G.,
Xu, N., Xu, Y., Wang, H. and Sun, W. (2016). Sorption of mercury(II) and
atrazine by biochar, modified biochars and biochar based activated carbon in
aqueous solution. Bioresource Technology, 2016: 1-43.
19.
Wahi,
R., Zuhaidi, N. F. Q., Yusof, Y., Jamel, J. and Kanakaraju, D. (2018).
Chemically treated microwave biochar from sago bark waste. Proceedings of
ISER 119th International Conference, Kuala Lumpur, Malaysia, 1st-2nd
April 2018: 52–54.
20.
Hamzah,
Z. and Shuhaimi, S. N. A. (2018). Biochar : effects on crop growth. IOP
Conference Series: Earth and Environmental Science, 215: 1-8.
21.
Zhang,
J. and You, C. (2013). Water holding capacity and absorption properties of wood
chars. Energy & Fuels, 27: 2643-2648.
22. Ahmad, N.F., Alias, A.B., Talib, N. and
Rashid, Z. (2018). Characteristics of rice husk biochar blended with coal fly
ash for potential sorption material. Malaysian Journal of Analytical
Sciences, 22(2): 326-332.
23.
Estefan,
G., Sommer, R. and Ryan, J. (2013). Methods of soil, plant, and water
analysis: A manual for the West Asia and North Africa region (3rd edition). International Center for
Agricultural Research in the Dry Areas (ICARDA). Beirut, Lebanon.
24. Hegde, G., Abdul Manaf, S. A., Kumar, A., Ali, G. A. M.,
Chong, K. F., Ngaini, Z. and Sharma, K. V. (2015). Biowaste sago bark based
catalyst free carbon nanospheres: waste to wealth approach. American
Chemical Society Sustainable Chemistry and Engineering, 3(9): 2247-2253.
25.
Ma, X.,
Zhou, B., Budai, A., Jeng, A., Hao, X., Wei, D., Zhang, Y. and Rasse, D.
(2016). Study of biochar properties by scanning electron microscope-energy
dispersive x-ray spectroscopy (SEM-EDX). Communications in Soil Science and
Plant Analysis, 47(5): 593-601.
26.
Liang,
H., Chen, L., Liu, G. and Zheng, H. (2016). Surface morphology properties of
biochars produced from different feedstocks. Proceedings of the 2016
International Conference on Civil, Transfortation and Environment, pp.
1205-1208.
27.
Suárez,
H. L., Alba N., A. A. and Barrera, Z. R. (2017). Morphological and
physicochemical characterization of biochar produced by gasification of
selected forestry species. Revista Facultad de Ingeniería, 26(46):
123-130.
28.
Palniandy,
L. K., Yoon, L. W., Wong, W. Y., Yong, S. T. and Pang, M. M. (2019).
Application of biochar derived from different types of biomass and treatment
methods as a fuel source for direct carbon fuel cells. Energies,
12(2477): 1-15.
29.
Ibrahim,
I., Tsubota, T., Hassan, M. A. and Andou, Y. (2021). Surface functionalization
of biochar from oil palm empty fruit bunch through hydrothermal process. Processe,
9(149): 1-14.
30. Varela, M. O., Rivera, E. B., Huang, W. J., Chien, C. C. and
Wang, Y. M. (2013). Agronomic properties and characterization of rice husk and
wood biochars and their effect on the growth of water spinach in a field test. Journal
of Soil Science and Plant Nutrition, 13(2): 251–266.
31. Prasad, M., Chrysargyris, A., McDaniel, N., Kavanagh, A.,
Gruda, N. S. and Tzortzakis, N. (2019). Plant nutrient availability and pH of
biochars and their fractions, with the possible use as a component in a growing
media. Agronomy, 10(10): 1-17.
32.
Li, L.,
Liu, S. and Liu, J. (2011). Surface modification of coconut shell based
activated carbon for the improvement of hydrophobic VOC removal, Journal of
Hazardous Materials, 192(2): 683-690.
33.
Lu, S.,
Sun, F. and Zong, Y. (2014). Catena effect of rice husk biochar and coal fly
ash on some physical properties of expansive clayey soil (Vertisol). Catena,
114: 37-44.
34.
Batista,
E. M. C. C., Shultz, J., Matos, T. T. S., Fornari, M. R., Ferreira, T. M.,
Szpoganicz, B., De Freitas, R. A. and Mangrich, A. S. (2018). Effect of surface
and porosity of biochar on water holding capacity aiming indirectly at
preservation of the Amazon biome. Scientific Reports, 8(1): 1-9.
35.
Mukherjee,
A. and Lal, R. (2013). Biochar impacts on soil physical properties and
greenhouse gas emissions. Agronomy, 3(2): 313-339.
36.
Southavong,
S., Preston, T. R. and van Man, N. (2012). Effect of biochar and biodigester
effluent on growth of water spinach (Ipomoea aquatica) and soil
fertility. Livestock Research for Rural Development, 24(2): 1-15.
37.
Pühringer,
H. (2016). Effects of different biochar application rates on soil fertility and
soil water retention in on-farm experiments on smallholder farms in Kenya. In
Department of Soil and Environment, Swedish University of Agricultural
Sciences.
38.
Gunamantha,
I. M. and Widana, G. A. B. (2018). Characterization the potential of biochar
from cow and pig manure for geoecology application. International Conference
Series:Earth and Environmental Science, 131(012055) :1-6.
39.
Zhao, S.
X. Z., Ta, N. and Wang, X. D. (2017). Effect of temperature on the structural
and physicochemical properties of biochar with apple tree braches as feedstock
material. Energies, 10(1293): 1-15.
40.
Meri, N.
H., Alias, A. B., Talib, N., Rashid, Z. A. and Ghani, W. A. (2018). Effect of
chemical washing pre-treatment of empty fruit bunch (EFB) biochar on
characterization of hydrogel biochar composite as bioadsorbent. IOP
Conference Series: Materials Science and Engineering, 358: 1–7
41.
Zhao,
B., O’Connor, D., Shen, Z., Tsang, D. C. W., Rinklebe, J. and Hou, D. (2020).
Sulfur-modified biochar as a soil amendment to stabilize mercury pollution: An
accelerated simulation of long-term aging effects. Environmental Pollution,
264: 114687.
42.
Ndor,
E., Ogara, J. I., Bako, D. A. and Osuagbalande, J. A. (2016). Effect of biochar
on macronutrients release and plant growth on degraded soil of Lafia, Nasarawa
State, Nigeria. Asian Research Journal of Agriculture, 2(3): 1–8.
43. Godwin, P. M., Pan, Y., Xiao, H. and Afzal, M. T. (2019).
Progress in preparation and application of modified biochar for improving heavy
metal ion removal from wastewater. Journal of Bioresources and Bioproducts,
4(1): 31-42.
44.
Figuerado, N. A., Costa, L. M., Melo, L. C. A., Siebeneichlerd,
E. A. and Tronto, J. (2017). Characterization of biochars from different
sources and evaluation of release of nutrients and contaminants. Revista
Ciencia Agronomica, 48(3): 1–10.
45.
Tomczyk,
A., Sokołowska, Z. and Boguta, P. (2020). Biochar physicochemical
properties: Pyrolysis temperature and feedstock kind effects. Reviews in
Environmental Science and Biotechnology, 19(1): 191-215.
46. Ghani, W.A., Mohd, A., Silva, S, G.,
Bachmann, R.T., Taufiq, Y.H., Rashid, U. and Al-Muhtaseb, A. H. (2013). Biochar
production from waste rubber-wood-sawdust and its potential use in C
sequestration: Chemical and physical characterization. Industrial Crops
& Products, 44: 18-24.
47.
Liu, Y.,
He, Z. and Uchimiya, M. (2015). Comparison of biochar formation from various
agricultural by-products Using FTIR spectroscopy, Modern Applied Science, 9(4): 246-253.
48.
Ding, A.
Y., Liu, Y., Liu, S., Huang, X. and Li, Z. (2017). Potential benefits from
biochar application for agricultural use: A review. Pedosphere: An
International Journal, 2017: 1-20.
49.
Singh,
B., Dolk, M. M., Shen, Q. and Arbestain, M. C. (2017). Biochar: A guide to
analytical methods chapter 3 biochar pH, electrical conductivity and liming
potential. CSIRO Publishing. Access from
https://biochar-international.org/wpcontent/uploads/2019/11/2017_Biochar_pH_electrical_conductivity_
and_liming_potential_Singhetal.pdf
50.
Novak,
J. M., Busscher, W. J., Laird, D. L., Ahmedna, M., Watts, D. W. and Niandou, M.
A. S. (2009). Impact of biochar amendment on fertility of a southeastern
coastal plain soil. Soil Science, 174(2): 105-112.
51.
Karimi,
A., Moezzi, A., Chorom, M. and Enayatizamir, N. (2019). Application of biochar
changed the status of nutrients and biological activity in a calcareous soil. Journal
of Soil Science and Plant Nutrition. (20): 450-459.
52.
Hussain,
M., Farooq, M., Nawaz, A., Al-Sadi, A. M., Solaiman, Z. M., Alghamdi, S. S.,
Ammara, U., Ok, Y. S. and Siddique, K. H. M. (2017). Biochar for crop
production: potential benefits and risks. Journal of Soils and Sediments,
17(3): 685-716.
53. Abdul, N. F. and Abdul, N. S. (2017). Microbial &
biochemical technology the effect of biochar application on nutrient
availability of soil planted with MR219. Journal of Microbial &
Biochemical Technology, 9(2): 583–586.
54.
Mukhti, G. (2014). Heavy
metal stress in plants. International Journal Advance Residual, 2(6):
1043-1055.
55.
Ducic,
T. and Polle, A. (2005). Transport and detoxification of manganese and copper
in plants. Brazillian Journal of Plant Physiology, 17(1): 1-16.
56.
Salmani,
M. S., Khorsandi, F., Yasrebi, J. and Karimian, N. (2014). Biochar effects on
copper availability and uptake by sunflower in a copper contaminated calcareous
soil. International Journal of Plant, Animal and Environmental Sciences,
4(3): 389-394.