Malaysian Journal of Analytical Sciences Vol 25 No 4 (2021): 622 - 636

 

 

 

 

PHYSICOCHEMICAL PROPERTIES OF SAGO BARK BIOCHAR AND ITS POTENTIAL AS PLANT GROWTH MEDIA

 

(Sifat Fizikokimia Bio-Arang Sisa Kulit Sagu dan Potensinya Sebagai Media Pertumbuhan Tanaman)

 

Nor Khairunnisa Mohamad Fathi1, Sharifah Mona Abd Aziz Abdullah2*, Mohamad Fhaizal Mohamad Bukhori2, Rafeah Wahi1, Mohd Alhafiizh Zailani2

 

1Faculty of Resources Science and Technology,

2Centre for Pre-University Studies,

Universiti Malaysia Sarawak, 94300 Kota Samarahan, Sarawak, Malaysia

 

*Corresponding author:  aaasmona@unimas.my

 

 

Received:  23 June 2021; Accepted: 2 August 2021; Published:  29 August 2021

 

 

Abstract

Biochar application as a soil amender can alter soil physical properties with its effects on soil aeration, water holding capacity, soil workability and plant growth. Sago biochar (SBB) was produced through carbonization of the sago bark waste in an oxygen free environment. This study aims to improve the morphological characteristics and physicochemical properties of SBB. The SBB was chemically treated using HCl and NaOH. The morphological characteristics of samples were analysed using SEM and BET. Meanwhile, the physicochemical analysis was performed using FTIR, CHN analyser and AAS. The treated sago biochar (TSB) showed the highest surface area (158.82 m2/g) and can be classified as macropores (53.4 nm). This indicates that the TSB has large pores influencing the cohesiveness of soil particles, water storage, and increase in water holding capacity (97.63%). It also had the highest Ca and Mg (6.67% and 4.37%, respectively) which can assist in the production of chlorophyll in plant. TSB also showed a higher micronutrient concentration (Mn, Cu, and Fe) particularly the Fe concentration (2.00 mg/kg). The findings suggested that TSB could be used to improve soil qualities such as water holding and nutrients content, indicating that it has a good potential as a soil amender.

 

Keywords:  chemical modification, plant growth study, biochar, soil amender, Metroxylon sagu Rottb

 

Abstrak

Bio-arang diaplikasikan sebagai bahan pembaikpulih tanah di mana ia dapat mengubah sifat fizikal tanah dan memberi pengaruh terhadap pengudaraan tanah, daya tahan air, kemampuan kerja tanah dan pertumbuhan tanaman. Bio-arang sisa kulit sagu (SBB) dihasilkan melalui pengkarbonan sisa kulit sagu dalam persekitaran bebas oksigen. Kajian ini bertujuan untuk menambahbaik ciri morfologi dan sifat fizikokimia SBB. SBB dirawat secara kimia menggunakan HCl dan NaOH. Ciri morfologi pada sampel dianalisis menggunakan SEM dan BET. Sementara itu, analisis fizikokimia dilakukan dengan menggunakan FTIR, CHN dan AAS. SBB yang dirawat (TSB) mempunyai luas permukaan tertinggi (158.82 m2/g) dan boleh dikelaskan sebagai makropori (53.4 nm). Ini menunjukkan bahawa TSB mempunyai liang besar yang akan mempengaruhi kejelekitan zarah tanah, penyimpanan air, dan peningkatan daya tahan air (97.63%). TSB mempunyai kandungan Ca dan Mg tertinggi (masing-masing sebanyak 6.67% and 4.37%) yang dapat membantu dalam penghasilan klorofil dalam tumbuhan. TSB juga menunjukkan kepekatan mikronutrien yang lebih tinggi (Mn, Cu, dan Fe) terutamanya kepekatan Fe (2.00 mg/kg). Hasil kajian mendedahkan bahawa TSB dapat digunakan untuk memperbaiki kualiti tanah seperti daya tahan air dan kandungan nutrien, sekaligus menunjukkan pontesinya sebagai pembaikpulih tanah.

 

Kata kunci: penguahsuaian kimia, kajian pertumbuhan tumbuhan, bio-arang, pembaikpulih tanah, Metroxylon sagu Rottb

 

References

1.      Lim, L.W. K., Chung, H. H., Hussain, H. and Bujang, K. (2019). Sago palm (Metroxylon sagu Rottb.): Now and beyond. Pertanika Journal Tropical Agricultural Science, 42(2): 435-451.

2.      Ehara, H., Toyoda, Y. and Johnson, D.V. (2018). Sago palm: Multiple contributions to food security and sustainable livelihoods. In sago palm: multiple contributions to food security and sustainable livelihoods. Springer, Singapore.

3.      Jong, F. S. (2018). An Overview of Sago Industry Development, 1980s–2015. In: Ehara H, Toyoda Y, Johnson D. (eds) Sago Palm. Springer, Singapore.

4.      Singhal, R. S., Kennedy, J. F. and Gopalakrishnan, S. M. (2017). Industrial production, processing, and utilization of sago palm-derived products. Carbohydrate Polymer, 72: 1-20.

5.      Rasyid, T. H., Kusumawaty, Y. and Hadi, S. (2020) The utilization of sago waste: prospect and challenges. IOP Conference Series: Earth and Environmental Science, 415: 12-23.

6.      Piash, M. I., Hossain, M. F. and Zakia, P. (2019). Effect of biochar and fertilizer application on the growth and nutrient accumulation of rice and vegetable in two contrast soils. Acta Scienctific Agriculture, 3(2): 74-83.

7.      Carter, S., Shackley, S., Sohi, S., Suy, T. B. and Haefele, S. (2013). The impact of biochar application on soil properties and plant growth of pot grown lettuce (Lactuca sativa) and cabbage (Brassica chinensis). Agronomy, 3: 404-418.

8.      Bayu, D., Tadesse, M. and Amsalu, N. (2016). Effect of biochar on soil properties and lead (Pb) availability in a military camp in South West Ethiopia. African Journal of Environmental Science and Technology, 10(3): 77-85.

9.      Sahin, O., Taskin, M. B., Kaya, E. C. and Gunes, A. (2017). Effect of acid modification of biochar on nutrient availability and maize growth in a calcareous soil. Soil Use and Management, 33: 447-456.

10.   Tan, I. A. W., Abdullah, M. O., Lim, L. L. P. and Yeo, T. H. C. (2017). Surface modification and characterization of coconut shell-based activated carbon subjected to acidic and alkaline treatments. Journal of Applied Science & Process Engineering, 4(2): 186-194.

11.   Alzaydien, A. S. (2016). Physical, chemical and adsorptive characteristics of local oak sawdust based activated carbons. Asian Journal of Scientific Research, 9(2): 45-56.

12.   Zhao, S. X., Ta, N. and Wang, X. D. (2017). Effect of temperature on the structural and physicochemical properties of biochar with apple tree branches as feedstock material. Energies, 10(9): 1293.

13.   Sukartono, W. H., Kusuma, Z. and Nugrobo, W. H. (2011). Soil fertility status , nutrient uptake , and maize (Zea mays L .) yield following biochar and cattle manure application on sandy soils of Lombok, Indonesia. Journal of Tropical Agriculture, 49(1-2): 47-52.

14.   Wisnubroto, E.I., Utomo, W.H. and Indrayatie, E.R. (2017). Residual effect of biochar on growth and yield of red chili (Capsicum annum L.). Journal of Advanced Agricultural Technologies 4(1): 28-31.

15.   Yamato, M., Okimori, Y., Wibowo, I. F., Anshori, S. and Ogawa, M. (2006). Effects of the application of charred bark of Acacia mangium on the yield of maize, cowpea and peanut, and soil chemical properties in South Sumatra, Indonesia. Soil Science and Plant Nutrition, 52(4): 489-495.

16.   Gondim, R. S., Muniz, C. R., Eduardo, C. and Lima, P. (2018). Explaining the water-holding capacity of biochar by scanning electron microscope images. Revista Caatinga, 31(4): 972-979.

17.   Berek, A. K. (2019). The potential of biochar as an acid soil amendment to support Indonesian food and energy security - A review. Tropical Agricultural Science, 42(2): 745-759.

18.   Tan, G., Xu, N., Xu, Y., Wang, H. and Sun, W. (2016). Sorption of mercury(II) and atrazine by biochar, modified biochars and biochar based activated carbon in aqueous solution. Bioresource Technology, 2016: 1-43.

19.   Wahi, R., Zuhaidi, N. F. Q., Yusof, Y., Jamel, J. and Kanakaraju, D. (2018). Chemically treated microwave biochar from sago bark waste. Proceedings of ISER 119th International Conference, Kuala Lumpur, Malaysia, 1st-2nd April 2018: 52–54.

20.   Hamzah, Z. and Shuhaimi, S. N. A. (2018). Biochar : effects on crop growth. IOP Conference Series: Earth and Environmental Science, 215: 1-8.

21.   Zhang, J. and You, C. (2013). Water holding capacity and absorption properties of wood chars. Energy & Fuels, 27: 2643-2648.

22.   Ahmad, N.F., Alias, A.B., Talib, N. and Rashid, Z. (2018). Characteristics of rice husk biochar blended with coal fly ash for potential sorption material. Malaysian Journal of Analytical Sciences, 22(2): 326-332.

23.   Estefan, G., Sommer, R. and Ryan, J. (2013). Methods of soil, plant, and water analysis: A manual for the West Asia and North Africa region (3rd  edition). International Center for Agricultural Research in the Dry Areas (ICARDA). Beirut, Lebanon.

24.   Hegde, G., Abdul Manaf, S. A., Kumar, A., Ali, G. A. M., Chong, K. F., Ngaini, Z. and Sharma, K. V. (2015). Biowaste sago bark based catalyst free carbon nanospheres: waste to wealth approach. American Chemical Society Sustainable Chemistry and Engineering, 3(9): 2247-2253.

25.   Ma, X., Zhou, B., Budai, A., Jeng, A., Hao, X., Wei, D., Zhang, Y. and Rasse, D. (2016). Study of biochar properties by scanning electron microscope-energy dispersive x-ray spectroscopy (SEM-EDX). Communications in Soil Science and Plant Analysis, 47(5): 593-601.

26.   Liang, H., Chen, L., Liu, G. and Zheng, H. (2016). Surface morphology properties of biochars produced from different feedstocks. Proceedings of the 2016 International Conference on Civil, Transfortation and Environment, pp. 1205-1208.

27.   Suárez, H. L., Alba N., A. A. and Barrera, Z. R. (2017). Morphological and physicochemical characterization of biochar produced by gasification of selected forestry species. Revista Facultad de Ingeniería, 26(46): 123-130.

28.   Palniandy, L. K., Yoon, L. W., Wong, W. Y., Yong, S. T. and Pang, M. M. (2019). Application of biochar derived from different types of biomass and treatment methods as a fuel source for direct carbon fuel cells. Energies, 12(2477): 1-15.

29.   Ibrahim, I., Tsubota, T., Hassan, M. A. and Andou, Y. (2021). Surface functionalization of biochar from oil palm empty fruit bunch through hydrothermal process. Processe, 9(149): 1-14.

30.   Varela, M. O., Rivera, E. B., Huang, W. J., Chien, C. C. and Wang, Y. M. (2013). Agronomic properties and characterization of rice husk and wood biochars and their effect on the growth of water spinach in a field test. Journal of Soil Science and Plant Nutrition, 13(2): 251–266.

31.   Prasad, M., Chrysargyris, A., McDaniel, N., Kavanagh, A., Gruda, N. S. and Tzortzakis, N. (2019). Plant nutrient availability and pH of biochars and their fractions, with the possible use as a component in a growing media. Agronomy, 10(10): 1-17.

32.   Li, L., Liu, S. and Liu, J. (2011). Surface modification of coconut shell based activated carbon for the improvement of hydrophobic VOC removal, Journal of Hazardous Materials, 192(2): 683-690.

33.   Lu, S., Sun, F. and Zong, Y. (2014). Catena effect of rice husk biochar and coal fly ash on some physical properties of expansive clayey soil (Vertisol). Catena, 114: 37-44.

34.   Batista, E. M. C. C., Shultz, J., Matos, T. T. S., Fornari, M. R., Ferreira, T. M., Szpoganicz, B., De Freitas, R. A. and Mangrich, A. S. (2018). Effect of surface and porosity of biochar on water holding capacity aiming indirectly at preservation of the Amazon biome. Scientific Reports, 8(1): 1-9.

35.   Mukherjee, A. and Lal, R. (2013). Biochar impacts on soil physical properties and greenhouse gas emissions. Agronomy, 3(2): 313-339.

36.   Southavong, S., Preston, T. R. and van Man, N. (2012). Effect of biochar and biodigester effluent on growth of water spinach (Ipomoea aquatica) and soil fertility. Livestock Research for Rural Development, 24(2): 1-15.

37.   Pühringer, H. (2016). Effects of different biochar application rates on soil fertility and soil water retention in on-farm experiments on smallholder farms in Kenya. In Department of Soil and Environment, Swedish University of Agricultural Sciences.

38.   Gunamantha, I. M. and Widana, G. A. B. (2018). Characterization the potential of biochar from cow and pig manure for geoecology application. International Conference Series:Earth and Environmental Science, 131(012055) :1-6.

39.   Zhao, S. X. Z., Ta, N. and Wang, X. D. (2017). Effect of temperature on the structural and physicochemical properties of biochar with apple tree braches as feedstock material.  Energies, 10(1293): 1-15.

40.   Meri, N. H., Alias, A. B., Talib, N., Rashid, Z. A. and Ghani, W. A. (2018). Effect of chemical washing pre-treatment of empty fruit bunch (EFB) biochar on characterization of hydrogel biochar composite as bioadsorbent. IOP Conference Series: Materials Science and Engineering, 358: 1–7

41.   Zhao, B., O’Connor, D., Shen, Z., Tsang, D. C. W., Rinklebe, J. and Hou, D. (2020). Sulfur-modified biochar as a soil amendment to stabilize mercury pollution: An accelerated simulation of long-term aging effects. Environmental Pollution, 264: 114687.

42.   Ndor, E., Ogara, J. I., Bako, D. A. and Osuagbalande, J. A. (2016). Effect of biochar on macronutrients release and plant growth on degraded soil of Lafia, Nasarawa State, Nigeria. Asian Research Journal of Agriculture, 2(3): 1–8.

43.   Godwin, P. M., Pan, Y., Xiao, H. and Afzal, M. T. (2019). Progress in preparation and application of modified biochar for improving heavy metal ion removal from wastewater. Journal of Bioresources and Bioproducts, 4(1): 31-42.

44.   Figuerado, N. A., Costa, L. M., Melo, L. C. A., Siebeneichlerd, E. A. and Tronto, J. (2017). Characterization of biochars from different sources and evaluation of release of nutrients and contaminants. Revista Ciencia Agronomica, 48(3): 1–10.

45.   Tomczyk, A., Sokołowska, Z. and Boguta, P. (2020). Biochar physicochemical properties: Pyrolysis temperature and feedstock kind effects. Reviews in Environmental Science and Biotechnology, 19(1): 191-215.

46.   Ghani, W.A., Mohd, A., Silva, S, G., Bachmann, R.T., Taufiq, Y.H., Rashid, U. and Al-Muhtaseb, A. H. (2013). Biochar production from waste rubber-wood-sawdust and its potential use in C sequestration: Chemical and physical characterization. Industrial Crops & Products, 44: 18-24.

47.   Liu, Y., He, Z. and Uchimiya, M. (2015). Comparison of biochar formation from various agricultural by-products Using FTIR spectroscopy, Modern Applied Science,  9(4): 246-253.

48.   Ding, A. Y., Liu, Y., Liu, S., Huang, X. and Li, Z. (2017). Potential benefits from biochar application for agricultural use: A review. Pedosphere: An International Journal, 2017: 1-20.

49. Singh, B., Dolk, M. M., Shen, Q. and Arbestain, M. C. (2017). Biochar: A guide to analytical methods chapter 3 biochar pH, electrical conductivity and liming potential. CSIRO Publishing. Access from https://biochar-international.org/wpcontent/uploads/2019/11/2017_Biochar_pH_electrical_conductivity_ and_liming_potential_Singhetal.pdf

50.   Novak, J. M., Busscher, W. J., Laird, D. L., Ahmedna, M., Watts, D. W. and Niandou, M. A. S. (2009). Impact of biochar amendment on fertility of a southeastern coastal plain soil. Soil Science, 174(2): 105-112.

51.   Karimi, A., Moezzi, A., Chorom, M. and Enayatizamir, N. (2019). Application of biochar changed the status of nutrients and biological activity in a calcareous soil. Journal of Soil Science and Plant Nutrition. (20): 450-459.

52.   Hussain, M., Farooq, M., Nawaz, A., Al-Sadi, A. M., Solaiman, Z. M., Alghamdi, S. S., Ammara, U., Ok, Y. S. and Siddique, K. H. M. (2017). Biochar for crop production: potential benefits and risks. Journal of Soils and Sediments, 17(3): 685-716.

53.   Abdul, N. F. and Abdul, N. S. (2017). Microbial & biochemical technology the effect of biochar application on nutrient availability of soil planted with MR219. Journal of Microbial & Biochemical Technology, 9(2): 583–586.

54.   Mukhti, G. (2014). Heavy metal stress in plants. International Journal Advance Residual, 2(6): 1043-1055.

55.   Ducic, T. and Polle, A. (2005). Transport and detoxification of manganese and copper in plants. Brazillian Journal of Plant Physiology, 17(1): 1-16.

56.   Salmani, M. S., Khorsandi, F., Yasrebi, J. and Karimian, N. (2014). Biochar effects on copper availability and uptake by sunflower in a copper contaminated calcareous soil. International Journal of Plant, Animal and Environmental Sciences, 4(3): 389-394.