Malaysian Journal of Analytical Sciences Vol 25 No 4 (2021): 596 - 604

 

 

 

 

PRODUCTION OF BIODIESEL FROM WASTE COOKING OIL USING POTASSIUM HYDROXIDE SUPPORTED ON ALUMINA CATALYST 

 

(Penghasilan Biodiesel daripada Minyak Masak Terpakai Menggunakan Kalium Hidroksida Disokong oleh Mangkin Alumina)

 

Shahida Hanum Kamarullah*, Zainal Kifli Abdul Razak, Norshahidatul Akmar Mohd Shohaimi, Nailul Amal Zakariah

 

Faculty of Applied Sciences,

Universiti Teknologi MARA Pahang, Jengka Campus, 26400 Bandar Tun Abdul Razak Jengka, Pahang, Malaysia

 

*Corresponding author:  shahidahanum@uitm.edu.my

 

 

Received:  19 May 2021; Accepted: 26 July 2021; Published:  29 August 2021

 

 

Abstract

In this study, waste cooking oil (WCO) was used to produce biodiesel using KOH supported on alumina (KOH/Al2O3) as the catalyst. Three parameters were studied to find the optimum conditions which are catalyst loading, reaction time and the reusability of the catalyst. Al2O3 was impregnated with KOH and characterized using thermogravimetric analyzer (TGA) before the catalyst was calcined at 700 ˚C for 3 hours. The reaction was refluxed with constant conditions at the temperature of 65 ˚C, 10% of KOH-Al2O3, and methanol to oil ratio of 12:1 for 3 hours. The reaction time was studied using optimum catalyst loading which was 7 wt.% of catalyst amount and the reaction varied from 1-hour to 4-hour reaction. The highest yield of biodiesel obtained was 73.7% in 2 hours of reaction. At the end of the study, the reusability of the catalyst was studied. Three cycles of reaction were done using the used catalyst from the previous 2-hours reaction of yield determination and the result found a decreasing pattern of yield after 4 cycles of reaction. Hence, the optimal conditions for this catalyst were reaction temperature of 65 ˚C, 10% of KOH-Al2O3, methanol to oil ratio of 12:1, and 7 wt.% of catalyst loading at 2 hours of reaction. The highest yield of biodiesel was 73.7%.

 

Keywords:  potassium hydroxide supported on alumina, biodiesel, waste cooking oil, transesterification

 

Abstrak

Dalam kajian ini, sisa minyak masak (WCO) digunakan untuk menghasilkan biodiesel menggunakan kalium hidroksida yang disalutkan atas sokongan alumina (KOH/Al2O3) sebagai mangkin. Tiga parameter telah dikaji untuk mencari keadaan optimum iaitu berat mangkin digunakan, masa tindak balas dan kebolehgunaan semula mangkin. KOH telah diintegrasikan dengan Al2O3 dan diuji menggunakan penganalisis termogravimetrik (TGA) sebelum mangkin itu dibakar pada suhu 700 ˚C selama 3 jam. Tindak balas itu di refluks dalam keadaan malar pada suhu 65 ± 2 ˚C, 10% KOH-Al2O3, nisbah metanol kepada minyak 12:1 selama 3 jam. Waktu tindak balas dikaji menggunakan mangkin optimum iaitu 7 wt.% dan tindak balasnya di ubah dari 1-4 jam dan hasil tertinggi diperolehi adalah 73.3% pada tindak balas 2 jam. Pada akhir kajian ini, kebolehgunaan semula mangkin telah dikaji. 3 kitaran tindak balas telah dilakukan menggunakan mangkin yang telah digunakan untuk tindak balas sebelumnya semasa penentuan hasil untuk 2 jam dan hasil kajian mendapati corak hasil biodiesel menurun selepas 4 kitaran tindak balas. Oleh itu, keadaan optimum untuk mangkin ini ialah suhu tindak balas pada suhu 65 ˚C, 10% KOH-Al2O3, nisbah metanol kepada minyak 12:1, 7 wt.% jumlah mangkin pada masa tindak balas jam dan hasil tertinggi biodiesel ialah 73.7%.

 

Kata kunci:  kalium hidroksida, biodiesel, minyak masak terpakai, transesterifikasi

 

References

1.      Alkabbashi, A. N., Alam, M. Z., Mirghani, M. E. S. and Al-Fusaiel, A. M. A. (2009). Biodiesel production from crude palm oil by transesterification process. Journal of Applied Sciences, 9: 3166-3170.

2.   Aqliliriana, C. M., Ernee, N., M. and Irmawati, R. (2016). Preparation and characterization of modified calcium oxide from natural sources and their application in the transesterification of palm oil. International Journal of Scientific & Technology Research, 4(11): 168-175.

3.      Noiroj, K., Intarapong, P., Luengnaruemitchai, A. and Jai-In, S. (2009). A comparative study of KOH/Al2O3 and KOH/NaY catalysts for biodiesel production via transesterification from palm oil. Renewable Energy, 34, 1145-1150.

4.      Sulaiman, S. and Ramli, N. S. (2017). Biodiesel production from palm oil using KOH supported polyvinyl alcohol as the catalyst. Energy Sources, 39(18): 1948-1953.

5.      Ilgen, O. G. and Akin, A. S. N. U. (2009). Development of alumina supported alkaline catalysts used for biodiesel production. Turkish Journal Chemistry, 33: 281-287.

6.      Keera, S. T., Sabagh, S. M. E. and Taman, A. R. (2018). Castor oil biodiesel production and optimization. Egyptian Journal of Petrol, 27: 979-984.

7.      Ghasemi, M. and Molaei Dehkordi, A. (2014). Transesterification of waste cooking oil to biodiesel using KOH/γ-Al2O3 catalyst in a new two-impinging-jets reactor. Industrial & Engineering Chemistry Research, 53(31): 12238-12248.

8.      Taslim, Andika Sinaga, B., Nathalia Sihaloho, M., Iriany, and Bani, O. (2019). Biodiesel synthesis from waste cooking oil using heterogeneous catalyst from corncob ash impregnated with KOH. Journal of Physics: Conference Series, 1175: 012281.

9.      Ma, G., Hu, W., Pei, H., Jiang, L., Ji, Y. and Mu, R. (2015). Study of KOH/Al2O3 as heterogeneous catalyst for biodiesel production via in situ transesterification from microalgae. Environmental Technology, 36:5, 622-627.

10.   Jitputti, J., Kitiyanan, B. and Rangsunvigit, P. (2006). Transesterification of crude palm kernel oil and crude coconut oil by different solid catalysts. Chemical Engineering Journal, 116: 61–6.

11.   Renganathan, S. V., Narashimhan, S. L., and Muthukumar, K. (2008). An overview of enzymatic production of biodiesel. Bioresource Technology, 99: 3975-3981.

12.   Zhang, J., Liu, J. and Ma, H. (2012). Esterification of free fatty acids in Zanthoxylum bungeanum seed oil for biodiesel production by stannic chloride. Journal American Oil Chemical Society, 89:1647-1653.

13.   Zhang, L., Wu, H. T. and Yang, F. X. (2015). Evaluation of Soxhlet extractor for one-step biodiesel production from Zanthoxylum bungeanum seeds. Fuel Process Technology, 131: 452–457.

14.   Modiba, E., Enweremadu, C., and Rutto, H. (2014). Production of biodiesel from waste vegetable oil using impregnated diatomite as heterogeneous catalyst. Chinese Journal of Chemical Engineering, 2014: 1-9.

15.   Roschat, W., Siritanon, T., Yoosuk, B., and Promarak, V. (2016). Biodiesel production from palm oil using hydrated lime-derived CaO as a low-cost basic heterogeneous catalyst. Energy Conversion and Management, 108: 459-467.

16.   Kansedo, J., Lee, K. T. and Bhatia, S. (2009). Biodiesel production from palm oil via heterogeneous transesterification. Biomass and Bioenergy, 33: 271-276.

17.   Buasri, A., Chaiyut, N., Loryuenyong, V., Rodklum, C., Chaikwan, T. and Kumphan, N. (2012). Continuous process for biodiesel production in packed bed reactor from waste frying oil using potassium hydroxide supported on Jatropha curcas fruit shell as solid catalyst. Applied Science, 2: 641-653.

18.   Refaat, A. A. (2010). Different techniques for the production of biodiesel from waste vegetable oil. International Journal of Environment, Science & Technology, 7(1): 183-213.

19.   Uprety, B. K., Chaiwong, W., Ewelike, C. and Rakshit, S. K. (2016). Biodiesel production using heterogeneous catalysts including wood ash and the importance of enhancing byproduct glycerol purity. Energy Conversion and Management, 115: 191-199.

20.   Shohaimi, N. A. M., Bakar, W. A. W. A. and Jaafar, J. (2014). Catalytic neutralization of acidic crude oil utilizing ammonia in ethylene glycol basic solution. Journal of Industrial and Engineering Chemistry, 20(4): 2086-2094.

21.   Shohaimi, N. A. M., and Marodzi, F. N. S. (2018). Transesterification of waste cooking oil in biodiesel production utilizing CaO/Al2O3 heterogeneous catalyst. Malaysian Journal of Analytical Sciences, 22(1): 157-165.

22.   May, C. Y. (2004). Transesterification of palm oil: Effect of reaction parameters. Journal of Oil Palm Research, 16(2): 1-11.

23.   Mahesh, S. E., Ramanathan, A., S.Begum, K. M. M., and Narayanan, A. (2015). Biodiesel production from waste cooking oil using KBr impregnated CaO as catalyst. Energy Conversion and Management, 91: 442-450.

24.   Maneerung, T., Kawi, S., Dai, Y. and Wang, C.-H. (2016). Sustainable biodiesel production via transesterification of waste cooking oil by using CaO catalysts prepared from chicken manure. Energy Conversion and Management, 123: 487-497.

25.   Daniyan, A., Adeodu, A. O., Dada, O. M., and Adewumi, D. F. (2015). Effect of reaction time on biodiesel yield. Journal of Bioprocessing and Chemical Engineering, 3(2): 1-4.

26.   Madhu, A., Garima, C., Chaurasia, S. P. and Kailash, S. (2012). Study of catalytic behavior of KOH as homogeneous and heterogeneous catalyst for biodiesel production. Journal of the Taiwan Institute of Chemical Engineers, 43: 89-94.