Malaysian
Journal of Analytical Sciences Vol 25 No 4
(2021): 596 - 604
PRODUCTION
OF BIODIESEL FROM WASTE COOKING OIL USING POTASSIUM HYDROXIDE SUPPORTED ON
ALUMINA CATALYST
(Penghasilan
Biodiesel daripada Minyak Masak Terpakai Menggunakan Kalium Hidroksida Disokong
oleh Mangkin Alumina)
Shahida
Hanum Kamarullah*, Zainal Kifli Abdul Razak, Norshahidatul Akmar Mohd Shohaimi,
Nailul Amal Zakariah
Faculty of Applied Sciences,
Universiti Teknologi MARA Pahang, Jengka
Campus, 26400 Bandar Tun Abdul Razak Jengka, Pahang, Malaysia
*Corresponding author: shahidahanum@uitm.edu.my
Received: 19 May 2021; Accepted: 26 July 2021;
Published: 29 August 2021
Abstract
In this study, waste cooking oil (WCO) was used
to produce biodiesel using KOH supported on alumina (KOH/Al2O3)
as the catalyst. Three parameters were studied to find the optimum conditions
which are catalyst loading, reaction time and the reusability of the catalyst.
Al2O3 was impregnated with KOH and characterized using
thermogravimetric analyzer (TGA) before the catalyst was calcined at 700
˚C for 3 hours. The reaction was refluxed with constant conditions at the
temperature of 65 ˚C, 10% of KOH-Al2O3, and methanol
to oil ratio of 12:1 for 3 hours. The reaction time was studied using optimum
catalyst loading which was 7 wt.% of catalyst amount and the reaction varied
from 1-hour to 4-hour reaction. The highest yield of biodiesel obtained was
73.7% in 2 hours of reaction. At the end of the study, the reusability of the
catalyst was studied. Three cycles of reaction were done using the used
catalyst from the previous 2-hours reaction of yield determination and the
result found a decreasing pattern of yield after 4 cycles of reaction. Hence,
the optimal conditions for this catalyst were reaction temperature of 65
˚C, 10% of KOH-Al2O3, methanol to oil ratio of 12:1,
and 7 wt.% of catalyst loading at 2 hours of reaction. The highest yield of
biodiesel was 73.7%.
Keywords: potassium hydroxide supported on alumina,
biodiesel, waste cooking oil, transesterification
Abstrak
Dalam
kajian ini, sisa minyak masak (WCO) digunakan untuk menghasilkan biodiesel
menggunakan kalium hidroksida yang disalutkan atas sokongan alumina (KOH/Al2O3)
sebagai mangkin. Tiga parameter telah dikaji untuk mencari keadaan optimum
iaitu berat mangkin digunakan, masa tindak balas dan kebolehgunaan semula
mangkin. KOH telah diintegrasikan dengan Al2O3 dan diuji
menggunakan penganalisis termogravimetrik (TGA) sebelum mangkin itu dibakar
pada suhu 700 ˚C selama 3 jam. Tindak balas itu di refluks dalam keadaan
malar pada suhu 65 ± 2 ˚C, 10% KOH-Al2O3, nisbah
metanol kepada minyak 12:1 selama 3 jam. Waktu tindak balas dikaji menggunakan
mangkin optimum iaitu 7 wt.% dan tindak balasnya di ubah dari 1-4 jam dan hasil
tertinggi diperolehi adalah 73.3% pada tindak balas 2 jam. Pada akhir kajian
ini, kebolehgunaan semula mangkin telah dikaji. 3 kitaran tindak balas telah
dilakukan menggunakan mangkin yang telah digunakan untuk tindak balas
sebelumnya semasa penentuan hasil untuk 2 jam dan hasil kajian mendapati corak
hasil biodiesel menurun selepas 4 kitaran tindak balas. Oleh itu, keadaan
optimum untuk mangkin ini ialah suhu tindak balas pada suhu 65 ˚C, 10%
KOH-Al2O3, nisbah metanol kepada minyak 12:1, 7 wt.%
jumlah mangkin pada masa tindak balas jam dan hasil tertinggi biodiesel ialah
73.7%.
Kata kunci: kalium
hidroksida, biodiesel, minyak masak terpakai, transesterifikasi
References
1.
Alkabbashi, A. N., Alam,
M. Z., Mirghani, M. E. S. and Al-Fusaiel, A. M. A. (2009). Biodiesel production
from crude palm oil by transesterification process. Journal of Applied
Sciences, 9: 3166-3170.
2.
Aqliliriana, C. M.,
Ernee, N., M. and Irmawati, R. (2016). Preparation and characterization of
modified calcium oxide from natural sources and their application in the
transesterification of palm oil. International Journal of Scientific &
Technology Research, 4(11): 168-175.
3.
Noiroj, K., Intarapong,
P., Luengnaruemitchai, A. and Jai-In, S. (2009). A comparative study of KOH/Al2O3
and KOH/NaY catalysts for biodiesel production via transesterification from
palm oil. Renewable Energy, 34, 1145-1150.
4.
Sulaiman, S. and Ramli,
N. S. (2017). Biodiesel production from palm oil using KOH supported polyvinyl
alcohol as the catalyst. Energy Sources, 39(18): 1948-1953.
5.
Ilgen, O. G. and Akin, A.
S. N. U. (2009). Development of alumina supported alkaline catalysts used for
biodiesel production. Turkish Journal Chemistry, 33: 281-287.
6.
Keera, S. T., Sabagh, S.
M. E. and Taman, A. R. (2018). Castor oil biodiesel production and
optimization. Egyptian Journal of Petrol, 27: 979-984.
7.
Ghasemi, M. and Molaei
Dehkordi, A. (2014). Transesterification of waste cooking oil to biodiesel
using KOH/γ-Al2O3 catalyst in a new
two-impinging-jets reactor. Industrial & Engineering Chemistry Research,
53(31): 12238-12248.
8.
Taslim, Andika Sinaga,
B., Nathalia Sihaloho, M., Iriany, and Bani, O. (2019). Biodiesel synthesis
from waste cooking oil using heterogeneous catalyst from corncob ash
impregnated with KOH. Journal of Physics: Conference Series, 1175:
012281.
9.
Ma, G., Hu, W., Pei, H.,
Jiang, L., Ji, Y. and Mu, R. (2015). Study of KOH/Al2O3
as heterogeneous catalyst for biodiesel production via in situ
transesterification from microalgae. Environmental Technology, 36:5,
622-627.
10.
Jitputti, J.,
Kitiyanan, B. and Rangsunvigit, P. (2006). Transesterification of crude
palm kernel oil and crude coconut oil by different solid catalysts. Chemical
Engineering Journal, 116: 61–6.
11.
Renganathan, S. V.,
Narashimhan, S. L., and Muthukumar, K. (2008). An overview of enzymatic
production of biodiesel. Bioresource Technology, 99: 3975-3981.
12.
Zhang, J., Liu, J. and
Ma, H. (2012). Esterification of free fatty acids in Zanthoxylum bungeanum
seed oil for biodiesel production by stannic chloride. Journal American Oil
Chemical Society, 89:1647-1653.
13.
Zhang, L., Wu, H. T. and
Yang, F. X. (2015). Evaluation of Soxhlet extractor for one-step biodiesel
production from Zanthoxylum bungeanum seeds. Fuel Process Technology,
131: 452–457.
14.
Modiba, E., Enweremadu,
C., and Rutto, H. (2014). Production of biodiesel from waste vegetable oil
using impregnated diatomite as heterogeneous catalyst. Chinese Journal of
Chemical Engineering, 2014: 1-9.
15.
Roschat, W., Siritanon,
T., Yoosuk, B., and Promarak, V. (2016). Biodiesel production from palm oil
using hydrated lime-derived CaO as a low-cost basic heterogeneous catalyst. Energy
Conversion and Management, 108: 459-467.
16.
Kansedo, J., Lee, K. T.
and Bhatia, S. (2009). Biodiesel production from palm oil via heterogeneous
transesterification. Biomass and Bioenergy, 33: 271-276.
17.
Buasri, A., Chaiyut, N.,
Loryuenyong, V., Rodklum, C., Chaikwan, T. and Kumphan, N. (2012). Continuous
process for biodiesel production in packed bed reactor from waste frying oil
using potassium hydroxide supported on Jatropha curcas fruit shell as
solid catalyst. Applied Science, 2: 641-653.
18.
Refaat, A. A. (2010).
Different techniques for the production of biodiesel from waste vegetable oil. International
Journal of Environment, Science & Technology, 7(1): 183-213.
19.
Uprety, B. K., Chaiwong,
W., Ewelike, C. and Rakshit, S. K. (2016). Biodiesel production using
heterogeneous catalysts including wood ash and the importance of enhancing
byproduct glycerol purity. Energy Conversion and Management, 115:
191-199.
20.
Shohaimi, N. A. M.,
Bakar, W. A. W. A. and Jaafar, J. (2014). Catalytic neutralization of acidic
crude oil utilizing ammonia in ethylene glycol basic solution. Journal of
Industrial and Engineering Chemistry, 20(4): 2086-2094.
21.
Shohaimi, N. A. M., and
Marodzi, F. N. S. (2018). Transesterification of waste cooking oil in biodiesel
production utilizing CaO/Al2O3 heterogeneous catalyst. Malaysian
Journal of Analytical Sciences, 22(1): 157-165.
22.
May, C. Y. (2004).
Transesterification of palm oil: Effect of reaction parameters. Journal of
Oil Palm Research, 16(2): 1-11.
23.
Mahesh, S. E.,
Ramanathan, A., S.Begum, K. M. M., and Narayanan, A. (2015). Biodiesel
production from waste cooking oil using KBr impregnated CaO as catalyst. Energy
Conversion and Management, 91: 442-450.
24.
Maneerung, T., Kawi, S.,
Dai, Y. and Wang, C.-H. (2016). Sustainable biodiesel production via
transesterification of waste cooking oil by using CaO catalysts prepared from
chicken manure. Energy Conversion and Management, 123: 487-497.
25.
Daniyan, A., Adeodu, A.
O., Dada, O. M., and Adewumi, D. F. (2015). Effect of reaction time on
biodiesel yield. Journal of Bioprocessing and Chemical Engineering,
3(2): 1-4.
26.
Madhu, A., Garima, C.,
Chaurasia, S. P. and Kailash, S. (2012). Study of catalytic behavior of KOH as
homogeneous and heterogeneous catalyst for biodiesel production. Journal of
the Taiwan Institute of Chemical Engineers, 43: 89-94.