Malaysian
Journal of Analytical Sciences Vol 25 No 2
(2021): 234 - 242
FORMATION, MORPHOLOGICAL, MOLECULAR INTERACTION AND IONIC CONDUCTIVITY OF
SiO2 FILLED PMMA/PEG ELECTROLYTES
(Pembentukan,
Morfologıkal, Interaksı Molekul dan Kekonduksıan Ionık
Elektrolıt PMMA/PEG Terısı SiO2)
Nurul Dhabitah Basri1,
Famiza Abdul Latif1,2, Ruhani Ibrahim1,2, Fazni Susila
Abdul Ghani1,2, Sharil Fadli Mohamad Zamri1,2*
1Faculty
of Applied Sciences
2Synthesis
and Application of Conducting Polymer Research Group
Universiti
Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia
*Corresponding
author: sharil7240@uitm.edu.my
Received: 20 November 2020; Accepted: 16 February 2021;
Published: 25 April 2021
Abstract
In this study, silicon dioxide (SiO2) was used
as a filler in the preparation of polymer electrolytes (PEs) containing
poly(methyl methacrylate) (PMMA) and poly(ethylene glycol) (PEG). The role of
SiO2 as a filler in the formation, morphology molecular interaction,
and ionic conductivity of PMMA/PEG electrolytes films was investigated. PMMA/PEG
blends were doped with lithium tetrafluoroborate (LiBF4) with
incorporation of various weight percentages of SiO2 as a filler. The
samples were prepared via the solvent casting method with tetrahydrofuran (THF)
as a solvent. PMMA/PEG electrolyte films were
characterised using Fourier transform infrared (FTIR) spectroscopy, optical
microscopy (OM), and electron impedance spectroscopy (EIS). It was observed
that the opacity of the PE films increased as the weight percentage of SiO2
increased. Meanwhile, it was noted that the intensity of FTIR peaks at 1723 cm-1, 1386 cm-1, and 1239 cm-1
which corresponded to C=O and O-CH3 of PMMA, and C-O-C of
PEG, respectively, decreased with increased SiO2 weight percentage.
Furthermore, phase separation was observed in OM analysis between PMMA and PEG
in the PMMA/PEG blends. Interestingly, the dispersion of PEG-rich phase in the
polymer films increased with increased SiO2 weight percentage. EIS
analysis showed that the ionic conductivity of PMMA/PEG
electrolyte films increased with increased SiO2 weight
percentage up to 3% with maximum ionic conductivity of 5.55 x 10-6 S
cm-1. However, the ionic conductivity of PMMA/PEG electrolyte films
decreased when the weight percentage of SiO2 increased beyond 3%.
Keywords: lithium tetrafluoroborate,
poly(ethylene glycol), poly(methyl methacrylate), silicon dioxide, polymer
electrolytes
Abstrak
Dalam kajian ini, silikon dioksida (SiO2)
telah digunakan sebagai pengisi dalam penyediaan elektrolit polimer (Pes) yang
mengandungi poli(metil metakrilat) (PMMA) dan poli(etilena
glikol). Peranan SiO2 sebagai pengisi dalam pembentukan,
morfologikal, interaksi molekul, dan kekonduksian ionik elektrolit PMMA/PEG
filem telah dikaji. Adunan PMMA/PEG telah dicampurkan dengan litium
tetrafluoroborat (LiBF4) dengan tambahan pelbagai peratusan berat
SiO2 sebagai pengisi. Sampel telah disediakan dengan kaedah
larutan tuang dengan tetrahidrofuran (THF) sebagai pelarut. Filem
elektrolit PMMA/PEG telah dicirikan menggunakan spektroskopi inframerah
transformasi Fourier (FTIR), mikroskop optikal (OM) dan spektroskopi elektron
impedan (EIS). Pemerhatian menunjukkan bahawa kelegapan filem PE meningkat
dengan peratusan berat SiO2 meningkat. Sementara
itu, diperhatikan bahawa keamatan puncak FTIR pada 1723 cm-1,
1386 cm-1 dan 1239 cm-1 sepadan C=O dan O-CH3
bagi PMMA, dan C-O-C bagi PEG berkurang dengan peratusan berat SiO2
meningkat. Selanjutnya, analisis OM menunjukkan bahawa terdapat fasa
pemisahan antara PMMA dan PEG dalam adunan PMMA/PEG. Menariknya, fasa serakan
PEG dalam filem polimer telah meningkat dengan peratusan berat SiO2 meningkat. Analisis
EIS menunjukkan bahawa kekonduksian ionik daripada filem telah meningkat dengan
penambahan peratusan berat SiO2 sehingga 3% dengan kekonduksian
ionik tertinggi 5.55 x 10-6 S cm-1. Walau
bagaimanapun, kekonduksian ionik filem telah menurun apabila peratusan SiO2
telah tambah melebihi 3%.
Kata kunci: litium
tetrafluoroborat, poli(etilena glikol), poli(metil metakrilat), silikon
dioksida, elektrolit polimer
References
1.
Aziz, S. B., Woo, T. J., Kadir, M. F. Z. and Ahmed, H. M.
(2018). A conceptual review on polymer electrolytes and ion transport models. Journal
of Science: Advanced Materials and Devices, 3: 1-17.
2.
Marcinek,
M., Syzdek, J., Marczewski, M., Piszcz, M., Niedzicki, L., Kalita, M. and
Wieczorek, W. (2015). Electrolytes for Li-ion transport – Review. Solid
State Ionics, 276: 107-126
3.
Mohd,
S., Zulazlan, A., Zulkifli, S., Akmal, M., Mainal, A., Subramanian, B. and
Sabirin, N. (2015). Polymer electrolyte liquid crystal system for improved
optical and electrical properties. European Polymer Journal, 66:
266-272.
4.
Xiao-Yuan,
Y., Xiao, M., Shuang-Jin, W., Qi-Qiang, Z. and Yue-Zhong, M. (2010).
Fabrication and characterization of PEO/PPC polymer electrolyte for lithium-ion
battery. Journal of Applied Polymer Science, 115(5): 2718-2722
5.
Wang,
A., Xu, H., Liu, X., Wang, S., Zhou, Q., Chen, J. and Zhang, L. (2017). High
electrochemical performances of solid nano-composite star polymer electrolytes
enhanced by different carbon nanomaterials. Composites Science and
Technology, 152: 68-75.
6.
Stephan,
A. M. (2006). Review on gel polymer electrolytes for lithium batteries. European
Polymer Journal, 42: 21-42.
7.
Ngai, K.
S., Ramesh, S., Ramesh, K. and Juan, J. C. (2018). Electrical, dielectric and
electrochemical characterization of novel poly(acrylic acid)-based polymer
electrolytes complexed with lithium tetrafluoroborate. Chemical Physics
Letters, 692: 19-27.
8.
Xiao,
W., Wang, Z., Zhang, Y., Fang, R., Yuan, Z., Miao, C. and Jiang, Y. (2018).
Enhanced performance of P(VDF-HFP)-based composite polymer electrolytes doped
with organic-inorganic hybrid particles PMMA-ZrO2 for lithium ion
batteries. Journal of Power Sources, 382: 128-134.
9.
Kumar,
S., Prajapati, G. K., Saroj, A. L. and Gupta, P. N. (2019). Structural,
electrical and dielectric studies of nano-composite polymer blend electrolyte
films based on (70–x) PVA–x PVP–NaI–SiO2. Physica B: Condensed
Matter, 554: 158-164.
10.
Ganesan,
S. V, Mothilal, K. K., Selvasekarapandian, S. and Ganesan, T. K. (2017).
Studies on conductivity, morphology and thermal stability of PMMA-PSAN based
Solid Polymer Electrolytes using SiO2 as nanofiller. International
Journal of ChemTech Research, 10(7): 55-65.
11.
Kuppu,
S. V., Jeyaraman, A. R., Guruviah, P. K. and Thambusamy, S. (2018). Preparation
and characterizations of PMMA-PVDF based polymer composite electrolyte
materials for dye sensitized solar cell. Current Applied Physics, 18(6):
619-625.
12.
Salman,
A. L. I. D., Jani, G. H. and Fatalla, A. A. (2017). Comparative study of the
effect of incorporating SiO2 nano-particles on properties of
polymethyl methacrylate denture bases. 10(3): 1525-1535.
13.
Vignarooban,
K., Dissanayake, M. A. K. L., Albinsson, I. and Mellander, B. (2014). Effect of
TiO2 nano-filler and EC plasticizer on electrical and thermal
properties of poly(ethylene oxide) (PEO) based solid polymer electrolytes. Solid
State Ionics, 266: 25-28.
14.
Ataollahi,
N., Ahmad, A., Hamzah, H., Rahman, M. Y. A. and Mohamed, N. S. (2015).
Comparative study of the properties of plasticized (PVDF-HFP)-MG49-LiBF4
blend polymer electrolytes. Russian Journal of Electrochemistry, 51(3):
227-235.
15.
Johan,
M. R., Shy, O. H., Ibrahim, S., Mohd Yassin, S. M. and Hui, T. Y. (2011).
Effects of Al2O3 nanofiller and EC plasticizer on the
ionic conductivity enhancement of solid PEO-LiCF3SO3
solid polymer electrolyte. Solid State Ionics, 196(1): 41-47.
16.
Sekhar,
P. C., Kumar, P. N. and Sharma, A. K. (2012). Effect of plasticizer on conductivity
and cell parameters of (PMMA+NaClO4) polymer electrolyte system. Journal
of Applied Physics, 2(4): 01-06.
17.
Das, S.
and Ghosh, A. (2015). Ionic conductivity and dielectric permittivity of
PEO-LiClO4 solid polymer electrolyte plasticized with propylene
carbonate. AIP Advances, 5(2): 1–9.
18.
Shukur,
M. F., Kadir, M. F. Z., Ahmad, Z. and Ithnin, R. (2012). Transport properties
of chitosan/PEO blend based proton conducting polymer electrolyte. Advanced
Materials Research, 488–489: 114-117.
19.
Ngai, K.
S., Ramesh, S., Ramesh, K., and Juan, J. C. (2016). A review of polymer
electrolytes: Fundamental, approaches and applications. Ionics, 22(8):
1259-1279.
20.
Shi, J.,
Yang, Y. and Shao, H. (2017). Co-polymerization and Blending based
PEO/PMMA/P(VDF-HFP) gel polymer electrolyte for rechargeable lithium metal
batteries. Journal of Membrane Science, 547: 1-10.
21.
Tiautit,
N., Puratane, C., Panpinit, S. and Saengsuwan, S. (2014). Effect of SiO2
and TiO2 nanoparticles on the performance of dye-sensitized solar
cells using PVDF-HFP/PVA gel electrolytes. 56: 378-385.
22.
Srivastava,
N. and Tiwari, T. (2009). New trends in polymer electrolytes a reviews. E-Polymers,
146: 1-17.
23.
Stephan,
A. M. and Nahm, K. S. (2006). Review on composite polymer electrolytes for
lithium batteries. Polymer, 47: 5952-5964.
24.
Kurc, B.
(2014). Precipitated silica as filler for polymer electrolyte based on
poly(acrylonitrile)/sulfolane. Journal of Solid State Electrochemistry,
18(7): 2035-2046.
25.
Zhu, A.,
Shi, Z., Cai, A., Zhao, F. and Liao, T. (2008). Synthesis of core-shell
PMMA-SiO2 nanoparticles with suspension-dispersion-polymerization in
an aqueous system and its effect on mechanical properties of PVC composites. Polymer
Testing, 27(5): 540-547.
26.
Cao, J.,
Wang, L., Shang, Y., Fang, M., Deng, L., Gao, J. and He, X. (2013).
Dispersibility of nano-TiO2 on performance of composite polymer
electrolytes for Li-ion batteries. Electrochimica Acta, 111: 674-679.
27.
Zhang,
R., Chen, Y. and Montazami, R. (2015). Ionic liquid-doped gel polymer
electrolyte for flexible lithium-ion polymer batteries. Materials, 2015:
2735-2748.
28.
Ramesh,
C. H., Reddy, M. J., Kumar, J. S. and Reddy, K. N. (2014). Structural and
transport properties of PVC blend PEG doped with Mg(ClO4)2
solid polymer electrolyte. AIP Conference Proceedings, 1391: 1389-1391.
29.
Mohamad
Zamri, S. F. and Abdul Latif, F. (2015). Effects of acid modified SiO2
on ionic conductivity and blend properties of LiBF4 doped PMMA/ENR
50 electrolytes. Advanced Materials Research, 1107: 187-193.
30.
Choudhary,
S. (2017). Dielectric dispersion and relaxations in (PVA-PEO)-ZnO polymer
nanocomposites. Physica B: Condensed Matter, 522: 48-56.
31.
Muchakayala,
R., Song, S., Wang, J., Fan, Y., Bengeppagari, M., Chen, J. and Tan, M. (2017).
Development and supercapacitor application of ionic liquid-incorporated gel
polymer electrolyte films. Journal of Industrial and Engineering Chemistry,
59: 79-89
32.
Cheng,
X., Pan, J., Zhao, Y., Liao, M. and Peng, H. (2018). Gel polymer electrolytes
for electrochemical energy storage. Advanced Energy Materials, 8(7):
1-16.
33.
Zamri,
S. F. M., and Latiff, F. A. (2013). SiO2 filler as interface
modifier in PMMA/ENR 50 electrolytes. Advanced Materials Research, 812:
120-124.
34.
Singh,
R., Bhattacharya, B., Rhee, H. and Singh, P. K. (2014). New biodegradable
polymer electrolyte for dye sensitized solar cell. International Journal of
Electrochemical Sciences, 9: 2620-2630.
35.
Sharma,
P., Kanchan, D. K., and Gondaliya, N. (2012). Effect of nano-filler on
structural and ionic transport properties of plasticized polymer electrolyte. Open
Journal of Organic Polymer Materials, 2(2): 38-44.
36.
Alias,
Y., Ling, I., and Kumutha, K. (2005). Structural and electrochemical
characteristics of 49% PMMA grafted polyisoprene-LiCF3SO3-PC
based polymer electrolytes. Ionics, 11(5–6): 414-417.
37.
Soydan,
A. M. and Akdeniz, R. (2017). Polymer electrolytes based on
borane/poly(ethylene glycol) methyl ether for lithium batteries. Journal of
Chemistry, 2017: 1-7.
38.
Sharil
Fadli, M. Z., Famiza, A. L., and Siti Izzati Husna, M. A. (2019). Morphology,
ionic-molecular interaction and ionic conductivity behavior of PMMA/ENR 50
electrolytes containing carboxylic acids modified SiO2 fillers. Key
Engineering Materials, 821: 419-425.
39.
Farheen,
S., and Mathad, R. D. (2015). Effect of nano filler on conductivity in
PEO-PMMA-LiClO4 polymer electrolyte. International Journal of
Advanced Science and Technology, 81: 49-52.
40.
Wang,
H., Li, H., Xue, B., Wang, Z., Meng, Q. and Chen, L. (2005). Solid-state
composite electrolyte Lil/3-hydroxypropionitrile/SiO2 for
dye-sensitized solar cells. Journal of the American Chemical Society, 127(17):
6394-6401.
41.
Yuan C.
Y., Chen S. Y., Tang J. C., Yang H. C. and Chen-Yang Y. W. (2006).
Physical and electrochemical properties of low molecular weight poly(ethylene
glycol)-bridged polysilsesquioxane organic–inorganic composite electrolytes via
sol–gel process. Journal of Applied Polymer Science, 116(5): 2658-2667.
42.
Sun, Z.,
Li, Y., Zhang, S., Shi, L., Wu, H., Bu, H. and Ding, S. (2019). G-C3N4
nanosheets enhanced solid polymer electrolytes with excellent electrochemical
performance, mechanical properties, and thermal stability. Journal of
Materials Chemistry A, 7(18): 11069-11076.
43.
Elmér,
A. M. and Jannasch, P. (2006). Solid electrolyte membranes from
semi-interpenetrating polymer networks of PEG-grafted polymethacrylates and
poly(methyl methacrylate). Solid State Ionics, 177(5–6): 573-579.
44.
Latif,
F., Mohamad Zamri, S. F., and Aziz, M. (2015). Anions effect on the electrical
properties of PMMA/ENR 50 blend electrolytes. Advanced Materials Research,
1107: 145-150.
45.
Silakul,
P. and Magaraphan, R. (2019). Polymer electrolyte developed from natural
rubber-polyacrylic acid cotrimethoxysilyl propyl methacrylate grafted fumed
silica and its application to dye sensitized solar cell. Polymer Composites,
40(1): 304-314.
46.
Ahmad,
A., Rahman, M. Y. A., Low, S. P. and Hamzah, H. (2011). Effect of LiBF4
salt concentration on the properties of plasticized MG49-TiO2 based
nanocomposite polymer electrolyte. ISRN Materials Science, 2011: 1-7.
47.
Zamri, S.
F. M., Latif, F. A., Ali, A. M. M., Ibrahim, R., Azuan, S. I. H. M.,
Kamaluddin, N., and Hadip, F. (2017). Exploration on effects of 15 nm SiO2
filler on miscibility, thermal stability and ionic conductivity of PMMA/ENR 50
electrolytes. AIP Conference Proceedings, 1809: 020049.