Malaysian Journal of Analytical Sciences Vol 25 No 2 (2021): 234 - 242

 

 

 

 

FORMATION, MORPHOLOGICAL, MOLECULAR INTERACTION AND IONIC CONDUCTIVITY OF SiO2 FILLED PMMA/PEG ELECTROLYTES

 

(Pembentukan, Morfologıkal, Interaksı Molekul dan Kekonduksıan Ionık Elektrolıt PMMA/PEG Terısı SiO2)

 

Nurul Dhabitah Basri1, Famiza Abdul Latif1,2, Ruhani Ibrahim1,2, Fazni Susila Abdul Ghani1,2, Sharil Fadli Mohamad Zamri1,2*

 

1Faculty of Applied Sciences

2Synthesis and Application of Conducting Polymer Research Group

Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia

 

*Corresponding author:  sharil7240@uitm.edu.my

 

 

Received: 20 November 2020; Accepted: 16 February 2021; Published: 25 April 2021

 

 

Abstract

In this study, silicon dioxide (SiO2) was used as a filler in the preparation of polymer electrolytes (PEs) containing poly(methyl methacrylate) (PMMA) and poly(ethylene glycol) (PEG). The role of SiO2 as a filler in the formation, morphology molecular interaction, and ionic conductivity of PMMA/PEG electrolytes films was investigated. PMMA/PEG blends were doped with lithium tetrafluoroborate (LiBF4) with incorporation of various weight percentages of SiO2 as a filler. The samples were prepared via the solvent casting method with tetrahydrofuran (THF) as a solvent. PMMA/PEG electrolyte films were characterised using Fourier transform infrared (FTIR) spectroscopy, optical microscopy (OM), and electron impedance spectroscopy (EIS). It was observed that the opacity of the PE films increased as the weight percentage of SiO2 increased. Meanwhile, it was noted that the intensity of FTIR peaks at 1723 cm-1, 1386 cm-1, and 1239 cm-1 which corresponded to C=O and O-CH3 of PMMA, and C-O-C of PEG, respectively, decreased with increased SiO2 weight percentage. Furthermore, phase separation was observed in OM analysis between PMMA and PEG in the PMMA/PEG blends. Interestingly, the dispersion of PEG-rich phase in the polymer films increased with increased SiO2 weight percentage. EIS analysis showed that the ionic conductivity of PMMA/PEG electrolyte films increased with increased SiO2 weight percentage up to 3% with maximum ionic conductivity of 5.55 x 10-6 S cm-1. However, the ionic conductivity of PMMA/PEG electrolyte films decreased when the weight percentage of SiO2 increased beyond 3%.

 

Keywords:  lithium tetrafluoroborate, poly(ethylene glycol), poly(methyl methacrylate), silicon dioxide, polymer electrolytes

 

Abstrak

Dalam kajian ini, silikon dioksida (SiO2) telah digunakan sebagai pengisi dalam penyediaan elektrolit polimer (Pes) yang mengandungi poli(metil metakrilat) (PMMA) dan poli(etilena glikol). Peranan SiO2 sebagai pengisi dalam pembentukan, morfologikal, interaksi molekul, dan kekonduksian ionik elektrolit PMMA/PEG filem telah dikaji. Adunan PMMA/PEG telah dicampurkan dengan litium tetrafluoroborat (LiBF4) dengan tambahan pelbagai peratusan berat SiO2 sebagai pengisi. Sampel telah disediakan dengan kaedah larutan tuang dengan tetrahidrofuran (THF) sebagai pelarut. Filem elektrolit PMMA/PEG telah dicirikan menggunakan spektroskopi inframerah transformasi Fourier (FTIR), mikroskop optikal (OM) dan spektroskopi elektron impedan (EIS). Pemerhatian menunjukkan bahawa kelegapan filem PE meningkat dengan peratusan berat SiO2 meningkat. Sementara itu, diperhatikan bahawa keamatan puncak FTIR pada 1723 cm-1, 1386 cm-1 dan 1239 cm-1 sepadan C=O dan O-CH3 bagi PMMA, dan C-O-C bagi PEG berkurang dengan peratusan berat SiO2 meningkat. Selanjutnya, analisis OM menunjukkan bahawa terdapat fasa pemisahan antara PMMA dan PEG dalam adunan PMMA/PEG. Menariknya, fasa serakan PEG dalam filem polimer telah meningkat dengan peratusan berat SiO2 meningkat. Analisis EIS menunjukkan bahawa kekonduksian ionik daripada filem telah meningkat dengan penambahan peratusan berat SiO2 sehingga 3% dengan kekonduksian ionik tertinggi 5.55 x 10-6 S cm-1. Walau bagaimanapun, kekonduksian ionik filem telah menurun apabila peratusan SiO2 telah tambah melebihi 3%. 

 

Kata kunci:  litium tetrafluoroborat, poli(etilena glikol), poli(metil metakrilat), silikon dioksida, elektrolit polimer

 

 

References

1.      Aziz, S. B., Woo, T. J., Kadir, M. F. Z. and Ahmed, H. M. (2018). A conceptual review on polymer electrolytes and ion transport models. Journal of Science: Advanced Materials and Devices, 3: 1-17.

2.      Marcinek, M., Syzdek, J., Marczewski, M., Piszcz, M., Niedzicki, L., Kalita, M. and Wieczorek, W. (2015). Electrolytes for Li-ion transport – Review. Solid State Ionics, 276: 107-126

3.      Mohd, S., Zulazlan, A., Zulkifli, S., Akmal, M., Mainal, A., Subramanian, B. and Sabirin, N. (2015). Polymer electrolyte liquid crystal system for improved optical and electrical properties. European Polymer Journal, 66: 266-272.

4.      Xiao-Yuan, Y., Xiao, M., Shuang-Jin, W., Qi-Qiang, Z. and Yue-Zhong, M. (2010). Fabrication and characterization of PEO/PPC polymer electrolyte for lithium-ion battery. Journal of Applied Polymer Science, 115(5): 2718-2722

5.      Wang, A., Xu, H., Liu, X., Wang, S., Zhou, Q., Chen, J. and Zhang, L. (2017). High electrochemical performances of solid nano-composite star polymer electrolytes enhanced by different carbon nanomaterials. Composites Science and Technology, 152: 68-75.

6.      Stephan, A. M. (2006). Review on gel polymer electrolytes for lithium batteries. European Polymer Journal, 42: 21-42.

7.      Ngai, K. S., Ramesh, S., Ramesh, K. and Juan, J. C. (2018). Electrical, dielectric and electrochemical characterization of novel poly(acrylic acid)-based polymer electrolytes complexed with lithium tetrafluoroborate. Chemical Physics Letters, 692: 19-27.

8.      Xiao, W., Wang, Z., Zhang, Y., Fang, R., Yuan, Z., Miao, C. and Jiang, Y. (2018). Enhanced performance of P(VDF-HFP)-based composite polymer electrolytes doped with organic-inorganic hybrid particles PMMA-ZrO2 for lithium ion batteries. Journal of Power Sources, 382: 128-134.

9.      Kumar, S., Prajapati, G. K., Saroj, A. L. and Gupta, P. N. (2019). Structural, electrical and dielectric studies of nano-composite polymer blend electrolyte films based on (70–x) PVA–x PVP–NaI–SiO2. Physica B: Condensed Matter, 554: 158-164.

10.   Ganesan, S. V, Mothilal, K. K., Selvasekarapandian, S. and Ganesan, T. K. (2017). Studies on conductivity, morphology and thermal stability of PMMA-PSAN based Solid Polymer Electrolytes using SiO2 as nanofiller. International Journal of ChemTech Research, 10(7): 55-65.

11.   Kuppu, S. V., Jeyaraman, A. R., Guruviah, P. K. and Thambusamy, S. (2018). Preparation and characterizations of PMMA-PVDF based polymer composite electrolyte materials for dye sensitized solar cell. Current Applied Physics, 18(6): 619-625.

12.   Salman, A. L. I. D., Jani, G. H. and Fatalla, A. A. (2017). Comparative study of the effect of incorporating SiO2 nano-particles on properties of polymethyl methacrylate denture bases. 10(3): 1525-1535.

13.   Vignarooban, K., Dissanayake, M. A. K. L., Albinsson, I. and Mellander, B. (2014). Effect of TiO2 nano-filler and EC plasticizer on electrical and thermal properties of poly(ethylene oxide) (PEO) based solid polymer electrolytes. Solid State Ionics, 266: 25-28.

14.   Ataollahi, N., Ahmad, A., Hamzah, H., Rahman, M. Y. A. and Mohamed, N. S. (2015). Comparative study of the properties of plasticized (PVDF-HFP)-MG49-LiBF4 blend polymer electrolytes. Russian Journal of Electrochemistry, 51(3): 227-235.

15.   Johan, M. R., Shy, O. H., Ibrahim, S., Mohd Yassin, S. M. and Hui, T. Y. (2011). Effects of Al2O3 nanofiller and EC plasticizer on the ionic conductivity enhancement of solid PEO-LiCF3SO3 solid polymer electrolyte. Solid State Ionics, 196(1): 41-47.

16.   Sekhar, P. C., Kumar, P. N. and Sharma, A. K. (2012). Effect of plasticizer on conductivity and cell parameters of (PMMA+NaClO4) polymer electrolyte system. Journal of Applied Physics, 2(4): 01-06.

17.   Das, S. and Ghosh, A. (2015). Ionic conductivity and dielectric permittivity of PEO-LiClO4 solid polymer electrolyte plasticized with propylene carbonate. AIP Advances, 5(2): 1–9.

18.   Shukur, M. F., Kadir, M. F. Z., Ahmad, Z. and Ithnin, R. (2012). Transport properties of chitosan/PEO blend based proton conducting polymer electrolyte. Advanced Materials Research, 488–489: 114-117.

19.   Ngai, K. S., Ramesh, S., Ramesh, K., and Juan, J. C. (2016). A review of polymer electrolytes: Fundamental, approaches and applications. Ionics, 22(8): 1259-1279.

20.   Shi, J., Yang, Y. and Shao, H. (2017). Co-polymerization and Blending based PEO/PMMA/P(VDF-HFP) gel polymer electrolyte for rechargeable lithium metal batteries. Journal of Membrane Science, 547: 1-10.

21.   Tiautit, N., Puratane, C., Panpinit, S. and Saengsuwan, S. (2014). Effect of SiO2 and TiO2 nanoparticles on the performance of dye-sensitized solar cells using PVDF-HFP/PVA gel electrolytes. 56: 378-385.

22.   Srivastava, N. and Tiwari, T. (2009). New trends in polymer electrolytes a reviews. E-Polymers, 146: 1-17.

23.   Stephan, A. M. and Nahm, K. S. (2006). Review on composite polymer electrolytes for lithium batteries. Polymer, 47: 5952-5964.

24.   Kurc, B. (2014). Precipitated silica as filler for polymer electrolyte based on poly(acrylonitrile)/sulfolane. Journal of Solid State Electrochemistry, 18(7): 2035-2046.

25.   Zhu, A., Shi, Z., Cai, A., Zhao, F. and Liao, T. (2008). Synthesis of core-shell PMMA-SiO2 nanoparticles with suspension-dispersion-polymerization in an aqueous system and its effect on mechanical properties of PVC composites. Polymer Testing, 27(5): 540-547.

26.   Cao, J., Wang, L., Shang, Y., Fang, M., Deng, L., Gao, J. and He, X. (2013). Dispersibility of nano-TiO2 on performance of composite polymer electrolytes for Li-ion batteries. Electrochimica Acta, 111: 674-679.

27.   Zhang, R., Chen, Y. and Montazami, R. (2015). Ionic liquid-doped gel polymer electrolyte for flexible lithium-ion polymer batteries. Materials, 2015: 2735-2748.

28.   Ramesh, C. H., Reddy, M. J., Kumar, J. S. and Reddy, K. N. (2014). Structural and transport properties of PVC blend PEG doped with Mg(ClO4)2 solid polymer electrolyte. AIP Conference Proceedings, 1391: 1389-1391.

29.   Mohamad Zamri, S. F. and Abdul Latif, F. (2015). Effects of acid modified SiO2 on ionic conductivity and blend properties of LiBF4 doped PMMA/ENR 50 electrolytes. Advanced Materials Research, 1107: 187-193.

 

 

30.   Choudhary, S. (2017). Dielectric dispersion and relaxations in (PVA-PEO)-ZnO polymer nanocomposites. Physica B: Condensed Matter, 522: 48-56.

31.   Muchakayala, R., Song, S., Wang, J., Fan, Y., Bengeppagari, M., Chen, J. and Tan, M. (2017). Development and supercapacitor application of ionic liquid-incorporated gel polymer electrolyte films. Journal of Industrial and Engineering Chemistry, 59: 79-89

32.   Cheng, X., Pan, J., Zhao, Y., Liao, M. and Peng, H. (2018). Gel polymer electrolytes for electrochemical energy storage. Advanced Energy Materials, 8(7): 1-16.

33.   Zamri, S. F. M., and Latiff, F. A. (2013). SiO2 filler as interface modifier in PMMA/ENR 50 electrolytes. Advanced Materials Research, 812: 120-124.

34.   Singh, R., Bhattacharya, B., Rhee, H. and Singh, P. K. (2014). New biodegradable polymer electrolyte for dye sensitized solar cell. International Journal of Electrochemical Sciences, 9: 2620-2630.

35.   Sharma, P., Kanchan, D. K., and Gondaliya, N. (2012). Effect of nano-filler on structural and ionic transport properties of plasticized polymer electrolyte. Open Journal of Organic Polymer Materials, 2(2): 38-44.

36.   Alias, Y., Ling, I., and Kumutha, K. (2005). Structural and electrochemical characteristics of 49% PMMA grafted polyisoprene-LiCF3SO3-PC based polymer electrolytes. Ionics, 11(5–6): 414-417.

37.   Soydan, A. M. and Akdeniz, R. (2017). Polymer electrolytes based on borane/poly(ethylene glycol) methyl ether for lithium batteries. Journal of Chemistry, 2017: 1-7.

38.   Sharil Fadli, M. Z., Famiza, A. L., and Siti Izzati Husna, M. A. (2019). Morphology, ionic-molecular interaction and ionic conductivity behavior of PMMA/ENR 50 electrolytes containing carboxylic acids modified SiO2 fillers. Key Engineering Materials, 821: 419-425.

39.   Farheen, S., and Mathad, R. D. (2015). Effect of nano filler on conductivity in PEO-PMMA-LiClO4 polymer electrolyte. International Journal of Advanced Science and Technology, 81: 49-52.

40.   Wang, H., Li, H., Xue, B., Wang, Z., Meng, Q. and Chen, L. (2005). Solid-state composite electrolyte Lil/3-hydroxypropionitrile/SiO2 for dye-sensitized solar cells. Journal of the American Chemical Society, 127(17): 6394-6401.

41.   Yuan C. Y.,  Chen S. Y., Tang J. C.,  Yang H. C. and Chen-Yang Y. W. (2006). Physical and electrochemical properties of low molecular weight poly(ethylene glycol)-bridged polysilsesquioxane organic–inorganic composite electrolytes via sol–gel process. Journal of Applied Polymer Science, 116(5): 2658-2667.

42.   Sun, Z., Li, Y., Zhang, S., Shi, L., Wu, H., Bu, H. and Ding, S. (2019). G-C3N4 nanosheets enhanced solid polymer electrolytes with excellent electrochemical performance, mechanical properties, and thermal stability. Journal of Materials Chemistry A, 7(18): 11069-11076.

43.   Elmér, A. M. and Jannasch, P. (2006). Solid electrolyte membranes from semi-interpenetrating polymer networks of PEG-grafted polymethacrylates and poly(methyl methacrylate). Solid State Ionics, 177(5–6): 573-579.

44.   Latif, F., Mohamad Zamri, S. F., and Aziz, M. (2015). Anions effect on the electrical properties of PMMA/ENR 50 blend electrolytes. Advanced Materials Research, 1107: 145-150.

45.   Silakul, P. and Magaraphan, R. (2019). Polymer electrolyte developed from natural rubber-polyacrylic acid cotrimethoxysilyl propyl methacrylate grafted fumed silica and its application to dye sensitized solar cell. Polymer Composites, 40(1): 304-314.

46.   Ahmad, A., Rahman, M. Y. A., Low, S. P. and Hamzah, H. (2011). Effect of LiBF4 salt concentration on the properties of plasticized MG49-TiO2 based nanocomposite polymer electrolyte. ISRN Materials Science, 2011: 1-7.

47.   Zamri, S. F. M., Latif, F. A., Ali, A. M. M., Ibrahim, R., Azuan, S. I. H. M., Kamaluddin, N., and Hadip, F. (2017). Exploration on effects of 15 nm SiO2 filler on miscibility, thermal stability and ionic conductivity of PMMA/ENR 50 electrolytes. AIP Conference Proceedings, 1809: 020049.