Malaysian Journal of Analytical Sciences Vol 25 No 2 (2021): 341 - 351

 

 

 

 

Mode of Action of 5-Acetyl-4-Methylthiazole Derivatives as Antimicrobial Agents

 

(Mod Tindakan Sebatian Terbitan 5-Asetil-4-Metiltiazol Sebagai Agen Antimikrob)

 

Iswatun Hasanah Abdullah Ripain, Nurziana Ngah*, Deny Susanti Darnis

 

Department of Chemistry, Kulliyyah of Science,

International Islamic University Malaysia, Kuantan Campus, Bandar Indera Mahkota, 25200 Kuantan, Pahang, Malaysia

 

*Corresponding author:  nurziana@iium.edu.my

 

 

Received: 5 February 2021; Accepted: 29 March 2021; Published:  25 April 2021

 

 

Abstract

Thiazole derivatives have been widely known to possess antimicrobial behaviour. The purpose of this study is to investigate the mode of antimicrobial actions of synthesised thiazole compounds on Gram-positive bacteria (Staphylococcus aureus), Gram-negative bacteria (Salmonella typhimurium), and fungus (Candida albicans). Three synthesised thiazole compounds namely 5-acetyl-4-methyl-2-(3,4-dichloroaniline)-1,3-thiazole (T1), 5-acetyl-4-methyl-2-(4-aminophenol)-1,3-thiazole (T2), and 5-acetyl-4-methyl-2-(methyl-4-aminobenzoate)-1,3-thiazole (T3) were evaluated in the mode of action assays such as salt tolerance, time-killing, crystal violet and leakage 260/280 nm absorbing materials. The result showed that the T3 compound exhibited the best performance for all tested assays at a concentration equal to 4 × MIC compared to T1 and T2.

 

Keywords:  thiazole, mode of action, antimicrobial

 

Abstrak

Terbitan tiazol telah dikenali umum sebagai sebatian yang mempunyai sifat antimikrob. Justeru, kajian ini dijalankan untuk mengkaji mod tindakan sebatian tiazol yang disintesis sebagai agen antimikrob terhadap bakteria Gram-positif (Staphylococcus aureus), Gram-negatif (Salmonella typhimurium) and fungus (Candida albicans). Tiga sebatian tiazol yang telah disintesis iaitu 5-asetil-4-metil-2-(3,4-dikloroanilina)-1,3-tiazol (T1), 5-asetil-4-metil-2-(4-aminofenol)-1,3-tiazol (T2) and 5-asetil-4-metil-2-(metil-4-aminobenzoat)-1,3-tiazol (T3) telah dikaji dan dinilai secara toleransi garam, masa pembunuhan, violet kristal dan kebocoran bahan serapan 260/280 nm. Keputusan kajian mendapati sebatian T3 menunjukkan kebolehan sebagai agen antimikrob yang terbaik pada kepekatan 4 × MIC berbanding T1 dan T2.

 

Kata kunci:  tiazol, mod tindakan, antimikrob

 

References

1.      Tran, T., Nguyen, T., Do, T., Huynh, T., Tran, C. and Thai, K. (2012). Synthesis and antibacterial activity of some heterocyclic chalcone analogues alone and in combination with antibiotics. Molecules, 17(6): 6684- 6696.  

2.      Kotb, E. R., Anwar, M. M., Abbas, H. S. and El-Moez, S. I. A. (2013). A concise synthesis and antimicrobial activity of a novel series of naphthylpyridine-3-carbonitrile compounds. Acta Poloniae Pharmaceutica-Drug Research, 70(4): 667-679.

3.      Nalawade, A. M., Nalawade, R. A., Patange, S. M. and Tase, D. D. (2013), Thiazole containing Schiff base and their transition metal complexes. International Journal of Engineering Science Invention, 2(7): 1-4.

4.     Edijeke, I. P. and Ajibade, P. A. (2015). Synthesis, characterization, antioxidant and antibacterial studies of some metal (II) complexes of tetradentate Schiff base ligand: (4E)-4-[(2-{(E)-[1-(2,4-dihydroxyphenyl) ethylidene] amino} ethyl) imino]penta-2-one. Bioinorganic Chemistry and Applications, 9: 1-9.

5.      Dayt, D. and Serra, G. (2010). Thiazole and oxazole alkaloids: Isolation and synthesis. Marine Drugs, 8: 2755-2780.

6.      Penta, S. and Vedula, R. R. (2012). A facile one-pot synthesis of thiazole-pyrazole derivatives via multicomponent approach. Organic Communications, 5(3): 143-149.

7.      Bodireddy, M. R., Mohinuddin, P. M. K., Gundala, T. R. and Reddy, G. (2016). Lactic acid-mediated tandem one-pot synthesis of 2-aminothiazole derivatives: A rapid, scalable and sustainable process. Organic Chemistry, 2: 1-13.

8.      Kołazcek, A., Fusiarz, I., Ławecka, J. and Branowksa, D. (2014). Biological activity and synthesis of sulfonamide derivatives: A brief review. Chemik Er Zeitung, 68(7): 620-628.

9.      Kushwara, N., Kushwara, S. K. S. and Rai, A. K. (2012). Biological activities of thiadiazole derivatives: A review. International Research of Chemtech Research, 4(2): 517-531.

10.   Kaur, K., Kaur, R. and Dhir, G. N. (2014). Synthesis and biological of amino acid and peptide conjugates of Rhein derivatives. Journal of Advanced Pharmaceutical Education and Resource, 4(3): 311-318.

11.   Ripain, I. H. A., Roslan, N., Norshahimi, N. S., Salleh, S. S. M., Bunnori, N. M. and Ngah, N. (2019). Synthesis and molecular docking of 2,4,5-trisubstituted-1,3-thiazole derivatives as antibacterial agents. Malaysian Journal of Analytical Sciences, 23(2): 237-246.

12.   Carson, C. F., Mee, B. J. and Riley, T. V. (2002). Mechanism of action of Melaleuca Alternifolia (Tea Tree) oil on Staphylococcus Aureus determined by time-kill, leakage and salt tolerance assay and electron microscopy. Antimicrobial Agents and Chemotherapy, 46(6): 1914-1920.

13.   Balouiri, M., Sadiki, M. and Ibnsouda, S. K. (2016). Methods for in-vitro evaluating antimicrobial activity: A review. Journal of Pharmaceutical Analysis, 6(2): 71-79.

14.   Culafic, D. M., Gacic, B. V., Vukcevic, J. K., Stankovic, S. and Simic, D. (2005). Comparative study on the antibacterial activity of volatiles from Sage (Salvia Officinalis L.). Archives of Biological Sciences, 57: 173-178.

15.   Guo, N., Gai, Q., Jiao, J., Wang, W., Zu, Y. and Fu, Y. (2016). Antibacterial activity of Fructus Forsythia essential oil and the application of EO-loaded nanoparticles to food-borne pathogens. Foods, 5(73): 1-13.

16.   Qarallleh, H., Idid, S., Saad, S., Susanti, D., Taher, M. and Khleifat, K. (2010). Antifungal and antibacterial activities of four Malaysian sponge species (Petrosiidae). Journal de Mycologie Médicale, 20(4): 315-320.

17.   Devi, K. P., Nisha, S. A., Sakthivel, R. and Pandian, S. K. (2010). Eugenol (An essential oil of clove) acts as an antibacterial agent against Salmonella typhi by distrupting the cellular membrane. Journal of Ethnopharmacology, 130(1): 107-115.

18.   Miksusanti, M., Jenie, B. S. L., Priosoeryanto, B. P., Syarief, R. and Rekso, G. T. (2008). Mode of action Temu Kunci (Kaempferia pandurate) essential oil on E.coli K1.1 cell determined by leakage of material cell and salt tolerance assays. HAYATI Journal of Biosciences, 15(2): 56-60.

19.   Mendrapa, J., Parekh, V., Vaghela, S., Makasana, A., Kunjadia, P. D., Sanghvi, G., Vaishnav, D. and Dave, G. S. (2013). Isolation and characterization of high salt tolerance bacteria from agricultural soil. European Journal of Experimental Biology, 3(6): 351-358.

20.   Gittens, J. E., Smith, T. J., Suleiman, R. and Akid, R. (2013). Current and emerging environmentally-friendly systems for fouling control in the marine environmental. Biotechnology Advances, 31(8): 1738-1753.

21.   Chapman, J., Hellio, C., Sullivan, T., Brown, R., Russell, S., Kiterringham, E., Nor, L. L. and Regan, F. (2014). Bioinspired synthetic macroalgae: examples from nature for antifouling applications. International Biodeterioration & Biodegradation, 65: 1-8.

22.   Ahmad, S. J., Lian, H. H., Basri, D. F. and Zin, N. M. (2015). Mode of action of endophytic Streptomycin sp., SUK 25 extracts against MRSA; microscopic, biochemical and time-kill analysis. International Journal of Pharmaceutical Sciences Review and Research, 30(1): 11 – 17.

23.   Babii, C., Mihalache, G., Bahrin, L. G., Neagu, A., Gostin, I., Mihai, C. T., Sa, L., Birsa, L. M. and Stefan, M. (2018). A novel synthetic flavanois with potent antibacterial properties: in-vitro activity and proposed mode of action. Plos One, 13(4): 1-5.