Malaysian
Journal of Analytical Sciences Vol 25 No 2
(2021): 341 - 351
Mode of Action of
5-Acetyl-4-Methylthiazole Derivatives as Antimicrobial Agents
(Mod Tindakan Sebatian Terbitan 5-Asetil-4-Metiltiazol Sebagai Agen
Antimikrob)
Iswatun Hasanah Abdullah Ripain, Nurziana Ngah*, Deny Susanti Darnis
Department of Chemistry,
Kulliyyah of Science,
International Islamic
University Malaysia, Kuantan Campus, Bandar Indera Mahkota, 25200 Kuantan,
Pahang, Malaysia
*Corresponding author: nurziana@iium.edu.my
Received: 5 February 2021;
Accepted: 29 March 2021; Published: 25
April 2021
Abstract
Thiazole derivatives
have been widely known to possess antimicrobial behaviour. The purpose of this
study is to investigate the mode of antimicrobial actions of synthesised
thiazole compounds on Gram-positive bacteria (Staphylococcus aureus), Gram-negative bacteria (Salmonella typhimurium), and fungus (Candida albicans). Three synthesised
thiazole compounds namely
5-acetyl-4-methyl-2-(3,4-dichloroaniline)-1,3-thiazole (T1), 5-acetyl-4-methyl-2-(4-aminophenol)-1,3-thiazole (T2), and
5-acetyl-4-methyl-2-(methyl-4-aminobenzoate)-1,3-thiazole (T3) were evaluated in the mode of action assays such as salt
tolerance, time-killing, crystal violet and leakage 260/280 nm absorbing
materials. The result showed that the T3
compound exhibited the best
performance for all tested assays at a concentration equal to 4 × MIC compared
to T1 and T2.
Keywords: thiazole, mode of action, antimicrobial
Abstrak
Terbitan tiazol telah
dikenali umum sebagai sebatian yang mempunyai sifat antimikrob. Justeru, kajian
ini dijalankan untuk mengkaji mod tindakan sebatian tiazol yang disintesis
sebagai agen antimikrob terhadap bakteria Gram-positif (Staphylococcus aureus), Gram-negatif (Salmonella typhimurium) and fungus (Candida albicans). Tiga sebatian tiazol yang telah disintesis iaitu
5-asetil-4-metil-2-(3,4-dikloroanilina)-1,3-tiazol (T1), 5-asetil-4-metil-2-(4-aminofenol)-1,3-tiazol (T2) and
5-asetil-4-metil-2-(metil-4-aminobenzoat)-1,3-tiazol (T3) telah dikaji dan dinilai secara toleransi garam, masa
pembunuhan, violet kristal dan kebocoran bahan serapan 260/280 nm. Keputusan
kajian mendapati sebatian T3
menunjukkan kebolehan sebagai agen antimikrob yang terbaik pada kepekatan 4 ×
MIC berbanding T1 dan T2.
Kata kunci: tiazol,
mod tindakan, antimikrob
References
1. Tran, T., Nguyen, T., Do, T., Huynh, T., Tran, C. and
Thai, K. (2012). Synthesis and antibacterial activity of some heterocyclic
chalcone analogues alone and in combination with antibiotics. Molecules, 17(6): 6684- 6696.
2. Kotb, E. R., Anwar, M. M., Abbas, H. S. and El-Moez,
S. I. A. (2013). A concise synthesis and antimicrobial activity of a novel
series of naphthylpyridine-3-carbonitrile
compounds. Acta Poloniae Pharmaceutica-Drug Research, 70(4): 667-679.
3. Nalawade, A. M., Nalawade, R. A., Patange, S. M. and
Tase, D. D. (2013), Thiazole containing Schiff base and their transition metal
complexes. International Journal of
Engineering Science Invention, 2(7): 1-4.
4. Edijeke, I. P. and Ajibade, P. A. (2015). Synthesis,
characterization, antioxidant and antibacterial studies of some metal (II)
complexes of tetradentate Schiff base ligand:
(4E)-4-[(2-{(E)-[1-(2,4-dihydroxyphenyl) ethylidene] amino} ethyl)
imino]penta-2-one. Bioinorganic Chemistry
and Applications, 9: 1-9.
5. Dayt, D. and Serra, G. (2010). Thiazole and oxazole
alkaloids: Isolation and synthesis. Marine
Drugs, 8: 2755-2780.
6. Penta, S. and Vedula, R. R. (2012). A facile one-pot
synthesis of thiazole-pyrazole derivatives via multicomponent approach. Organic Communications, 5(3): 143-149.
7. Bodireddy, M. R., Mohinuddin, P. M. K., Gundala, T. R.
and Reddy, G. (2016). Lactic acid-mediated tandem one-pot synthesis of
2-aminothiazole derivatives: A rapid, scalable and sustainable process. Organic Chemistry, 2: 1-13.
8. Kołazcek, A., Fusiarz, I., Ławecka, J. and
Branowksa, D. (2014). Biological activity and synthesis of sulfonamide
derivatives: A brief review. Chemik Er
Zeitung, 68(7): 620-628.
9. Kushwara, N., Kushwara, S. K. S. and Rai, A. K.
(2012). Biological activities of thiadiazole derivatives: A review. International Research of Chemtech Research,
4(2): 517-531.
10. Kaur, K., Kaur, R. and Dhir, G. N. (2014). Synthesis
and biological of amino acid and peptide conjugates of Rhein derivatives. Journal of Advanced Pharmaceutical Education
and Resource, 4(3): 311-318.
11. Ripain, I. H. A., Roslan, N., Norshahimi, N. S.,
Salleh, S. S. M., Bunnori, N. M. and Ngah, N. (2019). Synthesis and molecular
docking of 2,4,5-trisubstituted-1,3-thiazole derivatives as antibacterial
agents. Malaysian Journal of Analytical
Sciences, 23(2): 237-246.
12. Carson, C. F., Mee, B. J. and Riley, T. V. (2002).
Mechanism of action of Melaleuca
Alternifolia (Tea Tree) oil on Staphylococcus
Aureus determined by time-kill, leakage and salt tolerance assay and
electron microscopy. Antimicrobial Agents
and Chemotherapy, 46(6): 1914-1920.
13. Balouiri, M., Sadiki, M. and Ibnsouda, S. K. (2016).
Methods for in-vitro evaluating antimicrobial activity: A review. Journal of Pharmaceutical Analysis,
6(2): 71-79.
14. Culafic, D. M., Gacic, B. V., Vukcevic, J. K., Stankovic,
S. and Simic, D. (2005). Comparative study on the antibacterial activity of
volatiles from Sage (Salvia Officinalis
L.). Archives of Biological Sciences,
57: 173-178.
15. Guo, N., Gai, Q., Jiao, J., Wang, W., Zu, Y. and Fu,
Y. (2016). Antibacterial activity of Fructus
Forsythia essential oil and the application of EO-loaded nanoparticles to
food-borne pathogens. Foods, 5(73):
1-13.
16. Qarallleh, H., Idid, S., Saad, S., Susanti, D., Taher,
M. and Khleifat, K. (2010). Antifungal and antibacterial activities of four
Malaysian sponge species (Petrosiidae). Journal
de Mycologie Médicale, 20(4): 315-320.
17. Devi, K. P., Nisha, S. A., Sakthivel, R. and Pandian,
S. K. (2010). Eugenol (An essential oil of clove) acts as an antibacterial
agent against Salmonella typhi by
distrupting the cellular membrane. Journal
of Ethnopharmacology, 130(1): 107-115.
18. Miksusanti, M., Jenie, B. S. L., Priosoeryanto, B. P.,
Syarief, R. and Rekso, G. T. (2008). Mode of action Temu Kunci (Kaempferia
pandurate) essential oil on E.coli
K1.1 cell determined by leakage of material cell and salt tolerance assays. HAYATI Journal of Biosciences, 15(2):
56-60.
19. Mendrapa, J., Parekh, V., Vaghela, S., Makasana, A.,
Kunjadia, P. D., Sanghvi, G., Vaishnav, D. and Dave, G. S. (2013). Isolation
and characterization of high salt tolerance bacteria from agricultural soil. European Journal of Experimental Biology,
3(6): 351-358.
20. Gittens, J. E., Smith, T. J., Suleiman, R. and Akid,
R. (2013). Current and emerging environmentally-friendly systems for fouling
control in the marine environmental. Biotechnology
Advances, 31(8): 1738-1753.
21. Chapman, J., Hellio, C., Sullivan, T., Brown, R.,
Russell, S., Kiterringham, E., Nor, L. L. and Regan, F. (2014). Bioinspired
synthetic macroalgae: examples from nature for antifouling applications. International Biodeterioration &
Biodegradation, 65: 1-8.
22. Ahmad, S. J., Lian, H. H., Basri, D. F. and Zin, N. M.
(2015). Mode of action of endophytic Streptomycin
sp., SUK 25 extracts against MRSA; microscopic, biochemical and time-kill
analysis. International Journal of
Pharmaceutical Sciences Review and Research, 30(1): 11 – 17.
23. Babii, C., Mihalache, G., Bahrin, L. G., Neagu, A.,
Gostin, I., Mihai, C. T., Sa, L., Birsa, L. M. and Stefan, M. (2018). A novel
synthetic flavanois with potent antibacterial properties: in-vitro activity and
proposed mode of action. Plos One,
13(4): 1-5.