Malaysian
Journal of Analytical Sciences Vol 25 No 2
(2021): 184 - 192
ELECTROCHEMICAL
IMPEDIMETRIC BIOSENSOR BASED ON SILICON-ON-INSULATOR NANOGAP FOR THE DETECTION
OF BANANA BLOOD DISEASE BACTERIUM
(Biosensor Impedimetrik Elektrokimia Berasaskan
Silikon-Pada-Penebat Jurang Nano untuk Pengesanan Bakteria Penyakit Darah
Pisang)
Masniza Sairi1*, Khairul Anuar Shafie1, Ahmad
Syazwan Ismail2, Nur Azura Mohd Said2, Noor Azlina Masdor2,
Nur Humaira Md Salleh3, Ten Seng Teik1, Siti Noraini
Bunawan2, Mohd Afendy Abdul Talib2, Nur Sulastri Jaffar4,
Izyani Raship5
1Engineering Research
Centre
2Biotechnology and
Nanotechnology Research Centre
3Director General Office
4Horticulture Research
Centre
5Industrial Crop
Research Centre
MARDI Headquarters, Persiaran MARDI-UPM, 43400
Serdang, Selangor
*Corresponding author: masniza@mardi.gov.my
Received: 11 November 2020;
Accepted: 2 March 2021; Published: 25 April 2021
Abstract
An impedance biosensor for the detection of
blood disease bacterium (BDB) in banana was developed based on a 70 nm nanogap
sensor. The nanogap was fabricated using a silicon-on-insulator (SOI) wafer of
190 nm thickness Si layer supported on 350 nm thickness SiO2 layer
via photolithography, Si etching, and electron beam lithography. The sensing
area underwent surface modification, antibody immobilization, and blocking
agent addition, followed by BDB culture detection. Electrochemical impedance
spectroscopy (EIS) analysis was used to detect various concentrations of BDB
culture from 101 to 104 CFU/mL. The working dynamic range
for the nanogap sensor was 101–103 CFU/mL. A limit of
detection (LOD) of 6.73 CFU/mL was achieved. The nanogap sensor represents an
attractive strategy for a label less immunosensor at low concentration bacteria
culture detection, hence useful for plant disease management.
Keywords:
blood disease bacterium, nanogap sensor, electrochemical impedance
spectroscopy, limit of detection, plant disease management
Abstrak
Biosensor impedans untuk
pengesanan bakteria penyakit darah (BDB) pada pisang telah dibangunkan
berasaskan penderia jurang nano berjarak 70 nm. Penderia jurang nano
difabrikasi menggunakan substrat silikon-pada-penebat (SOI) pada lapisan Si
berketebalan 190 nm yang disokong oleh lapisan SiO2 350 nm melalui
proses fotolitografi, goresan Si, dan litografi pancaran elektron. Kawasan
penderiaan menjalani pengubahsuaian permukaan, pengikatan antibodi, dan
penambahan agen penghalang, diikuti dengan pengesanan kultur BDB. Analisis
spektroskopi impedans elektrokimia (EIS) digunakan untuk mengesan kepekatan
kultur BDB yang berbeza dari 101 hingga 104 CFU/mL. Julat
dinamik berfungsi untuk penderia jurang nano adalah 101 hingga 103
CFU/mL. Had pengesanan (LOD) dicapai pada 6.73 CFU/mL. Penderia jurang nano
menunjukkan potensi untuk pengesanan kultur bakteria sensor immuno tanpa label
pada kepekatan rendah yang berguna untuk pengurusan penyakit tumbuhan.
Kata kunci: bakteria
penyakit darah, penderia jurang nano, spektroskopi impedans elektrokimia, had
pengesanan, pengurusan penyakit tumbuhan
References
1.
Fegan, M. and Prior, P.
(2006). Diverse members of the ralstonia solanacearum species complex cause
bacterial wilts of banana. Australasian
Plant Pathology, 35(2): 93-101.
2.
Teng, S.-K., Abd Aziz, N. A., Mustafa, M., Laboh, R., Ismail,
I. S., Sulaiman, S. R., Azizan, A. A. and Devi, S. (2016). The occurrence of
blood disease of banana in Selangor, Malaysia. International Journal of Agriculture & Biology, 18: 92-97.
3.
Latupeirissa, Y., Nawangsih, A. A. and Mutaqin, K. H. (2014).
Selection and identification of bacteria from tongkat langit banana (Musa troglodytarun
L.) to control the blood disease bacteria. Journal
of the International Society for Southeast Asian Agricultural Sciences,
20(2): 110-120.
4.
Teng, S.-K., Abd Aziz, N. A., Mustafa, M., Laboh, R., Ismail,
I. S. and Devi, S. (2016). In-vitro study on the effect of endogeic earthworm
on blood disease bacterium (BDB) in banana - a preliminary observation. The Asia Journal of Applied Microbiology,
3(1): 1-11.
5.
Adnane, A. (2011). Electrochemical biosensors for virus
detection. In P. A. Serra (Ed.), Biosensors
for Health, Environment and Biosecurity. IntechOpen, London: pp. 321-330.
6.
Fang, Y. and Ramasamy, R. P. (2015). Current and prospective
methods for plant disease detection. Biosensors,
5(3): 537-561.
7.
Maalouf, R., Fournier-Wirth, C., Coste, J., Chebib, H.,
Saïkali, Y., Vittori, O., Errachid, A., Cloarec, J.-P., Martelet, C. and
Jaffrezic-Renault, N. (2007). Label-Free detection of bacteria by
electrochemical impedance spectroscopy: Comparison to surface plasmon
resonance. Analytical Chemistry,
79(13): 4879-4886.
8.
Silvestrini, M., Habtamu, H. B., Moretto, L. M. and Ugo, P.
(2014). Electrochemical biosensors for sensitive molecular diagnostics. Proceedings
of the Cross-Border Italy-Slovenia Biomedical Research, 2014: 184-190.
9.
Skottrup, P. D., Nicolaisen, M. and Justesen, A. F. (2008).
Towards on-site pathogen detection using antibody-based sensors. Biosensors and Bioelectronics, 24(3):
339-348.
10. Muhammad
Nur Aiman, U., Tijjani, A., Hasfalina, C. M., Faridah, S., Zamri, I., Uda, H.
and Shahrul, A. B. A. (2014). Reviewed immunosensor format using nanomaterial
for tungro virus detection. Advanced
Materials Research, 832: 410-414.
11. Rafidah,
A. R., Faridah, S., Shahrul, A. A., Mazidah, M. and Zamri, I. (2016).
Chronoamperometry measurement for rapid cucumber mosaic virus detection in
plants. Procedia Chemistry, 20:
25-28.
12. Hazana,
R., Nur Azura, M. S. and Faridah, S. (2019). Immunosensor development for the
detection of Xanthomonas oryzae pv. oryzicola in rice bacterial
leaf streak. Transactions of the
Malaysian Society of Plant Physiology, 26: 315-320.
13. Haji-Hashemi,
H., Norouzi, P., Safarnejad, M. R., Larijani, B., Habibi, M. M., Raeisi, H. and
Ganjali, M. R. (2018). Sensitive electrochemical immunosensor for citrus
bacterial canker disease detection using fast Fourier transformation
square-wave voltammetry method. Journal
of Electroanalytical Chemistry, 820: 111-117.
14. Lisdat,
F. and Schäfer, D. (2008). The use of electrochemical impedance spectroscopy
for biosensing. Analytical and Bioanalytical
Chemistry, 391: 1555-1567.
15. Santos,
A., Davis, J. J. and Bueno, P. R. (2014). Fundamentals and applications of
impedimetric and redox capacitive biosensors. Journal of Analytical & Bioanalytical Techniques, 7(16): 1-15.
16. Grossi,
M. and Riccò, B. (2017). Electrical impedance spectroscopy (EIS) for biological
analysis and food characterization: A review. Journal of Sensors and Sensor Systems, 6: 303-325.
17. Bard, A.
J. and Faulkner, L. R. (2001). Electrochemical methods: Fundamentals and applications.
John Wiley and Sons Inc., New York: pp. 833.
18. Mitchell,
R. A. (2012). Electrical properties of nano-scale liquid/liquid interfaces
contained at arrays of solid state nano-pores. Honours Thesis, Curtin
University.
19. Orazem,
M. E. and Tribollet, B. (2008). Electrochemical impedance spectroscopy. John
Wiley and Sons Inc., New Jersey: pp. 523.
20. Usenko,
A. Y. and Carr, W. N. (1999). Silicon-on-insulator technology for
microelectromechanical applications. Semiconductor
Physics Quantum Electronics and Optoelectronics, 1(1): 93-97.
21. Leenaars,
M. and Hendriksen, C. F. M. (2005). Critical steps in the production of
polyclonal and monoclonal antibodies: Evaluation and recommendations. ILAR Journal, 46(3): 269-279.
22. Zoski,
C. G. (2007). Handbook of electrochemistry. Elsevier B.V., The Netherlands: pp.
892.
23. Jiang,
J., Wang, X., Chao, R., Ren, Y., Hu, C., Xu, Z. and Liu, G. L. (2014).
Smartphone based portable bacteria pre-concentrating microfluidic sensor and
impedance sensing system. Sensors and
Actuators B: Chemical, 193: 653-659.
24. Park,
S.-M. and Yoo, J.-S. (2003). Electrochemical impedance spectroscopy for better
electrochemical measurements. Analytical
Chemistry, 75(21): 455-461.
25. Ruan,
C., Yang, L. and Li, Y. (2002). Immunobiosensor chips for detection of Escherichia
coli O157: H7 using electrochemical impedance spectroscopy. Analytical Chemistry, 74(18): 4814-4820.
26. Ghosh
Dastider, S., Barizuddin, S., Yuksek, N. S., Dweik, M. and Almasri, M. F.
(2015). Efficient and rapid detection of salmonella using microfluidic
impedance based sensing. Journal of
Sensors, 2015: 1-8.