Malaysian Journal of Analytical Sciences Vol 25 No 2 (2021): 184 - 192

 

 

 

 

ELECTROCHEMICAL IMPEDIMETRIC BIOSENSOR BASED ON SILICON-ON-INSULATOR NANOGAP FOR THE DETECTION OF BANANA BLOOD DISEASE BACTERIUM

 

(Biosensor Impedimetrik Elektrokimia Berasaskan Silikon-Pada-Penebat Jurang Nano untuk Pengesanan Bakteria Penyakit Darah Pisang)

 

Masniza Sairi1*, Khairul Anuar Shafie1, Ahmad Syazwan Ismail2, Nur Azura Mohd Said2, Noor Azlina Masdor2, Nur Humaira Md Salleh3, Ten Seng Teik1, Siti Noraini Bunawan2, Mohd Afendy Abdul Talib2, Nur Sulastri Jaffar4, Izyani Raship5

 

1Engineering Research Centre

2Biotechnology and Nanotechnology Research Centre

3Director General Office

4Horticulture Research Centre

5Industrial Crop Research Centre

MARDI Headquarters, Persiaran MARDI-UPM, 43400 Serdang, Selangor

 

*Corresponding author:  masniza@mardi.gov.my

 

 

Received: 11 November 2020; Accepted: 2 March 2021; Published: 25 April 2021

 

 

Abstract

An impedance biosensor for the detection of blood disease bacterium (BDB) in banana was developed based on a 70 nm nanogap sensor. The nanogap was fabricated using a silicon-on-insulator (SOI) wafer of 190 nm thickness Si layer supported on 350 nm thickness SiO2 layer via photolithography, Si etching, and electron beam lithography. The sensing area underwent surface modification, antibody immobilization, and blocking agent addition, followed by BDB culture detection. Electrochemical impedance spectroscopy (EIS) analysis was used to detect various concentrations of BDB culture from 101 to 104 CFU/mL. The working dynamic range for the nanogap sensor was 101–103 CFU/mL. A limit of detection (LOD) of 6.73 CFU/mL was achieved. The nanogap sensor represents an attractive strategy for a label less immunosensor at low concentration bacteria culture detection, hence useful for plant disease management.

 

Keywords: blood disease bacterium, nanogap sensor, electrochemical impedance spectroscopy, limit of detection, plant disease management

 

Abstrak

Biosensor impedans untuk pengesanan bakteria penyakit darah (BDB) pada pisang telah dibangunkan berasaskan penderia jurang nano berjarak 70 nm. Penderia jurang nano difabrikasi menggunakan substrat silikon-pada-penebat (SOI) pada lapisan Si berketebalan 190 nm yang disokong oleh lapisan SiO2 350 nm melalui proses fotolitografi, goresan Si, dan litografi pancaran elektron. Kawasan penderiaan menjalani pengubahsuaian permukaan, pengikatan antibodi, dan penambahan agen penghalang, diikuti dengan pengesanan kultur BDB. Analisis spektroskopi impedans elektrokimia (EIS) digunakan untuk mengesan kepekatan kultur BDB yang berbeza dari 101 hingga 104 CFU/mL. Julat dinamik berfungsi untuk penderia jurang nano adalah 101 hingga 103 CFU/mL. Had pengesanan (LOD) dicapai pada 6.73 CFU/mL. Penderia jurang nano menunjukkan potensi untuk pengesanan kultur bakteria sensor immuno tanpa label pada kepekatan rendah yang berguna untuk pengurusan penyakit tumbuhan.

 

Kata kunci:   bakteria penyakit darah, penderia jurang nano, spektroskopi impedans elektrokimia, had pengesanan, pengurusan penyakit tumbuhan

 

References

1.        Fegan, M. and Prior, P. (2006). Diverse members of the ralstonia solanacearum species complex cause bacterial wilts of banana. Australasian Plant Pathology, 35(2): 93-101.

2.        Teng, S.-K., Abd Aziz, N. A., Mustafa, M., Laboh, R., Ismail, I. S., Sulaiman, S. R., Azizan, A. A. and Devi, S. (2016). The occurrence of blood disease of banana in Selangor, Malaysia. International Journal of Agriculture & Biology, 18: 92-97.

3.        Latupeirissa, Y., Nawangsih, A. A. and Mutaqin, K. H. (2014). Selection and identification of bacteria from tongkat langit banana (Musa troglodytarun L.) to control the blood disease bacteria. Journal of the International Society for Southeast Asian Agricultural Sciences, 20(2): 110-120.

4.        Teng, S.-K., Abd Aziz, N. A., Mustafa, M., Laboh, R., Ismail, I. S. and Devi, S. (2016). In-vitro study on the effect of endogeic earthworm on blood disease bacterium (BDB) in banana - a preliminary observation. The Asia Journal of Applied Microbiology, 3(1): 1-11.

5.        Adnane, A. (2011). Electrochemical biosensors for virus detection. In P. A. Serra (Ed.), Biosensors for Health, Environment and Biosecurity. IntechOpen, London: pp. 321-330.

6.        Fang, Y. and Ramasamy, R. P. (2015). Current and prospective methods for plant disease detection. Biosensors, 5(3): 537-561.

7.        Maalouf, R., Fournier-Wirth, C., Coste, J., Chebib, H., Saïkali, Y., Vittori, O., Errachid, A., Cloarec, J.-P., Martelet, C. and Jaffrezic-Renault, N. (2007). Label-Free detection of bacteria by electrochemical impedance spectroscopy: Comparison to surface plasmon resonance. Analytical Chemistry, 79(13): 4879-4886.

8.        Silvestrini, M., Habtamu, H. B., Moretto, L. M. and Ugo, P. (2014). Electrochemical biosensors for sensitive molecular diagnostics. Proceedings of the Cross-Border Italy-Slovenia Biomedical Research, 2014: 184-190. 

9.        Skottrup, P. D., Nicolaisen, M. and Justesen, A. F. (2008). Towards on-site pathogen detection using antibody-based sensors. Biosensors and Bioelectronics, 24(3): 339-348.

10.       Muhammad Nur Aiman, U., Tijjani, A., Hasfalina, C. M., Faridah, S., Zamri, I., Uda, H. and Shahrul, A. B. A. (2014). Reviewed immunosensor format using nanomaterial for tungro virus detection. Advanced Materials Research, 832: 410-414.

11.       Rafidah, A. R., Faridah, S., Shahrul, A. A., Mazidah, M. and Zamri, I. (2016). Chronoamperometry measurement for rapid cucumber mosaic virus detection in plants. Procedia Chemistry, 20: 25-28.

12.       Hazana, R., Nur Azura, M. S. and Faridah, S. (2019). Immunosensor development for the detection of Xanthomonas oryzae pv. oryzicola in rice bacterial leaf streak. Transactions of the Malaysian Society of Plant Physiology, 26: 315-320.

13.       Haji-Hashemi, H., Norouzi, P., Safarnejad, M. R., Larijani, B., Habibi, M. M., Raeisi, H. and Ganjali, M. R. (2018). Sensitive electrochemical immunosensor for citrus bacterial canker disease detection using fast Fourier transformation square-wave voltammetry method. Journal of Electroanalytical Chemistry, 820: 111-117.

14.       Lisdat, F. and Schäfer, D. (2008). The use of electrochemical impedance spectroscopy for biosensing. Analytical and Bioanalytical Chemistry, 391: 1555-1567.

15.       Santos, A., Davis, J. J. and Bueno, P. R. (2014). Fundamentals and applications of impedimetric and redox capacitive biosensors. Journal of Analytical & Bioanalytical Techniques, 7(16): 1-15.

16.       Grossi, M. and Riccò, B. (2017). Electrical impedance spectroscopy (EIS) for biological analysis and food characterization: A review. Journal of Sensors and Sensor Systems, 6: 303-325.

17.       Bard, A. J. and Faulkner, L. R. (2001). Electrochemical methods: Fundamentals and applications. John Wiley and Sons Inc., New York: pp. 833.

18.       Mitchell, R. A. (2012). Electrical properties of nano-scale liquid/liquid interfaces contained at arrays of solid state nano-pores. Honours Thesis, Curtin University.

19.       Orazem, M. E. and Tribollet, B. (2008). Electrochemical impedance spectroscopy. John Wiley and Sons Inc., New Jersey: pp. 523.

20.       Usenko, A. Y. and Carr, W. N. (1999). Silicon-on-insulator technology for microelectromechanical applications. Semiconductor Physics Quantum Electronics and Optoelectronics, 1(1): 93-97.

21.       Leenaars, M. and Hendriksen, C. F. M. (2005). Critical steps in the production of polyclonal and monoclonal antibodies: Evaluation and recommendations. ILAR Journal, 46(3): 269-279.

22.       Zoski, C. G. (2007). Handbook of electrochemistry. Elsevier B.V., The Netherlands: pp. 892.

23.       Jiang, J., Wang, X., Chao, R., Ren, Y., Hu, C., Xu, Z. and Liu, G. L. (2014). Smartphone based portable bacteria pre-concentrating microfluidic sensor and impedance sensing system. Sensors and Actuators B: Chemical, 193: 653-659.

24.       Park, S.-M. and Yoo, J.-S. (2003). Electrochemical impedance spectroscopy for better electrochemical measurements. Analytical Chemistry, 75(21): 455-461.

25.       Ruan, C., Yang, L. and Li, Y. (2002). Immunobiosensor chips for detection of Escherichia coli O157: H7 using electrochemical impedance spectroscopy. Analytical Chemistry, 74(18): 4814-4820.

26.       Ghosh Dastider, S., Barizuddin, S., Yuksek, N. S., Dweik, M. and Almasri, M. F. (2015). Efficient and rapid detection of salmonella using microfluidic impedance based sensing. Journal of Sensors, 2015: 1-8.