Malaysian Journal of Analytical Sciences Vol 24 No 6 (2020): 862 - 872

 

 

 

 

CHARACTERIZATION OF INCLUSION COMPLEX OF β-CYCLODEXTRIN/ISONIAZID USING SPECTROSCOPIC METHOD

 

(Pencirian Kompleks Kemasukan β-Siklodektrin/Isoniazid Menggunakan Kaedah Spektroskopi) 

 

Nurul Yani Rahim*  and Nurul Ain Elmira Elleas

 

School of Chemical Sciences,

Universiti Sains Malaysia, 11800 Gelugor, Pulau Pinang, Malaysia

 

*Corresponding author:  nurulyanirahim@usm.my

 

 

Received: 21 August 2020; Accepted: 29 September 2020; Published:  10 December 2020

 

 

Abstract

The inclusion behavior of isoniazid with β-cyclodextrin (β-CD) in the liquid and solid state were investigated. The absorption spectral of UV-Vis was used to determine the inclusion behavior in the liquid state. Fourier Transform Infrared (FTIR) spectrometer, Thermogravimetric Analysis (TGA), and Nuclear Magnetic Resonance (NMR) were used to investigate the inclusion behavior in the solid state. The kneading between isoniazid and β-CD was performed to produce the inclusion complex. The formation constant (K) of the inclusion complex (β-CD/isoniazid) was calculated using Benesi-Hildebrand. The results of ˡH NMR and NOESY indicated that β-CD formed hydrophobic interaction with isoniazid. The values of formation constant for the complex of β-CD/isoniazid at pH 4 and 9 were 17.15 and 9.86, respectively.  Meanwhile, the value of formation constant for the complex at the natural condition was 25000. The stoichiometry ratio obtained for the complex of β-CD/isoniazid in acidic and basic conditions are 1:1. Meanwhile, 1:2 ratio of β-CD and isoniazid was found at natural condition.

 

Keywords:  β-cyclodextrin, tuberculosis drug, isoniazid, formation constant, inclusion complex

 

Abstrak

Sifat kemasukan di antara isoniazid dengan β-siklodektrin (β-CD) dalam keadaan cecair dan pepejal telah disiasat. Spektrum penyerapapan UV-Vis telah digunakan untuk mengenal pasti sifat kemasukan dalam keadaan cecair. Spektrometer Inframerah Transformasi Fourier (FTIR), Analisis Termogravimetrik (TGA) dan Resonan Magnetik Nuklear (NMR) telah digunakan untuk menyiasat sikap kemasukan dalam keadaan pepejal. Pengulian antara isoniazid dan β-CD telah dilakukan untuk menghasilkan kompleks kemasukan. Pemalar pembentukan (K) komplek kemasukan (β-CD/isoniazid) telah kira menggunakan Benesi-Hildebrand. Keputusan ˡH NMR dan NOESY menunjukkan β-CD membentuk interaksi hidrofobik dengan isoniazid. Nilai pemalar pembentukan bagi kompleks β-CD/isoniazid pada pH 4 dan 9 adalah masing-masing 17.15 dan 9.86. Sementara itu, pada keadaan semula jadi nilai pemalar pembentukan kompleks ialah 25000. Nisbah stoikiometri yang diperolehi untuk kompleks β-CD/isoniazid dalam keadaan asid dan bes ialah 1:1. Sementara itu, 1:2 adalah nisbah untuk β-CD dan isoniazid pada keadaan semula jadi.

 

Kata kunci:  β-siklodektrins, ubat anti tuberculosis, isoniazid, pemalar pembentukan, kompleks kemasukan

 

References

1.    Teixeira, M. G., de Assis, J. V., Soares, C. G., Venâncio, M. F., Lopes, J. F., Nascimento Jr, C. S., Anconi, C.P., Carvalho, G.S., Lourenço, C.S., de Almeida, M.V. and Fernandes, S. A. (2014). Theoretical and experimental study of inclusion complexes formed by isoniazid and modified β-cyclodextrins: 1H NMR structural determination and antibacterial activity evaluation. The Journal of Physical Chemistry B, 118(1): 81-93.

2.   de Assis, J. V., Teixeira, M. G., Soares, C. G., Lopes, J. F., Carvalho, G. S., Lourenço, M. C., De Almeida, M.V., de Almeida, W. B. and Fernandes, S. A. (2012). Experimental and theoretical NMR determination of isoniazid and sodium p-sulfonatocalix[n]arenes inclusion complexes. European Journal of Pharmaceutical Sciences, 47(3): 539-548.

3.      Braegelman, A. S. and Webber, M. J. (2019). Integrating stimuli-responsive properties in host-guest supramolecular drug delivery systems. Theranostics, 9(11): 3017.

4.      Eldehna, W. M., Fares, M., Abdel-aziz, M. M. and Abdel-aziz, H. A. (2015). Design, synthesis and antitubercular activity of certain nicotinic acid hydrazides. Molecules, 20(5): 8801-8806.

5.    Tom, L., Nirmal, C. R., Dusthackeer, A., Magizhaveni, B. and Kurup, M. R. P. (2020). Formulation and      evaluation of β-cyclodextrin-mediated inclusion complexes of isoniazid scaffolds: molecular docking and in vitro assessment of antitubercular properties. New Journal of Chemistry, 44(11): 4467-4477.

6.      Gegia, M., Winters, N., Benedetti, A., Soolingen, D. Van and Menzies, D. (2016). Treatment of isoniazid-resistant tuberculosis with first-line drugs : A systematic review and meta-analysis. The Lancet Infectious Diseases, 3099(16): 1-12.

7.      Stagg, H. R., Lipman, M. C., Mchugh, T. D. and Jenkins, H. E. (2017). Isoniazid-resistant tuberculosis: A cause for concern? The International Journal of Tuberculosis and Lung Disease, 21(10): 129-139.

8.      Sup, Y. (2015). Challenges in the development of drugs for the treatment of tuberculosis. Brazilian Journal of Infectious Diseases, 17(1): 74-81.

9.      Prabu, S., Samad, N. A., Ahmad, N. A., Jumbri, K., Raoov, M., Rahim, N. Y. and Mohamad, S. (2020). Studies on the supramolecular complex of a guanosine with beta-cyclodextrin and evaluation of its anti-proliferative activity. Carbohydrate Research, 2020: 108138.

10.   Vyas, A., Saraf, S. and Saraf, S. (2008). Cyclodextrin based novel drug delivery systems. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 62(1-2): 23-42.

11.   Saokham, P., Muankaew, C., Jansook, P. and Loftsson, T. (2018). Solubility of cyclodextrins and drug/cyclodextrin complexes. Molecules, 23(5): 1-15.

12.   Razak, S. A., Fariq, S., Syed, F., Abdullah, J. M. and Adnan, R. (2014). Characterization, phase solubility studies and molecular modeling of isoniazid and its β-cyclodextrin complexes. Journal of Chemical and Pharmaceutical Research, 6(11): 291-299.

13.   Razak, S. A., Yacob, S. F. F. S., Abdullah, J. M. and Adnan, R. (2015). Isoniazid and β-cyclodextrin complexes: A stability study in aqueous solution. Journal of Chemical Pharmaceutical Research, 7(7): 346-355.

14.   Teixeira, M. G., de Assis, J. V., Soares, C. G., Venâncio, M. F., Lopes, J. F., Nascimento Jr, C. S. and Fernandes, S. A. (2014). Theoretical and experimental study of inclusion complexes formed by isoniazid and modified β-cyclodextrins: 1H NMR structural determination and antibacterial activity evaluation. The Journal of Physical Chemistry B, 118(1): 81-93.

15.   Rahim, N. Y., Tay, K. S. and Mohamad, S. (2016). β-Cyclodextrin functionalized ionic liquid as chiral stationary phase of high-performance liquid chromatography for enantioseparation of β-blockers. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 85(3-4): 303-315.

16.   Rahim, N. Y., Tay, K. S. and Mohamad, S. (2016). Chromatographic and spectroscopic studies on β -cyclodextrin functionalized ionic liquid as chiral stationary phase: Enantioseparation of flavonoids. Chromatographia, 79(21-22): 1445-1455.

17.   Rahim, N. Y., Tay, K. S. and Mohamad, S. (2018). Chromatographic and spectroscopic studies on β-cyclodextrin functionalized ionic liquid as chiral stationary phase: Enantioseparation of NSAIDs. Adsorption Science & Technology, 36(1-2): 130-148.

18.   Rahim, N. Y., Samad, F. H. and Rohisham, A. M. (2019). Spectroscopic studies of inclusion complex glipizide and β-cyclodextrin. Malaysian Journal of Analytical Sciences, 23(5): 789-798.

19.   Almeida, M. V. De, Fernandes, S. A. and Almeida, W. B. De. (2013). Theoretical and experimental study of inclusion complexes formed by isoniazid and modified ß-cyclodextrins: 1H NMR structural determination and antibacterial activity evaluation theoretical and experimental study of inclusion complexes formed by isoniazid. The Journal of Physical Chemistry B, 421(12): 1-33.

20.   Yang, L. J., Yang, B., Chen, W., Huang, R., Yan, S. J. and Lin, J. (2010). Host−guest system of nimbin and β-cyclodextrin or its derivatives: Preparation, characterization, inclusion mode, and solubilization. Journal of Agricultural and Food Chemistry, 58(15): 8545-8552.

21.   Wang, X., Luo, Z. and Xiao, Z. (2014). Preparation, characterization, and thermal stability of β-cyclodextrin/soybean lecithin inclusion complex. Carbohydrate Polymers, 101: 1027-1032.

22.   Singh, R., Bharti, N., Madan, J. and Hiremath, S. N. (2010). Characterization of cyclodextrin inclusion complexes—a review. Journal of Pharmaceutical Science and Technology, 2(3): 171-183.

23.   Blokhina, S. V., Ol’khovich, M. V., Sharapova, A. V., Volkova, T. V. and Perlovich, G. L. (2015). Solution thermodynamics of pyrazinamide, isoniazid, and p-aminobenzoic acid in buffers and octanol. The Journal of Chemical Thermodynamics, 91: 396-403.

24.   Çelik, S. E., Özyürek, M., Tufan, A. N., Güçlü, K. and Apak, R. (2011). Spectroscopic study and antioxidant properties of the inclusion complexes of rosmarinic acid with natural and derivative cyclodextrins. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 78(5): 1615-1624.