Malaysian
Journal of Analytical Sciences Vol 24 No 5
(2020): 657 - 669
STORAGE
STABILITY OF KUINI POWDER IN TWO PACKAGING ALUMINUM LAMINATED POLYETHYLENE AND
POLYETHYLENE TEREPHTHALATE
(Kestabilan
Penyimpanan Serbuk Kuini dalam Dua Pembungkusan Polietilena Berlapis Aluminum
dan Polietilena Tereftalat)
Loo
Yian Yian and Pui Liew Phing*
Department of Food Science and Nutrition, Faculty of Applied Sciences
UCSI University, 56000 Cheras, Kuala Lumpur,
Malaysia
*Corresponding author: puilp@ucsiuniversity.edu.my
Received: 15 June 2020;
Accepted: 13 August 2020; Published: 12
October 2020
Abstract
Kuini fruit is a type
of tropical mango with a strong aroma. It has yellow-orange colored pulp with a
green peel. Due to its short life and seasonal harvest, kuini can be converted
into powder, which is more stable and versatile to be added later as a food
ingredient. The powder needs to be stable during storage prior to consumption
or usage. In this study, the storage stability of spray-dried kuini powder is
investigated. The kuini powder was placed in two different packaging materials:
aluminum laminated polyethylene (ALP) and polyethylene terephthalate (PET).
Then, it was stored under accelerated conditions (48±1 °C, 90±1% RH). The
physicochemical properties of packaged powder were evaluated each week for a
total of 7 weeks and included color, hygroscopicity, moisture content, water
activity, degree of caking, flowability, water solubility index, and
carotenoid. Our results show that after 7 weeks in storage, kuini packaged in
ALP pouches has better properties such as lower moisture content (13.33), water
activity (0.43), and hygroscopicity (23.37), when compared to PET packaging
(24.77 moisture content, 0.50 water activity, and 28.00 hygroscopicity. These
properties have also influenced an increase in caking and presented
difficulties in solubilization when packaged in PET. In addition, the stored
kuini powder packaged in PET pouches showed a greater color difference (9.40)
and lower carotenoid content (16.90 μg/g), when compared to what was
stored in ALP, i.e. it was more stable. From its physicochemical properties, it
can be concluded that ALP is better than PET in protecting the stored powder
from degradation. Hence, when compared to PET, ALP is more suitable as a
packaging material for kuini powder.
Keywords: packaging; powder, storage stability, physicochemical
properties, kuini
Abstrak
Buah kuini adalah sejenis mangga tropika dengan
aroma yang kuat. Ia mempunyai pulpa berwarna kuning-oren dengan kulit hijau.
Oleh kerana jangka hayatnya yang pendek dan ianya buah bermusim, kuini boleh
diubah menjadi serbuk, yang lebih stabil dan serbaguna untuk ditambahkan
sebagai bahan makanan. Serbuk perlu stabil semasa penyimpanan sebelum
penggunaan atau penggunaan. Dalam kajian ini, kestabilan penyimpanan serbuk
kuini kering semburan disiasat. Serbuk kuini diletakkan dalam dua bahan
pembungkusan yang berbeza: polietilena berlapis aluminium (ALP) dan terefthalat
polietilena (PET). Kemudian, ia disimpan dalam keadaan dipercepat (48 ± 1 °C,
90 ± 1% RH). Sifat fizikokimia serbuk yang dibungkus dinilai setiap minggu
selama 7 minggu dan termasuk warna, higroskopian, kandungan kelembapan,
aktiviti air, tahap kek, aliran, indeks kelarutan air, dan karotenoid. Hasil
kajian kami menunjukkan bahawa setelah penyimpanan selama 7 minggu, kuini yang
dibungkus dalam bungkusan ALP mempunyai sifat yang lebih baik seperti kandungan
lembapan yang lebih rendah (13.33), aktiviti air (0.43), dan higroskopian
(23.37), jika dibandingkan dengan pembungkusan PET (kandungan air 24.77, 0.50
aktiviti air, dan 28.00 higroskopian. Sifat-sifat ini juga mempengaruhi
peningkatan kek dan menunjukkan kesukaran dalam larutan ketika dibungkus dalam
PET. Di samping itu, serbuk kuini yang disimpan dalam bungkusan PET menunjukkan
perbezaan warna yang lebih besar (9.40) dan kandungan karotenoid yang lebih
rendah (16.90 μg/g), jika dibandingkan dengan apa yang disimpan di ALP,
iaitu lebih stabil. Dari sifat fizikokimia, dapat disimpulkan bahawa ALP lebih
baik daripada PET dalam melindungi serbuk yang tersimpan dari degradasi. Oleh
itu, jika dibandingkan dengan PET, ALP lebih sesuai sebagai bahan pembungkus
untuk serbuk kuini.
Kata
kunci:
pembungkusan, serbuk, kestabilan simpanan, sifat fizikokimia, kuini
References
1. Kim, Y., Brecht, J. K. and Talcott, S. T. (2007).
Antioxidant phytochemical and fruit quality changes in mango (Mangifera
indica L.) following hot water immersion and controlled atmosphere storage.
Food Chemistry, 105(5): 1327-1334.
2. Lim,
T. K. (2012). Edible medicinal and non-medicinal plants: Volume 1, Fruits.
Springer Science & Business Media, London: pp. 127-130.
3. Siddiq,
M. (2012). Tropical and subtropical
fruit: Postharvest physiology, processing and packaging. John Wiley
& Sons, Oxford: pp. 292-295.
4. Khoo,
H. E. and Ismail, A. (2008). Determination of daidzein and genistein contents
in Mangifera fruit. Malaysian Journal of Nutrition, 14(2): 189-198.
5. Salunkhe,
D. K. and Kadam, S. S. (1995). Handbook of fruit science and technology:
Production, composition, storage, and processing. Marcel Decker, Inc. New York:
pp.123-157.
6. Adnan,
H., Ali, M. S. M., Hassan, H., Manan, M. A., Ghazali, M. N. and Ramli, N. S. N.
(2018). Bioassay-guided of fresh and fermented kuini (Mangifera odorata)
extracts against bacterial activity. International
Journal of Agriculture, Forestry and Plantation,
7: 27-32.
7. Adnan,
H., Ali, M. S. M, Manan, M. A., Hassan, H., Ghazalli, M. N. and Ramli, N.S.N.
(2018). Acetic acid fermentation of kuini (Mangifera odorata) and its potential
substrate for human health. 7th International Conference on
Biotechnology for the Wellness Industry: Bioresources for Human Wellness,
University of Technology Malaysia, pp. 27-28.
8. Lai,
J. T., Lai, K. W., Zhu, L. Y., Nyam, K. L. and Pui, L. P. (2020).
Microencapsulation of Lactobacillus plantarum 299v and its storage in
kuini juice. Malaysian Journal of Microbiology, 16(4): 235-244.
9. Shishir,
M. R. I., Taip, F. S., Aziz, N. A. and Talib, R. A. (2014). Physical properties
of spray-dried pink guava (Psidium guajava) powder. Agriculture and
Agricultural Science Procedia, 2: 74-81.
10. Goula,
A. M. and Adamopoulos. K. G. (2010). A new technique for spray drying orange
juice concentrate. Innovative Food Science and Emerging Technologies,
11: 342-351.
11. Chew,
S., Tan, C., Pui, L., Chong, P., Gunasekaran, B. and Nyam, K. (2019).
Encapsulation technologies: A tool for functional foods development. International
Journal of Innovative Technology and Exploring Engineering, 8(5): 154-162.
12. Chang,
L. S., Yong, S. M. E. and Pui, L.P. (2020). Production of spray-dried “Terung
Asam” (Solanum lasiocarpum Dunal) powder. Walailak Journal of Science
and Technology, 18(1): In press.
13. Wong,
C. W., Pui, L. P. and Ng, J. M. L. (2015). Production of spray-dried Sarawak
pineapple (Ananas comosus) powder from enzyme liquefied puree. International
Food Research Journal, 22(4): 1631-1636.
14. Pui,
L. P., Karim, R., Yusof, Y. A., Wong, C. W. and Ghazali, H. M. (2020).
Optimization of spray-drying parameters for the production of ‘Cempedak’ (Artocarpus
integer) fruit powder. Journal of Food Measurement and Characterization,
2020: In press.
15. Chang,
L. S., Tan, Y. L. and Pui, L. P. (2020). Production of spray-dried
enzyme-liquefied papaya (Carica papaya L.) powder. Brazilian Journal
of Food Technology, 23: e2019181.
16. Goula,
A. M. and Adamopoulos, K. G. (2008). Effect of maltodextrin addition during
spray drying of tomato pulp in dehumidified air: II. Powder properties. Drying
Technology, 26(6): 726-737.
17. Pua,
C. K., Sheikh, A. H., Tan, C. P., Mirhosseini, H., Rahman, R. A. and Rusul, G.
(2008). Storage stability of jackfruit (Artocarpus heterophyllus) powder
packaged in aluminum laminated polyethylene and metallized co-extruded
biaxially oriented polypropylene during storage. Journal of Food Engineering,
89(4): 419-428.
18. Kumar, V., Sukumar, D.
and Muruganantham, M. (2015). Microbial quality of frozen squid (Sepioteuthis
lessoniana, Lesson 1830) treated with food grade commercial
chemicals. Indian Journal of Animal Research, 49(5): 736-741.
19. Marsh,
K. and Bugusu, B. (2007). Food packaging—roles, materials, and environmental
issues. Journal of Food Science, 72(3): 39-55.
20. Abdel-Bary,
E. M. (2003). Handbook of plastic films. Smithers Rapra Publishing, Shawbury.
21. Pui,
L. P., Karim, R., Yusof, Y. A., Wong, C. W. and Ghazali, H. M. (2018).
Physicochemical and sensory properties of selected 'cempedak' (Artocarpus
integer L.) fruit varieties. International Food Research Journal,
25(2): 861-869.
22. AOAC (Association of
Analytical Chemists) (2000). Official Methods Of Analysis, Rockwill.
23. Bhusari, S. N.,
Muzaffar, K. and Kumar, P. (2014). Effect of carrier agents on physical and
microstructural properties of spray dried tamarind pulp powder. Powder
Technology, 266: 354-364.
24. Chauhan,
A.K. and Patil, V. (2013). Effect of packaging material on storage ability of
mango milk powder and the quality of reconstituted mango milk drink. Powder
Techonology, 239: 86-93.
25. Santhalakshmy,
S., Bosco, S. J. D., Francis, S. and Sabeena, M. (2015). Effect of inlet
temperature on physicochemical properties of spray dried jamun fruit juice
powder. Powder Technology, 274: 37-43.
26. Sun,
D. W. (2011). Handbook of frozen food processing and packaging, 2nd
Ed. CRC Press, pg 552-553.
27. Hunter Lab (2008). CIE
L* a* b* color scale. Hunter Lab Application note, Boca Raton: pp. 1-4.
28. Kumar,
P. and Mishra, H. N. (2004). Mango soy fortified set yoghurt: effect of
stabilizer addition on physicochemical, sensory and textural properties. Food
Chemistry, 87(4): 501-507.
29. Wong,
C. W. and Lim, W. T. (2016). Storage stability of spray-dried papaya (Carica
papaya L.) powder packaged in aluminium laminated polyethylene (ALP) and
polyethylene terephthalate (PET). International Food Research Journal,
23(5): 1887-1894.
30. Senka,
S. V., Jelena, Z. V., Zuzana, G. V., Zoran, P. Z. and Ljiljana, M. P. (2014).
Maltodextrin as a carrier of health benefit compounds in Satureja Montana
dry powder extract obtained by spray drying technique. Powder Techonology,
258: 209-215.
31. Yu,
H., Zheng, Y. and Li, Y. (2015). Shelf life and storage stability of
spray-dried bovine colostrum powders under different storage conditions. Journal
of Food Science and Technology, 52(2), 944-951.
32. Mridula,
D., Jain, R. and Singh, K. K. (2010). Effect of storage on quality of fortified
Bengal gram sattu. Journal of Food Science and Technology, 47(1):
119-123.
33. Dak,
M., Sagar, V. R. and Jha, S. K. (2014). Shelf-life and kinetics of quality
change of dried pomegranate arils in flexible packaging. Food Packaging and
Shelf Life, 2(1): 1-6.
34. Hui,
Y. H. (2008). Food drying science and technology: Microbiology, chemistry,
applications. DEStech Publication, Inc, Pennsylvania: pp. 244-245.
35. Enrique,
O. R., Pablo, J., and Hong, Y. (2006). Food powders: Physical properties, processing
and functionality. Kluwer Academic/Plenum Publisher: New York: pp. 52-55.
36. Ganesan, V., Rosentrater, K. A., and Muthukumarappan,
K. (2008). Flowability and handling characteristics of bulk solids and
powders–a review with implications for DDGS. Biosystems Engineering,
101(4): 425-435.
37. Lai,
P. Z., Yusof, Y. A., Aziz, M. G., Chin, N. L. and Amin, M. A. (2013).
Compressibility and dissolution characteristics of mixed fruit tablets made
from guava and pitaya fruit powder. Powder
Technology, 247: 112-119.
38. Igual, M.,
Garcia-Martinez, E., Camacho, M. M. and Martínez-Navarrete, N. (2013). Jam
processing and storage effects on β-carotene and flavonoids content in
grapefruit. Journal of Functional Foods, 5(2): 736-744.
39. Kołakowska, A. and Sikorski, Z. E. (2010). Lipids and food quality. chemical,
biological, and functional aspects of food lipids. CRC press, Boca Raton: pp.
71-72.
40. Hymavathi, T. V. and Khader, V. (2005). Carotene,
ascorbic acid and sugar content of vacuum dehydrated ripe mango powders stored
in flexible packaging material. Journal of Food Composition and Analysis,
18(2-3): 181-192.