Malaysian Journal of Analytical Sciences Vol 24 No 5 (2020): 657 - 669

 

 

 

 

STORAGE STABILITY OF KUINI POWDER IN TWO PACKAGING ALUMINUM LAMINATED POLYETHYLENE AND POLYETHYLENE TEREPHTHALATE

 

(Kestabilan Penyimpanan Serbuk Kuini dalam Dua Pembungkusan Polietilena Berlapis Aluminum dan Polietilena Tereftalat)

 

Loo Yian Yian and Pui Liew Phing*

 

Department of Food Science and Nutrition, Faculty of Applied Sciences

UCSI University, 56000 Cheras, Kuala Lumpur, Malaysia

 

*Corresponding author:  puilp@ucsiuniversity.edu.my

 

 

Received: 15 June 2020; Accepted: 13 August 2020; Published:  12 October 2020

 

 

Abstract

Kuini fruit is a type of tropical mango with a strong aroma. It has yellow-orange colored pulp with a green peel. Due to its short life and seasonal harvest, kuini can be converted into powder, which is more stable and versatile to be added later as a food ingredient. The powder needs to be stable during storage prior to consumption or usage. In this study, the storage stability of spray-dried kuini powder is investigated. The kuini powder was placed in two different packaging materials: aluminum laminated polyethylene (ALP) and polyethylene terephthalate (PET). Then, it was stored under accelerated conditions (48±1 °C, 90±1% RH). The physicochemical properties of packaged powder were evaluated each week for a total of 7 weeks and included color, hygroscopicity, moisture content, water activity, degree of caking, flowability, water solubility index, and carotenoid. Our results show that after 7 weeks in storage, kuini packaged in ALP pouches has better properties such as lower moisture content (13.33), water activity (0.43), and hygroscopicity (23.37), when compared to PET packaging (24.77 moisture content, 0.50 water activity, and 28.00 hygroscopicity. These properties have also influenced an increase in caking and presented difficulties in solubilization when packaged in PET. In addition, the stored kuini powder packaged in PET pouches showed a greater color difference (9.40) and lower carotenoid content (16.90 μg/g), when compared to what was stored in ALP, i.e. it was more stable. From its physicochemical properties, it can be concluded that ALP is better than PET in protecting the stored powder from degradation. Hence, when compared to PET, ALP is more suitable as a packaging material for kuini powder.

 

Keywords:  packaging; powder, storage stability, physicochemical properties, kuini

 

Abstrak

Buah kuini adalah sejenis mangga tropika dengan aroma yang kuat. Ia mempunyai pulpa berwarna kuning-oren dengan kulit hijau. Oleh kerana jangka hayatnya yang pendek dan ianya buah bermusim, kuini boleh diubah menjadi serbuk, yang lebih stabil dan serbaguna untuk ditambahkan sebagai bahan makanan. Serbuk perlu stabil semasa penyimpanan sebelum penggunaan atau penggunaan. Dalam kajian ini, kestabilan penyimpanan serbuk kuini kering semburan disiasat. Serbuk kuini diletakkan dalam dua bahan pembungkusan yang berbeza: polietilena berlapis aluminium (ALP) dan terefthalat polietilena (PET). Kemudian, ia disimpan dalam keadaan dipercepat (48 ± 1 °C, 90 ± 1% RH). Sifat fizikokimia serbuk yang dibungkus dinilai setiap minggu selama 7 minggu dan termasuk warna, higroskopian, kandungan kelembapan, aktiviti air, tahap kek, aliran, indeks kelarutan air, dan karotenoid. Hasil kajian kami menunjukkan bahawa setelah penyimpanan selama 7 minggu, kuini yang dibungkus dalam bungkusan ALP mempunyai sifat yang lebih baik seperti kandungan lembapan yang lebih rendah (13.33), aktiviti air (0.43), dan higroskopian (23.37), jika dibandingkan dengan pembungkusan PET (kandungan air 24.77, 0.50 aktiviti air, dan 28.00 higroskopian. Sifat-sifat ini juga mempengaruhi peningkatan kek dan menunjukkan kesukaran dalam larutan ketika dibungkus dalam PET. Di samping itu, serbuk kuini yang disimpan dalam bungkusan PET menunjukkan perbezaan warna yang lebih besar (9.40) dan kandungan karotenoid yang lebih rendah (16.90 μg/g), jika dibandingkan dengan apa yang disimpan di ALP, iaitu lebih stabil. Dari sifat fizikokimia, dapat disimpulkan bahawa ALP lebih baik daripada PET dalam melindungi serbuk yang tersimpan dari degradasi. Oleh itu, jika dibandingkan dengan PET, ALP lebih sesuai sebagai bahan pembungkus untuk serbuk kuini.  

 

Kata kunci:  pembungkusan, serbuk, kestabilan simpanan, sifat fizikokimia, kuini

 

References

1.      Kim, Y., Brecht, J. K. and Talcott, S. T. (2007). Antioxidant phytochemical and fruit quality changes in mango (Mangifera indica L.) following hot water immersion and controlled atmosphere storage. Food Chemistry, 105(5): 1327-1334.

2.      Lim, T. K. (2012). Edible medicinal and non-medicinal plants: Volume 1, Fruits. Springer Science & Business Media, London: pp. 127-130.

3.      Siddiq, M. (2012). Tropical and subtropical fruit: Postharvest physiology, processing and packaging. John Wiley & Sons, Oxford: pp. 292-295.

4.      Khoo, H. E. and Ismail, A. (2008). Determination of daidzein and genistein contents in Mangifera fruit. Malaysian Journal of Nutrition, 14(2): 189-198.

5.      Salunkhe, D. K. and Kadam, S. S. (1995). Handbook of fruit science and technology: Production, composition, storage, and processing. Marcel Decker, Inc. New York: pp.123-157.

6.      Adnan, H., Ali, M. S. M., Hassan, H., Manan, M. A., Ghazali, M. N. and Ramli, N. S. N. (2018). Bioassay-guided of fresh and fermented kuini (Mangifera odorata) extracts against bacterial activity. International Journal of Agriculture, Forestry and Plantation, 7: 27-32.

7.      Adnan, H., Ali, M. S. M, Manan, M. A., Hassan, H., Ghazalli, M. N. and Ramli, N.S.N. (2018). Acetic acid fermentation of kuini (Mangifera odorata) and its potential substrate for human health. 7th International Conference on Biotechnology for the Wellness Industry: Bioresources for Human Wellness, University of Technology Malaysia, pp. 27-28.

8.      Lai, J. T., Lai, K. W., Zhu, L. Y., Nyam, K. L. and Pui, L. P. (2020). Microencapsulation of Lactobacillus plantarum 299v and its storage in kuini juice. Malaysian Journal of Microbiology, 16(4): 235-244.

9.      Shishir, M. R. I., Taip, F. S., Aziz, N. A. and Talib, R. A. (2014). Physical properties of spray-dried pink guava (Psidium guajava) powder. Agriculture and Agricultural Science Procedia, 2: 74-81.

10.   Goula, A. M. and Adamopoulos. K. G. (2010). A new technique for spray drying orange juice concentrate. Innovative Food Science and Emerging Technologies, 11: 342-351.

11.   Chew, S., Tan, C., Pui, L., Chong, P., Gunasekaran, B. and Nyam, K. (2019). Encapsulation technologies: A tool for functional foods development. International Journal of Innovative Technology and Exploring Engineering, 8(5): 154-162.

12.   Chang, L. S., Yong, S. M. E. and Pui, L.P. (2020). Production of spray-dried “Terung Asam” (Solanum lasiocarpum Dunal) powder. Walailak Journal of Science and Technology, 18(1): In press.

13.   Wong, C. W., Pui, L. P. and Ng, J. M. L. (2015). Production of spray-dried Sarawak pineapple (Ananas comosus) powder from enzyme liquefied puree. International Food Research Journal, 22(4): 1631-1636.

14.   Pui, L. P., Karim, R., Yusof, Y. A., Wong, C. W. and Ghazali, H. M. (2020). Optimization of spray-drying parameters for the production of ‘Cempedak’ (Artocarpus integer) fruit powder. Journal of Food Measurement and Characterization, 2020: In press.

15.   Chang, L. S., Tan, Y. L. and Pui, L. P. (2020). Production of spray-dried enzyme-liquefied papaya (Carica papaya L.) powder. Brazilian Journal of Food Technology, 23: e2019181.

16.   Goula, A. M. and Adamopoulos, K. G. (2008). Effect of maltodextrin addition during spray drying of tomato pulp in dehumidified air: II. Powder properties. Drying Technology, 26(6): 726-737.

17.   Pua, C. K., Sheikh, A. H., Tan, C. P., Mirhosseini, H., Rahman, R. A. and Rusul, G. (2008). Storage stability of jackfruit (Artocarpus heterophyllus) powder packaged in aluminum laminated polyethylene and metallized co-extruded biaxially oriented polypropylene during storage. Journal of Food Engineering, 89(4): 419-428.

18.   Kumar, V., Sukumar, D. and Muruganantham, M. (2015). Microbial quality of frozen squid (Sepioteuthis lessoniana, Lesson 1830) treated with food grade commercial chemicals. Indian Journal of Animal Research, 49(5): 736-741.

19.   Marsh, K. and Bugusu, B. (2007). Food packaging—roles, materials, and environmental issues. Journal of Food Science, 72(3): 39-55.

20.   Abdel-Bary, E. M. (2003). Handbook of plastic films. Smithers Rapra Publishing, Shawbury.

21.   Pui, L. P., Karim, R., Yusof, Y. A., Wong, C. W. and Ghazali, H. M. (2018). Physicochemical and sensory properties of selected 'cempedak' (Artocarpus integer L.) fruit varieties. International Food Research Journal, 25(2): 861-869.

22.   AOAC (Association of Analytical Chemists) (2000). Official Methods Of Analysis, Rockwill.

23.   Bhusari, S. N., Muzaffar, K. and Kumar, P. (2014). Effect of carrier agents on physical and microstructural properties of spray dried tamarind pulp powder. Powder Technology, 266: 354-364.

24.   Chauhan, A.K. and Patil, V. (2013). Effect of packaging material on storage ability of mango milk powder and the quality of reconstituted mango milk drink. Powder Techonology, 239: 86-93.

25.   Santhalakshmy, S., Bosco, S. J. D., Francis, S. and Sabeena, M. (2015). Effect of inlet temperature on physicochemical properties of spray dried jamun fruit juice powder. Powder Technology, 274: 37-43.

26.   Sun, D. W. (2011). Handbook of frozen food processing and packaging, 2nd Ed. CRC Press, pg 552-553.

27.   Hunter Lab (2008). CIE L* a* b* color scale. Hunter Lab Application note, Boca Raton: pp. 1-4.

28.   Kumar, P. and Mishra, H. N. (2004). Mango soy fortified set yoghurt: effect of stabilizer addition on physicochemical, sensory and textural properties. Food Chemistry, 87(4): 501-507.

29.   Wong, C. W. and Lim, W. T. (2016). Storage stability of spray-dried papaya (Carica papaya L.) powder packaged in aluminium laminated polyethylene (ALP) and polyethylene terephthalate (PET). International Food Research Journal, 23(5): 1887-1894.

30.   Senka, S. V., Jelena, Z. V., Zuzana, G. V., Zoran, P. Z. and Ljiljana, M. P. (2014). Maltodextrin as a carrier of health benefit compounds in Satureja Montana dry powder extract obtained by spray drying technique. Powder Techonology, 258: 209-215. 

31.   Yu, H., Zheng, Y. and Li, Y. (2015). Shelf life and storage stability of spray-dried bovine colostrum powders under different storage conditions. Journal of Food Science and Technology, 52(2), 944-951.

32.   Mridula, D., Jain, R. and Singh, K. K. (2010). Effect of storage on quality of fortified Bengal gram sattu. Journal of Food Science and Technology, 47(1): 119-123.

33.   Dak, M., Sagar, V. R. and Jha, S. K. (2014). Shelf-life and kinetics of quality change of dried pomegranate arils in flexible packaging. Food Packaging and Shelf Life, 2(1): 1-6.

34.   Hui, Y. H. (2008). Food drying science and technology: Microbiology, chemistry, applications. DEStech Publication, Inc, Pennsylvania: pp. 244-245.

35.   Enrique, O. R., Pablo, J., and Hong, Y. (2006). Food powders: Physical properties, processing and functionality. Kluwer Academic/Plenum Publisher: New York: pp. 52-55.

36.   Ganesan, V., Rosentrater, K. A., and Muthukumarappan, K. (2008). Flowability and handling characteristics of bulk solids and powders–a review with implications for DDGS. Biosystems Engineering, 101(4): 425-435.

37.   Lai, P. Z., Yusof, Y. A., Aziz, M. G., Chin, N. L. and Amin, M. A. (2013). Compressibility and dissolution characteristics of mixed fruit tablets made from guava and pitaya fruit powder. Powder Technology, 247: 112-119.

38.   Igual, M., Garcia-Martinez, E., Camacho, M. M. and Martínez-Navarrete, N. (2013). Jam processing and storage effects on β-carotene and flavonoids content in grapefruit. Journal of Functional Foods, 5(2): 736-744.

39.   Kołakowska, A. and Sikorski, Z. E. (2010). Lipids and food quality. chemical, biological, and functional aspects of food lipids. CRC press, Boca Raton: pp. 71-72.

40.   Hymavathi, T. V. and Khader, V. (2005). Carotene, ascorbic acid and sugar content of vacuum dehydrated ripe mango powders stored in flexible packaging material. Journal of Food Composition and Analysis, 18(2-3): 181-192.