Malaysian Journal of Analytical Sciences Vol 24 No 4 (2020): 538 - 545

 

 

 

 

EVALUATION ON THE EFFICACY OF DIFFERENT DISRUPTION METHOD OF OIL PALM ROOTS AND Ganoderma boninense CELL WALL

 

(Penilaian ke atas Keberkesanan Kaedah Pemusnahan yang Berbeza pada Dinding Sel Akar Kelapa Sawit dan Ganoderma boninense)

 

Arnnyitte Alexander1, Jedol Dayou2, Coswald Stephen Sipaut3, Khim Phin-Chong1*

 

1Biotechnology Programme, Faculty of Science and Natural Resources

2Vibration and Sound Research Group (e-VIBS), Faculty of Science and Natural Resources

3Chemical Engineering Programme, Faculty of Engineering

Universiti Malaysia Sabah, 88400 Jalan UMS, Kota Kinabalu, Sabah, Malaysia

 

*Corresponding author:  chongkp@ums.edu.my

 

 

Received: 31 May 2020; Accepted: 7 July 2020; Published: 11 August 2020

 

 

Abstract

The cell wall is the outermost layer of cell encountered by pathogens, determining the infection fate. However, the chemical composition involves during host-pathogen interaction has not been fully elucidated. Prior to determining the composition in the cell walls, the walls must be isolated first from the intercellular component. Selected methods for oil palm roots and G. boninense cell disruption were evaluated for their suitability for cell wall isolation and presented in this paper. The effect of selected disruption methods on the content of crude proteins and DNA absorbance under 260 and 280 nm wavelengths in the produced cell wall materials was established on the basis of their solubilized materials. The investigated methods were; i) homogenization with sonication; ii) grinding with liquid nitrogen and; iii) lyophilization with homogenization. The cell wall materials with the highest degree of cytoplasmic component released were produced using lyophilization with homogenization. This was confirmed with the highest DNA absorbance at 260/280 nm of 2.25/1.95 for G. boninense and 2.47/2.35 for oil palm roots in their solubilized materials. The thus-produced preparation also released 4.5 and 10.1 μg/g of crude proteins for G. boninense and oil palm roots respectively. The degree of cell wall purification from intracellular components was validated using Fourier Transform Infrared Spectroscopy (FTIR). Isolated cell wall can be further utilized in cell wall composition analysis.

 

Keywords:  cell wall, disruption methods, lyophilization with homogenization

 

Abstrak

Dinding sel merupakan lapisan sel paling luar yang ditentang oleh patogen dan menentukan nasib jangkitan. Walau bagaimanapun, komposisi kimia yang terlibat semasa interaksi perumah-patogen masih lagi belum dijelaskan secara terperinci. Sebelum kajian ke atas komposisi dinding sel, dinding tersebut harus dipisahkan daripada komponen sel dalaman terlebih dahulu. Kesesuaian beberapa kaedah terpilih untuk memusnahkan sel akar kelapa sawit dan G. boninense telah dinilai untuk memisahkan dinding sel. Kesan kaedah pemusnahan sel terhadap kandungan protin dan penyerapan asid deoksiribonukleik di bawah panjang gelombang 260 dan 280 nm berdasarkan kepada bahan terlarut di dalam hasil bahan dinding sel telah dinilai. Kaedah pemusnahan yang dikaji adalah; i) homogenisasi dan sonikasi, ii) pengisaran dengan cecair nitrogen, iii) liofilisasi dan homogenisasi. Kaedah liofilisasi dan homogenisasi menghasilkan bahan dinding sel yang mempunyai komponen sitoplasma terbebas tertinggi. Keputusan ini disahkan dengan serapan asid deoksiribonukleik yang tinggi pada 260/280 nm di dalam bahan terlarut iaitu sebanyak 2.25/1.95 untuk G. boninense dan 2.47/2.35 untuk akar kelapa sawit. Selain itu, hasil dinding sel melalui keadah yang sama juga membebaskan 4.5 dan 10.1 μg/g protin masing-masing untuk G. boninense dan akar kelapa sawit. Tingkat kebersihan dinding sel daripada komponen dalaman telah disahkan dengan menggunakan spektrofotometer inframerah transformasi Fourier. Dinding sel yang terpisah seterusnya boleh digunakan di dalam analisa komposisi dinding sel.

 

Kata kunci:  dinding sel, kaedah gangguan, liofilisasi dan homogenisasi

 

References

1.      Underwood, U. (2012). The plant cell wall: A dynamic barrier against pathogen invasion. Frontier Plant Science, 3: 85.

2.      Shah, J. and Chaturvedi, R. (2009). Lipid signals in plant-pathogen interactions. Annual Plant Reviews, 34: 292-333.

3.      Siebers, M., Brands, M., Wewer, V., Duan, Y., Georg, H. and Peter, P. (2016). Lipids in plant-microbe interactions. Biochimica et Biophysica Acta, 1861(9): 1379-1395.

4.      Liu, D. Zeng, Z. A. Sun, D. W. and Han, Z. (2013). Disruption and proteins release by ultrasonication of yeast cells. Innovative Food Science and Emerging Technologies, 18: 132-137.

5.      Fic, E., Krok, S. K., Jankowska, U., Pirog, A. and Wasylewska, M. D. (2010). Comparison of protein precipitation methods for various rat brain structures prior to proteomic analysis. Electrophoresis, 31: 3573-3579.

6.      Canut, H., Albenne, C. and Jamet, E. (2016). Isolation of the cell wall. Methods in Molecular Biology, 1511: 171-185.

7.      Middleberg, A. J. (1995). Process-scale disruption of microorganisms. Biotechnology Advance, 113: 491-551.

8.      Cheung, M. C., LaCroix, R. and McKenna, B. K. (2013). Intercellular protein and nucleic acid measured in eight cell types using deep-ultraviolet mass mapping. Cytometry, 83(6): 540-551.

9.      Zheng, H., Yin, J., Gao, Z., Huang, H., Ji, X. and Dou, C. (2011). Disruption of Chlorella vulgaris cells for the release of biodiesel-producing lipids: A comparison of grinding, ultrasonication, bead milling, enzymatic lysis, and microwaves. Applied Biochemistry and Biotechnology, 164: 1215-1224.

10.   Siebers, M., Brands, M., Wewer, V., Duan, Y., Georg, H. and Peter, P. (2016). Lipids in plant-microbe interactions. Biochimica et Biophysica Acta, 1861(9): 1379-1395.

11.   Cooper, G. M. (2000). The cell: A molecular approach (2nd edition). Sinauer associates: Sunderland, Massachusetts.

12.   Dallies, N., Jean, F. and Veranique, P. (1998). A new method for quantitative determination of polysaccharides in the yeast cell wall. Application to cell wall defective mutants of Saccharomyces cerevisiae. Yeast, 14: 1297-1306.

13.   Tatulian, S. A. (2013). Structural characterization of membrane proteins and peptides by FTIR and ATR-FTIR spectroscopy. Methods in Molecular Biology, 974: 117-218.

14.   Galichet, A., Sockalingum, G. D., Belarbi, A. and Manfait, M. (2001). FTIR spectroscopic analysis of Saccharomyces cerevisiae cell walls: Study of an anomalous strain exhibiting a pink-colored cell phenotype. FEMS Microbiology Letters, 197: 179-186.

15.   Adt, I., Toubas, D., Pinon, J. M., Manfait, M. and Sockalingum, G. D. (2006). FTIR spectroscopy as a potential tool to analyse structural modifications during morphogenesis of Candida albicans. Archeology Microbiology, 185: 277-285.

16.   Tajmir-Rhiai, H. A., N’soukpoé-Kossi, C. N. and Joly, D. (2009). Structural analysis of protein-DNA and protein-RNA interactions by FTIR, UV-visible and CD spectroscopic methods. Spectroscopy, 23: 81-101.