Malaysian
Journal of Analytical Sciences Vol 24 No 4
(2020): 538 - 545
EVALUATION ON THE EFFICACY OF DIFFERENT
DISRUPTION METHOD OF OIL PALM ROOTS AND Ganoderma boninense CELL WALL
(Penilaian ke atas
Keberkesanan Kaedah Pemusnahan yang Berbeza pada Dinding Sel Akar Kelapa Sawit
dan Ganoderma boninense)
Arnnyitte
Alexander1, Jedol Dayou2, Coswald Stephen Sipaut3,
Khim Phin-Chong1*
1Biotechnology
Programme, Faculty of Science and
Natural Resources
2Vibration and Sound
Research Group (e-VIBS), Faculty of
Science and Natural Resources
3Chemical Engineering
Programme, Faculty of Engineering
Universiti Malaysia Sabah, 88400 Jalan UMS,
Kota Kinabalu, Sabah, Malaysia
*Corresponding author: chongkp@ums.edu.my
Received: 31 May 2020; Accepted: 7 July 2020; Published: 11 August 2020
Abstract
The cell wall is the outermost layer of cell encountered by pathogens,
determining the infection fate. However, the chemical composition involves
during host-pathogen interaction has not been fully elucidated. Prior to
determining the composition in the cell walls, the walls must be isolated first
from the intercellular component. Selected methods for oil palm roots and G.
boninense cell disruption were evaluated for their suitability for cell
wall isolation and presented in this paper. The effect of selected disruption
methods on the content of crude proteins and DNA absorbance under 260 and 280
nm wavelengths in the produced cell wall materials was established on the basis
of their solubilized materials. The investigated methods were; i)
homogenization with sonication; ii) grinding with liquid nitrogen and; iii)
lyophilization with homogenization. The cell wall materials with the highest
degree of cytoplasmic component released were produced using lyophilization
with homogenization. This was confirmed with the highest DNA absorbance at
260/280 nm of 2.25/1.95 for G. boninense and 2.47/2.35 for oil palm
roots in their solubilized materials. The thus-produced preparation also
released 4.5 and 10.1 μg/g of crude proteins for G. boninense and
oil palm roots respectively. The degree of cell wall purification from
intracellular components was validated using Fourier Transform Infrared Spectroscopy
(FTIR). Isolated cell wall can be further utilized in cell wall composition
analysis.
Keywords:
cell wall, disruption
methods, lyophilization with homogenization
Abstrak
Dinding sel merupakan lapisan sel paling luar yang
ditentang oleh patogen dan menentukan nasib jangkitan. Walau bagaimanapun,
komposisi kimia yang terlibat semasa interaksi perumah-patogen masih lagi belum
dijelaskan secara terperinci. Sebelum kajian ke atas komposisi dinding sel,
dinding tersebut harus dipisahkan daripada komponen sel dalaman terlebih
dahulu. Kesesuaian beberapa kaedah terpilih untuk memusnahkan sel akar kelapa
sawit dan G. boninense telah dinilai untuk memisahkan dinding sel. Kesan
kaedah pemusnahan sel terhadap kandungan protin dan penyerapan asid
deoksiribonukleik di bawah panjang gelombang 260 dan 280 nm berdasarkan kepada
bahan terlarut di dalam hasil bahan dinding sel telah dinilai. Kaedah
pemusnahan yang dikaji adalah; i) homogenisasi dan sonikasi, ii) pengisaran
dengan cecair nitrogen, iii) liofilisasi dan homogenisasi. Kaedah liofilisasi
dan homogenisasi menghasilkan bahan dinding sel yang mempunyai komponen
sitoplasma terbebas tertinggi. Keputusan ini disahkan dengan serapan asid
deoksiribonukleik yang tinggi pada 260/280 nm di dalam bahan terlarut iaitu
sebanyak 2.25/1.95 untuk G. boninense dan 2.47/2.35 untuk akar kelapa
sawit. Selain itu, hasil dinding sel melalui keadah yang sama juga membebaskan
4.5 dan 10.1 μg/g protin masing-masing untuk G. boninense dan akar
kelapa sawit. Tingkat kebersihan dinding sel daripada komponen dalaman telah
disahkan dengan menggunakan spektrofotometer inframerah transformasi Fourier.
Dinding sel yang terpisah seterusnya boleh digunakan di dalam analisa komposisi
dinding sel.
Kata kunci: dinding sel, kaedah
gangguan, liofilisasi dan homogenisasi
References
1.
Underwood,
U. (2012). The plant cell wall: A dynamic barrier against pathogen invasion. Frontier
Plant Science, 3: 85.
2.
Shah,
J. and Chaturvedi, R. (2009). Lipid signals in plant-pathogen interactions. Annual
Plant Reviews, 34: 292-333.
3.
Siebers,
M., Brands, M., Wewer, V., Duan, Y., Georg, H. and Peter, P. (2016). Lipids in
plant-microbe interactions. Biochimica et Biophysica Acta, 1861(9):
1379-1395.
4.
Liu,
D. Zeng, Z. A. Sun, D. W. and Han, Z. (2013). Disruption and proteins release
by ultrasonication of yeast cells. Innovative Food Science and Emerging
Technologies, 18: 132-137.
5.
Fic,
E., Krok, S. K., Jankowska, U., Pirog, A. and Wasylewska, M. D. (2010).
Comparison of protein precipitation methods for various rat brain structures
prior to proteomic analysis. Electrophoresis, 31: 3573-3579.
6.
Canut,
H., Albenne, C. and Jamet, E. (2016). Isolation of the cell wall. Methods in
Molecular Biology, 1511: 171-185.
7.
Middleberg,
A. J. (1995). Process-scale disruption of microorganisms. Biotechnology Advance,
113: 491-551.
8.
Cheung,
M. C., LaCroix, R. and McKenna, B. K. (2013). Intercellular protein and nucleic
acid measured in eight cell types using deep-ultraviolet mass mapping. Cytometry,
83(6): 540-551.
9.
Zheng,
H., Yin, J., Gao, Z., Huang, H., Ji, X. and Dou, C. (2011). Disruption of Chlorella
vulgaris cells for the release of biodiesel-producing lipids: A comparison
of grinding, ultrasonication, bead milling, enzymatic lysis, and microwaves. Applied
Biochemistry and Biotechnology, 164: 1215-1224.
10.
Siebers,
M., Brands, M., Wewer, V., Duan, Y., Georg, H. and Peter, P. (2016). Lipids in
plant-microbe interactions. Biochimica et Biophysica Acta, 1861(9):
1379-1395.
11.
Cooper,
G. M. (2000). The cell: A molecular approach (2nd edition). Sinauer associates:
Sunderland, Massachusetts.
12.
Dallies,
N., Jean, F. and Veranique, P. (1998). A new method for quantitative determination
of polysaccharides in the yeast cell wall. Application to cell wall defective
mutants of Saccharomyces cerevisiae. Yeast, 14: 1297-1306.
13.
Tatulian,
S. A. (2013). Structural characterization of membrane proteins and peptides by FTIR
and ATR-FTIR spectroscopy. Methods in Molecular Biology, 974: 117-218.
14.
Galichet,
A., Sockalingum, G. D., Belarbi, A. and Manfait, M. (2001). FTIR spectroscopic
analysis of Saccharomyces cerevisiae cell walls: Study of an anomalous
strain exhibiting a pink-colored cell phenotype. FEMS Microbiology Letters,
197: 179-186.
15.
Adt,
I., Toubas, D., Pinon, J. M., Manfait, M. and Sockalingum, G. D. (2006). FTIR
spectroscopy as a potential tool to analyse structural modifications during
morphogenesis of Candida albicans. Archeology Microbiology, 185: 277-285.
16.
Tajmir-Rhiai,
H. A., N’soukpoé-Kossi, C. N. and Joly, D. (2009). Structural analysis of
protein-DNA and protein-RNA interactions by FTIR, UV-visible and CD
spectroscopic methods. Spectroscopy, 23: 81-101.