Malaysian
Journal of Analytical Sciences Vol 24 No 4
(2020): 519 - 529
EFFECT OF PROCESS PARAMETERS ON GELLING TIME OF
SOL-GEL SILICA AND KENAF-SOL-GEL SILICA SYSTEMS
(Kesan Parameter Proses
pada Masa Penggelan dalam Sistem Sol-Gel Silika dan Kenaf-Silika Sol-Gel)
Fahmi
Asyadi Md Yusof1*, Zulhafiz Tajudin2, Ong Siew Kooi1,
Azanam Shah Hashim1
1Polymer Department
2Process Department
Malaysian Institute of Chemical &
Bioengineering Technology,
Universiti Kuala Lumpur, 78000 Alor Gajah,
Melaka, Malaysia
*Corresponding author: fahmiasyadi@unikl.edu.my
Received: 20 November 2019; Accepted: 6 July 2020; Published: 11 August 2020
Abstract
The
gelation process of sol-gel silica and kenaf-sol-gel silica were rheologically
investigated. The correlation between gelling time and process parameters
(i.e., the catalyst ratios: 0.03, 0.05, 0.07, water ratios: 2, 4, 6 and
temperatures: 30, 40, 50 oC) were elucidated. The gelling time was
determined from crossing over of storage moduli (G′) and loss moduli
(G″). The effect of the process parameters on gelling time was analysed
by using response surface methodology (RSM) based on a three-factorial design.
Response surface methodology (RSM) based on 3-level factorial design. Analysis
of variance (ANOVA) depicted that all examined parameters had a profound effect
on the gelling time for both sol-gel silica and kenaf-sol-gel silica systems.
In the sol-gel silica system, RSM predicted that the interaction between
catalyst ratio and water ratio influenced the gelling time response.
Interestingly, in the kenaf-sol-gel silica system, the interaction between
catalyst ratio and temperature contributed to the gelling time response. In
particular, gelling time for the kenaf-sol-gel silica system was faster as
compared to the sol-gel silica system.
Keywords: kenaf, sol-gel silica, gelling time, response surface methodology
Abstrak
Proses gelasi silika sol-gel dan kenaf-silika sol-gel
disiasat secara rheologi. Korelasi antara masa gelasi dan parameter proses
(iaitu nisbah pemangkin: 0.03, 0.05, 0.07, nisbah air: 2, 4, 6 dan suhu: 30,
40, 50 oC) telah dijelaskan. Masa gelasi ditentukan daripada
penyilangan moduli penyimpanan (G') dan moduli kehilangan (G"). Kesan
parameter proses pada masa gelasi dianalisis menggunakan kaedah gerakbalas
permukaan (RSM) berdasarkan rekabentuk tiga faktor. Analisis varians (ANOVA)
menggambarkan bahawa semua parameter yang diperiksa mempunyai kesan yang
mendalam terhadap masa gelasi untuk kedua-dua sistem silika sol-gel dan
kenaf-silika sol-gel. Dalam sistem sol-gel silika, RSM meramalkan bahawa
interaksi antara nisbah pemangkin dan nisbah air mempengaruhi tindak balas masa
gelasi. Menariknya, dalam sistem kenaf-silika sol-gel, interaksi antara nisbah
pemangkin dan suhu menyumbang kepada tindak balas masa gelasi. Khususnya, masa
gelasi untuk sistem kenaf-silika sol-gel lebih cepat berbanding siste. silika
sol-gel.
Kata kunci:
kenaf, silika sol-gel, masa penggelan, kaedah gerakbalas permukaan
References
1.
Guerrero-Martínez, A.,
Pérez-Juste, J. and Liz-Marzán, L. M. (2010). Recent progress on silica coating
of nanoparticles and related nanomaterials. Advanced Materials, 22(11):
1182-1195.
2.
Wang, J., Shah, Z. H.,
Zhang, S. and Lu, R. (2014). Silica-based nanocomposites via reverse
microemulsions: Classifications, preparations, and applications. Nanoscale,
6(9): 4418-4437.
3.
Kim, T. G., An, G. S.,
Han, J. S., Hur, J. U., Park, B. G. and Choi, S. C. (2017). Synthesis of size
controlled spherical silica nanoparticles via sol-gel process within
hydrophilic solvent. Journal of the Korean Ceramic Society, 54(1): 49-54.
4.
Bogush, G. H., Tracy, M.
A. and Zukoski IV, C. F. (1988). Preparation of monodisperse silica particles:
Control of size and mass fraction. Journal of Non-Crystalline Solids,
104(1): 95-106.
5.
Rao, K. S., El-Hami, K.,
Kodaki, T., Matsushige, K. and Makino, K. (2005). A novel method for synthesis of
silica nanoparticles. Journal of Colloid and Interface Science, 289(1):
125-131.
6.
Rahman, I. A. and
Padavettan, V. (2012). Synthesis of silica nanoparticles by sol-gel:
Size-dependent properties, surface modification, and applications in
silica-polymer nanocomposites. A review. Journal of Nanomaterials, 2012:
1155-1170.
7.
Mika, J., Györvary, E. and
Rosenholm, J. B. (1998). Viscoelastic characterization of three different
sol-gel derived silica gels. Colloids and Surfaces, 141: 205-216.
8.
Greasley, S. L., Page, S.
J., Sirovica, S., Chen, S., Martin, R. A., Riveiro, A. and Jones, J. R. (2016).
Controlling particle size in the Stöber process and incorporation of calcium. Journal
of Colloid and Interface Science, 469: 213-223.
9.
Zulkifli, M., Hossain, M.
S., Khalil, N. A., Yahaya, A. N. A., Yusof, F. A. M. and Hashim, A. S. (2018).
Preparation and characterization of sol-gel silica modified kenaf bast
microfiber/polypropylene composites. BioResources, 13(1): 1977-1992.
10.
Shekarriz, M., Khadivi,
R., Taghipoor, S. and Eslamian, M. (2014). Systematic synthesis of high surface
area silica nanoparticles in the sol-gel condition by using the central
composite design (CCD) method. The Canadian Journal of Chemical Engineering,
92(5): 828-834.
11.
Arantes, T. M., Pinto, A.
H., Leite, E. R., Longo, E. and Camargo, E. R. (2012). Synthesis and
optimization of colloidal silica nanoparticles and their functionalization with
methacrylic acid. Colloids and Surfaces A: Physicochemical and Engineering
Aspects, 415: 209-217.