Malaysian Journal of Analytical Sciences Vol 24 No 4 (2020): 519 - 529

 

 

 

 

EFFECT OF PROCESS PARAMETERS ON GELLING TIME OF SOL-GEL SILICA AND KENAF-SOL-GEL SILICA SYSTEMS

 

(Kesan Parameter Proses pada Masa Penggelan dalam Sistem Sol-Gel Silika dan Kenaf-Silika Sol-Gel)

 

Fahmi Asyadi Md Yusof1*, Zulhafiz Tajudin2, Ong Siew Kooi1, Azanam Shah Hashim1

 

1Polymer Department

2Process Department

Malaysian Institute of Chemical & Bioengineering Technology,

Universiti Kuala Lumpur, 78000 Alor Gajah, Melaka, Malaysia

 

*Corresponding author:  fahmiasyadi@unikl.edu.my

 

 

Received: 20 November 2019; Accepted: 6 July 2020; Published:  11 August 2020

 

 

Abstract

The gelation process of sol-gel silica and kenaf-sol-gel silica were rheologically investigated. The correlation between gelling time and process parameters (i.e., the catalyst ratios: 0.03, 0.05, 0.07, water ratios: 2, 4, 6 and temperatures: 30, 40, 50 oC) were elucidated. The gelling time was determined from crossing over of storage moduli (G′) and loss moduli (G″). The effect of the process parameters on gelling time was analysed by using response surface methodology (RSM) based on a three-factorial design. Response surface methodology (RSM) based on 3-level factorial design. Analysis of variance (ANOVA) depicted that all examined parameters had a profound effect on the gelling time for both sol-gel silica and kenaf-sol-gel silica systems. In the sol-gel silica system, RSM predicted that the interaction between catalyst ratio and water ratio influenced the gelling time response. Interestingly, in the kenaf-sol-gel silica system, the interaction between catalyst ratio and temperature contributed to the gelling time response. In particular, gelling time for the kenaf-sol-gel silica system was faster as compared to the sol-gel silica system.

 

Keywords:  kenaf, sol-gel silica, gelling time, response surface methodology

 

Abstrak

Proses gelasi silika sol-gel dan kenaf-silika sol-gel disiasat secara rheologi. Korelasi antara masa gelasi dan parameter proses (iaitu nisbah pemangkin: 0.03, 0.05, 0.07, nisbah air: 2, 4, 6 dan suhu: 30, 40, 50 oC) telah dijelaskan. Masa gelasi ditentukan daripada penyilangan moduli penyimpanan (G') dan moduli kehilangan (G"). Kesan parameter proses pada masa gelasi dianalisis menggunakan kaedah gerakbalas permukaan (RSM) berdasarkan rekabentuk tiga faktor. Analisis varians (ANOVA) menggambarkan bahawa semua parameter yang diperiksa mempunyai kesan yang mendalam terhadap masa gelasi untuk kedua-dua sistem silika sol-gel dan kenaf-silika sol-gel. Dalam sistem sol-gel silika, RSM meramalkan bahawa interaksi antara nisbah pemangkin dan nisbah air mempengaruhi tindak balas masa gelasi. Menariknya, dalam sistem kenaf-silika sol-gel, interaksi antara nisbah pemangkin dan suhu menyumbang kepada tindak balas masa gelasi. Khususnya, masa gelasi untuk sistem kenaf-silika sol-gel lebih cepat berbanding siste. silika sol-gel.

 

Kata kunci:  kenaf, silika sol-gel, masa penggelan, kaedah gerakbalas permukaan

 

References

1.      Guerrero-Martínez, A., Pérez-Juste, J. and Liz-Marzán, L. M. (2010). Recent progress on silica coating of nanoparticles and related nanomaterials. Advanced Materials, 22(11): 1182-1195.

2.      Wang, J., Shah, Z. H., Zhang, S. and Lu, R. (2014). Silica-based nanocomposites via reverse microemulsions: Classifications, preparations, and applications. Nanoscale, 6(9): 4418-4437.

3.      Kim, T. G., An, G. S., Han, J. S., Hur, J. U., Park, B. G. and Choi, S. C. (2017). Synthesis of size controlled spherical silica nanoparticles via sol-gel process within hydrophilic solvent. Journal of the Korean Ceramic Society, 54(1): 49-54.

4.      Bogush, G. H., Tracy, M. A. and Zukoski IV, C. F. (1988). Preparation of monodisperse silica particles: Control of size and mass fraction. Journal of Non-Crystalline Solids, 104(1): 95-106.

5.      Rao, K. S., El-Hami, K., Kodaki, T., Matsushige, K. and Makino, K. (2005). A novel method for synthesis of silica nanoparticles. Journal of Colloid and Interface Science, 289(1): 125-131.

6.      Rahman, I. A. and Padavettan, V. (2012). Synthesis of silica nanoparticles by sol-gel: Size-dependent properties, surface modification, and applications in silica-polymer nanocomposites. A review. Journal of Nanomaterials, 2012: 1155-1170.

7.      Mika, J., Györvary, E. and Rosenholm, J. B. (1998). Viscoelastic characterization of three different sol-gel derived silica gels. Colloids and Surfaces, 141: 205-216.

8.      Greasley, S. L., Page, S. J., Sirovica, S., Chen, S., Martin, R. A., Riveiro, A. and Jones, J. R. (2016). Controlling particle size in the Stöber process and incorporation of calcium. Journal of Colloid and Interface Science, 469: 213-223.

9.      Zulkifli, M., Hossain, M. S., Khalil, N. A., Yahaya, A. N. A., Yusof, F. A. M. and Hashim, A. S. (2018). Preparation and characterization of sol-gel silica modified kenaf bast microfiber/polypropylene composites. BioResources, 13(1): 1977-1992.

10.   Shekarriz, M., Khadivi, R., Taghipoor, S. and Eslamian, M. (2014). Systematic synthesis of high surface area silica nanoparticles in the sol-gel condition by using the central composite design (CCD) method. The Canadian Journal of Chemical Engineering, 92(5): 828-834.

11.   Arantes, T. M., Pinto, A. H., Leite, E. R., Longo, E. and Camargo, E. R. (2012). Synthesis and optimization of colloidal silica nanoparticles and their functionalization with methacrylic acid. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 415: 209-217.