Malaysian Journal of Analytical Sciences Vol 24 No 3 (2020): 373 - 381

 

 

 

 

 

HEADSPACE MEMBRANE-PROTECTED LIQUID PHASE MICROEXTRACTION OF PHENANTHRENE IN BEVERAGE AND WATER

 

(Pengekstrakan Mikro Fasa Cecair Dilindungi Membran Ruang Kepala bagi Fenantrena dalam Air Minuman dan Air)

 

Nor Hafiza Hassan, Wan Mohd Afiq Wan Mohd Khalik, Saw Hong Loh*

 

Faculty of Science and Marine Environment,

Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia

 

*Corresponding author:  lohsh@umt.edu.my

 

 

Received: 30 March 2020; Accepted: 29 April 2020; Published:  9 June 2020

 

 

Abstract

Contamination of low molecular weights polycyclic aromatic hydrocarbons (PAHs) is common in beverage and water. This could pose a health risk to those beverage lovers when they consume the products. Phenanthrene (PHE) is one of the low molecular weights PAHs that consists of three benzene rings in the molecular structure. In this study, PHE was chosen as the model analyte due to its mid-volatility behavior. A headspace membrane-protected liquid phase microextraction (HS-MP-LPME) combined with high performance liquid chromatography-fluorescence detection (HPLC-FD) has been developed for the analysis of PHE in beverage and water samples. The nylon membrane containing 1-octanol as the extractant was exposed to the headspace of the sample vial containing 25 mL of sample solution. The extraction was performed at its optimal conditions with sample temperature fixed at 60 °C, agitation set at 700 rpm and extraction conducted for 30 minutes. Under these optimal extraction conditions, the HS-MP-LPME-HPLC-FD offered ultra-trace detection of PHE and insignificant matrix effects in beverages (green tea and coffee) and water (river, sea and tap) samples with average of relative recovery in the range of 83.7 to 116.1%. The HS-MP-LPME simplifies the routine analysis and resolves the extractant dissolution problem that commonly occurs in hollow fiber-protected LPME. The proposed technique consumes only minimal amounts of organic solvent (200 µL) and this indirectly supports our National Green Technology Policy: together we create a better tomorrow.  

 

Keywords:      beverage, water, headspace membrane-protected liquid phase microextraction, high performance liquid chromatography-fluorescence, phenanthrene

 

Abstrak

Kontaminasi hidrokarbons aromatik polisiklik (PAHs) berjisim molekul rendah dalam air minuman dan air adalah biasa. Ini akan menghasilkan risiko kesihatan kepada pencinta air minuman apabila mereka minum produk tersebut. Fenantrena (PHE) ialah salah satu PAHs berjisim molekul rendah yang mengandungi tiga cincin benzena dalam struktur molekulnya. Dalam kajian ini, PHE dipilih sebagai sebagai analit model kerana kemeruapannya yang sederhana. Satu pengekstrakan mikro fasa cecair dilindungi membran ruang kepala (HS-MP-LPME) bergabung dengan kromatografi cecair berprestasi tinggi-pengesanan pendarfluor (HPLC-FD) telah dibangunkan untuk menganalisis PHE dalam sampel air minuman dan air. Membran nilon yang mengandungi 1-oktanol sebagai pengekstrak didedahkan pada ruang depan botol sampel yang berisi 25 mL larutan sampel. Pengekstrakan dilaksanakan menggunakan keadaan optimum iaitu menetapkan suhu sampel pada 60 °C, mengacau sampel pada kelajuan pengocakan 700 rpm dan mengekstrak selama 30 minit. Di bawah keadaan pengekstrakan optimum, HS-MP-LPME-HPLC-FD menawarkan pengesanan PHE pada tahap ultra-surihan dan memberi kesan matriks yang tidak signifikan dalam sampel air minuman (tea hijau dan kopi) dan air (sungai, laut dan paip) dengan perolehan semula secara relatif dalam lingkungan 83.7 hingga 116.1%. HS-MP-LPME memudahkan analisis rutin dan menyelesaikan masalah pelarutan pengekstrak yang biasa berlaku dalam LPME dilindungi fiber berongga. Teknik yang dicadangkan hanya menggunakan kuantiti pelarut organik yang minimum dan ini menyokong Polisi Hijau Nasional kita secara tidak langsung: bersama-sama kita membina keesokan yang lebih baik.  

 

Kata kunci:    air minuman, air, pengekstrakan mikro fasa cecair dilindungi membran pada ruang kepala, kromatografi cecair berprestasi tinggi-pendarfluor, fenantrena

 

References

1.       Ramesh, A., Archibong, A., Hood, D., Guo, Z. and Loganathan, B. (2011). Global environmental distribution and human health effects of polycyclic aromatic hydrocarbons. Global Contamination Trends of Persistent Organic Chemicals: pp. 97-126.

2.       Liu, H. and Dasgupta, P. L. (1996). Analytical chemistry in a drop. solvent extraction in a microdrop. Analytical Chemistry, 68(11): 1817-1821.

3.       Jeannot, M. A. and Cantwell, F. F. (1996). Solvent microextraction into a single drop. Analytical Chemistry, 68(13): 2236-2240.

4.       Thordarson, E., Pálmarsdóttir, S., Mathiasson, L. and Jönsson, J. A. (1996). Sample preparation using a miniaturized supported liquid membrane device connected on-line to packed capillary liquid chromatography. Analytical Chemistry, 68(15): 2559-2563.

5.       Pedersen-Bjergaard, S. and Rasmussen, K. E. (1999). Liquid−liquid−liquid microextraction for sample preparation of biological fluids prior to capillary electrophoresis. Analytical Chemistry, 71(14): 2650-2656.

6.       Wang,  J.,   Huang,  S.,  Wang,  P.  and  Yang,  Y. (2016). Method development for the analysis of phthalate esters in tea beverages by ionic liquid hollow fibre liquid-phase microextraction and liquid chromatographic detection. Food Control, 67: 278-284.

7.       Ali, W.,  Arain,  M.  B.,  Yamini, Y.,  Shah, N., Gul Kazi, T.,  Pedersen-Bjergaard, S.  and  Tajik,  M. (2019). Hollow fiber-based liquid phase microextraction followed by analytical 2 instrumental techniques for quantitative analysis of heavy metal ions and 3 pharmaceuticals.  Journal of Pharmaceutical Analysis, In press.

8.       Peng, J. F., Liu, R., Liu, J. F., He, B., Hu, X. L. and Jiang, G. B. (2007). Ultrasensitive determination of cadmium in seawater by hollow fiber supported liquid membrane extraction coupled with graphite furnace atomic absorption spectrometry. Spectrochimica Acta Part B: Atomic Spectroscopy, 62(5): 499-503.

9.       Sanagi, M. M., Loh, S. H., Wan Ibrahim, W. A. and Hasan, M. N. (2012). Agarose film liquid phase microextraction combined with gas chromatography–mass spectrometry for the determination of polycyclic aromatic hydrocarbons in water. Journal of Chromatography A, 1262: 43-48.

10.    Loh, S. H., Sanagi, M. M., Wan Ibrahim, W. A. and Hasan, M. N. (2013). Solvent-impregnated agarose gel liquid phase microextraction of polycyclic aromatic hydrocarbons in water. Journal of Chromatography A, 1302: 14-19.

11.    Chong, Y. T., Mohd Ariffin, M., Mohd Tahir, N. and Loh, S. H. (2018). A green solvent holder in electro-mediated microextraction for the extraction of phenols in water. Talanta, 176: 558-564.

12.    Sedehi, S., Tabani, H. and Nojavan, S. (2018). Electro-driven extraction of polar compounds using agarose gel as a new membrane: determination of amino acids in fruit juice and human plasma samples. Talanta, 179: 318-325.

13.    Sanagi, M. M., See, H. H., Wan Ibrahim, W. A. and Abu Naim, A. (2007). Determination of pesticides in water by cone shaped membrane protected liquid phase microextraction prior to micro-liquid chromatography. Journal of Chromatography A, 1152: 215-219.

14.    Loh, T. Y., Khalik, W. M. A. W. M. and Loh, S. H. (2020). Simple extraction of bisphenol A in beverages and water by membrane-protected liquid phase microextraction. Sains Malaysiana, 49(1): 49-55.

15.    Goh, S. X. L., Goh, H. A. and Lee, H. K. (2018). Automation of ionic liquid enhanced membrane bag-assisted-liquid-phase microextraction with liquid chromatography-tandem mass spectrometry for determination of glucocorticoids in water. Analytica Chimica Acta, 1035: 77-86.

16.    Xu, L. and Lee, H. K. (2009). Solvent-bar microextraction - using a silica monolith as the extractant phase holder. Journal of Chromatography A, 1216: 5483-5488.

17.    Ng, N. T., Sanagi, M. M., Wan Ibrahim, W. N. and Wan Ibrahim, W. A. (2017). Agarose-chitosan-C18 film micro-solid phase extraction combined with high performance liquid chromatography for the determination of phenanthrene and pyrene in chrysanthemum tea samples. Food Chemistry, 222: 28-34.

18.    Kumar, B., Verma, V. K., Gaur, R., Kumar, S., Sharma, C. S. and Akolkar, A. B. (2014). Validation of HPLC method for determination of priority polycyclic aromatic hydrocarbons (PAHs) in wastewater and sediments. Advances in Applied Science Research, 5 (1): 201-209.

19.    Thorvaldsson, K. and Janestad, H. (1999). A model for simultaneous heat, water and vapour diffusion. Journal of Food Engineering, 40(3): 167-172.

20.    Vial, J. and Jardy, A. (1999). Experimental comparison of the different approaches to estimate LOD and LOQ of an HPLC method. Analytical Chemistry, 71(14): 2672-2677.

21.    Verbruggen, E. M. J. and van Herwijnen, R. (2011). Environmental risk limits for phenanthrene. National Institute for Public Health and the Environment, Ministry of Health, Welfare and Sport, Netherlands.

22.    Loh, S. H., Chong, Y. T., Nor Afindi, K. N. and Abdullah Kamaruddin, N. (2016). Determination of Polycyclic aromatic hydrocarbons in beverage by low density solvent based-dispersive liquid-liquid microextraction-high performance liquid chromatography-fluorescence detection. Sains Malaysiana, 45 (10): 1453-1459.

23.    Loh, S. H., Neoh, P. E., Tai, C. T. and Kamaruzaman, S. (2018). Simple µ-solid phase extraction using C18 film for the extraction of polycyclic aromatic hydrocarbons in coffee beverage. Malaysian Journal of Analytical Sciences, 22(1): 1-7.

24.    Shi, Y., Wu, H., Wang, C., Guo, X., Du, J. and Du, L. (2016). Determination of polycyclic aromatic hydrocarbons in coffee and tea samples by magnetic solid-phase extraction coupled with HPLC–FLD. Food Chemistry, 199: 75- 80.