Malaysian Journal of Analytical Sciences Vol 23 No 6 (2019): 991 - 1000

DOI: 10.17576/mjas-2019-2306-07

 

 

 

MODIFICATION OF GOLD SCREEN PRINTED ELECTRODE FOR THE DETECTION OF TOXIC DOMOIC ACID

 

(Pengubahsuaian Elektrod Cetakan Skrin Emas bagi Pengesanan Asid Domoik Toksik)

 

Hafiza Mohamed Zuki*, Norhidayah Mohd Nasri, Fatin Nabilah Muhamad, Noor Sheryna Jusoh, Azrilawani Ahmad, Marinah Mohd Ariffin

 

Faculty of Science and Marine Environment,

Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia

 

*Corresponding author:  hafiza@umt.edu.my

 

 

Received: 30 October 2018; Accepted: 26 September 2019

 

 

Abstract

Entrapped ninhydrin in polyvinylchloride (PVC) film is directly immobilized on the surface of gold screen printed electrodes (Au-SPE). Ninhydrin acts as a potential reagent for the detection of toxic Domoic Acid (DA) on the modified Au-SPE sensing system. The modified Au-SPE was characterized using cyclic voltammetry (CV), where the electrochemical behavior of ninhydrin-DA on modified Au-SPE surface was investigated in the potential range of -0.6 V to +0.85 V at a 50 mVs-1 scan rate, in the presence of 10 mM potassium ferricyanide in 0.1 M potassium chloride (KCl). Good responses were observed for ninhydrin-DA redox reactions with a linear relationship forming between peak currents and concentrations. The obtained limit of detection (LOD) for the sensing system was 7.64 x 10-5 M. The developed sensing system of modified Au-SPE exhibited excellent reproducibility with RSD obtained between 0.8% to 1.2%.

 

Keywords:  domoic acid, ninhydrin, modified gold screen printed electrode, cyclic voltammetry

 

Abstrak

Ninhidrin yang diperangkap dalam lapisan filem polivinilklorida (PVC) dipegunkan secara langsung pada permukaan elektrod cetakan skrin emas (Au-SPE). Ninhidrin bertindak sebagai reagen yang berpotensi untuk mengesan asid domoik (DA) toksik diatas sistem pengesan Au-SPE yang diubahsuai. Au-SPE yang diubahsuai dicirikan dengan menggunakan voltametri kitaran (CV) di mana sifat elektrokimia ninhidrin-DA pada permukaan Au-SPE yang diubahsuai telah dikaji dalam julat keupayaan antara -0.6 hingga +0.85 V pada kadar imbasan 50 mVs-1 dalam kehadiran 10 mM kalium ferisianida dalam 0.1 M kalium klorida (KCl). Rangsangan yang baik telah dicerap bagi tindak balas redoks ninhidrin-DA dengan hubungan linear diperoleh antara arus puncak dan kepekatan. Had pengesanan (LODs) yang diperolehi bagi system pengesan adalah 7.64 x 10-5 M. Sistem pengesan Au-SPE diubahsuai yang dibangunkan, mempamerkan kebolehulangan yang sangat baik dengan julat nilai RSD diperolehi antara 0.8% hingga 1.2%.

 

Kata kunci:  asid domoik, ninhidrin, elektrod cetakan skrin emas, voltametri kitaran

 

References

1.       Rodriguez, I., Vieytes, M.R. and Alfonso A. (2017). Analytical challenges for regulated marine toxins: Detection methods. Current Opinion in Food Science, 18: 29-36.

2.       Campas, M., Prieto-Simon, B. and Marty, J-L. (2007). Biosensors to detect marine toxins: Assessing food safety. Talanta, 72: 884-895.

3.       Nicolas, J., Hoogenboom, R. L. A. P., Hendriksen, P. J. M., Bodero, M., Bovee, T. F. H., Rietjens, I. M. C. M. and Gerssen, A. (2017). Marine biotoxins and associated outbreaks following seafood consumption: Prevention and surveillance in the 21st century. Global Food Security, 15: 11-21.

4.       Saeed, A. F., Awan, S. A., Ling, S., Wang, R. and Wang, S. (2017). Domoic acid: Attributes, exposure risks, innovative detection techniques and therapeutics. Algal Research, 24: 97-110.

5.       Bates, S. S., Garrison, D. L. and Horner, R. A. (2008). Bloom dynamics and physiology of domoic acid producing Pseudo-nitzschia species, Physiological Ecology of Harmful Algal Blooms, Springer-Verlag, Heidelberg: pp. 267-292.

6.       Jiang, S., Kuwano, K., Ishikawa, N., Yano, M., Takatani, T. and Arakawa, O. (2014). Production of domoic acid by laboratory culture of the red alga Chondria armata. Toxicon, 92: 1-5.

7.       Friedman, M. (2004). Applications of the ninhydrin reaction for analysis of amino acids, peptides, and proteins to agricultural and biomedical sciences. Journal of Agriculture and Food Chemistry, 52: 385-406.

8.       Mos, L. (2001). Domoic acid: A fascinating marine toxin. Environmental Toxicology and Pharmacology, 9: 79-85.

9.       Jamesa, K. J., Gillman, M., Amandi, M. F., Lopez-Rivera, A., Puente, P. F., Lehane, M., Mitrovic, S. and Furey, A. (2005). Amnesic shellfish poisoning toxins in bivalve molluscs in Ireland. Toxicon, 46: 852-858.

10.    Blanco, J., Livramento, F. and Rangel, I. M. (2010). Amnesic shellfish poisoning (ASP) toxins in plankton and molluscs from Luanda Bay, Angola. Toxicon, 55: 541-546.

11.    Anjelkovic, M., Vandevijvere, S., Klaveren, J. V., Oyen, H. V. and Loco, J. V. (2012). Exposure to domoic acid through shellfish consumption in Belgium. Environment International, 49: 115-119.

12.    Johnson, S., Harrison, K. and Turner, A. D. (2016). Application of rapid test kits for the determination of amnesic shellfish poisoning in bivalve molluscs from Great Britain. Toxicon, 117: 76-83.

13.    Thorel, M., Claquin, P., Schapira, M., Gendre, R. L., Riou, P., Goux, D., Roy, B. L., Raimbault, V., Deton-Cabanillas, A. F., Bazin, P., Kientz-Bouchart, V. and Fauchot, J. (2017). Nutrient ratios influence variability in Pseudo-nitzschia species diversity and particulate domoic acid production in the Bay of Seine (France). Harmful Algae, 68: 192-205.

14.    Bresnan, E., Fryer, R. J., Fraser, S., Smith, N., Stobo, L., Brown, N. and Turrell, E. (2017). The relationship between Pseudo-nitzschia (Peragallo) and domoic acid in Scottish shellfish. Harmful Algae, 63: 193-202.

15.    Li, Y., Huang, C. X., Xu, G. S., Lundholmc, N., Teng, S. T., Wue, H. and Tan, Z. (2017). Pseudo-nitzschia simulans sp. nov. (Bacillariophyceae), the first domoic acid producer from Chinese waters. Harmful Algae, 67: 119-130.

16.    D’Agostinoa, V. C., Degratia, M., Sastrec, V., Santinellic, N., Krockd, B., Krohnd, T., Dansa, S. L. and Hoffmeyer, M. S. (2017). Domoic acid in a marine pelagic food web: Exposure of southern right whales Eubalaena australis to domoic acid on the Península Valdés calving ground, Argentina. Harmful Algae, 68: 248-257.

17.    Romero, M. L. J., Kotaki, Y., Lundholm, N., Thoha, H., Ogawa, H., Relox, J. R., Terada, R., Takeda, S., Takata, Y., Haraguchi, K., Endo, T., Lim, P. T., Kodama, M. and Fukuyo, Y. (2011). Unique amnesic shellfish toxin composition found in the South East Asian diatom Nitzschia navis-varingica. Harmful Algae, 10: 456-462.

18.    Tan, S. N., Teng, S. T., Lim, H. C., Kotaki, Y., Bates, S. S., Leaw, P. C. and Lim, P. T. (2016). Diatom Nitszia navis-varingica (Bacillariophyceae) and its domoic acid production from the mangrove environments of Malaysia. Harmful Algae, 60: 139-149.

19.    Suriyanti, S. N. P. and Usup, G. (2015). First report of the toxigenic Nitszia navis-varingica (Bacillariophyceae) isolated from Tebrau Strait, Johor, Malaysia. Toxicon, 108: 257-263.

20.    Teng, S. T., Lim, H. C., Lim, P. T., Dao, B. H., Bates, S. S. and Leaw, C. P. (2014). Peudo-nitszia kodamae sp. nov. (Bacillariophyceae), a toxigenic species from the Strait of Malacca. Harmful Algae, 34: 17-28.

21.    Lefebvre, K. A. and Robertson, A. (2010). Domoic acid and human exposure risks: A review. Toxicon, 56: 218-230.

22.    Tasker, R. A. R., Perry, M. A., Doucette, T. A. and Ryan, C. L. (2005). NMDA receptor involvement in the effects of low dose domoic acid in neotanal rats. Amino Acids, 28: 193-196.

23.    Zabaglo, K., Chrapusta, E., Bober, B., Kaminski, A., Adamski, M. and Bialczyk, J. (2016). Environmental roles and biological activity of domoic acid: A review. Algal Research, 13: 94-101.

24.    Costa, L. G., Giordano, G. and Faustman, E. M. (2010). Domoic acid as a developmental neurotoxin. NeuroToxicology, 31: 409-423.

25.    Mohd Syaifudin A. R., Jayasundera K. P. and Mukhopadhyay S. C. (2009). A low cost novel sensing system for detection of dangerous marine biotoxins in seafood. Sensors and Actuators B: Chemical, 137: 67-75.

26.    Lotierzo M., Henry O. Y. F., Piletsky S., Tothill I., Cullen D., Kania M., Hock B. and Turner A. P. F. (2004). Surface plasmon resonance sensor for domoic acid based on grafted imprinted polymer. Biosensors & Bioelectronics, 20: 145-152.

27.    Anantharaman, S., Padmarajaiah, N., Al-Tayar, N. G. S. and Shrestha, A. K. (2017). Ninhydrin-sodium molybdate chromogenic analytical probe for the assay of amino acids and proteins. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 173: 897-903.

28.    Djaoued, Y., Balaji, S. and Priya, S. (2007). Non-resonance micro-Raman spectroscopic studies on crystalline domoic acid and its aqueous solutions. Spectrochimica Acta Part A, 67: 1362-1369.

29.    Kimura, O., Kotaki, Y., Hamaue, N., Haraguchi, K. and Endo, T. (2011). Transcellular transport of domoic acid across intestinal Caco-2 cell monolayers. Food and Chemical Toxicology, 49: 2167 – 2171.

30.    Othman, M. A. F., Othman, A. A. and Zuki H. M. (2016). Dithizone modified silver electrode for the determination of metal ions in aqueous solution. Malaysian Journal of Analytical Sciences, 20(1): 197-204

31.    Scholz, F. (2009). Electroanalytical Methods. (2nd edition). Berlin: Springer German.

32.    Dossi, C., Monticelli, D., Pozzi, A. and Recchia, S. (2016). Exploiting chemistry to improve performance of sceen-printed, bismuth film electrodes (SP-BiFE). Biosensors, 6(3): 38.

33.    Pellizzari, E., Lohr, K., Blatecky, A. and Creel, D. (2017). Reproducibility: A primer on semantics and implications for research. New Castle: RTI Press.

 

 

 

 

 




Previous                    Content                    Next